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1 Executive summary

Deliverable 5.2 comprises the final release of KPI benchmarks on all use cases and data connector
libraries. Essentially, this deliverable explains the outcomes of the project via its use cases and results
achieved.

In this deliverable, we present the different challenges we faced during the project and how we
addressed them through the implementation of data connectors. Such connectors are software units
designed to tackle such issues in a fashion that is reproducible and reusable for similar use cases in
the future.

We must note that the use cases are very different among them: this was intended to provide a
wide representation of the life sciences ecosystem. In this manner, the connectors can be used with
minimal effort by other use cases in their contexts. However, for this precise reason, the connectors
are not used on other use cases (except in very specific situations), as that would not make sense.

In this deliverable, we explain the use cases we have selected to demonstrate the achievements
of the NEARDATA'’s goals as well as the data connectors developed to achieve such goals. Those
achievements are evaluated in terms of the following Key Performance Indicators (KPIs) as defined
in the Description of the Action (DoA):

* KPI-1 - Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data
volumes (genomics, metabolomics).

» KPI-2 - Significant data speed improvements (throughput, latency) in real-time video analytics
validated using stream data connectors.

¢ KPI-3 - Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows.

* KPI-4 - High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

¢ KPI-5 - Demonstrated simplicity and productivity of the software platform validated with real
user communities in International Health Data Spaces.

Table 1 summarizes the major KPIs achieved by each of the use cases.

] KPI \ Use Case \ Summary of results ‘
KPI-1 Epistasis Lithops-HPC connector improves data ingestion in GWD pipeline by
36x.
KPI-2 Surgery Semantic video search latency is around 30ms for large collections of

surgical video.

KPI-1 | Transcriptomics | Early stopping technique have increased alignment throughput by
19.5%.

KPI-1 Genomics FaaStream is up to 65.14% cheaper than Flink running the genomics
Kpop job.

KPI-1 | Metabolomics | Depending on the size, we get a speed-up on processing time ranging
from 1.13x to 1.22x faster.

Table 1: Summary of most significant KPIs achieved on the use cases

Finally, we describe the integrations done with the different core architectures of the project de-
scribed in Deliverable 2.3. Architectures such as Lithops, SCONE, or Pravega have made the use
cases more efficient in terms of data throughput and/or transfer, as well as reduced latency or im-
proved user experience. Additionally, as a result of this work, a new architecture was devised:
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Lithops-HPC, which is explained in Deliverables 2.3 and 3.2. Such architecture has not only im-
proved the performance of the genomics epistasis use case but also significantly improved the user
experience of non-technical users, who do not need to provide specific details when interacting with
the HPC supercomputer management system.

In summary, for each of the use cases we describe:

* A brief description of the use case.

¢ The Data Spaces used and/or provided.

* The targeted KPlIs.

* The challenges addressed.

* The data connectors developed to solve the challenges.

e How Al has helped improve the use case, which context is Task 5.1 of the DoA.
¢ The integration of the use case with NEARDATA architecture components.

* The results and KPIs achieved.

* The collection of repositories made available (use case, connectors or utilities).
¢ The conclusions the project allowed to extract for the use case.

¢ The future work to be carried out after the project concludes.

This document presents an overview of the evaluation conclusions of each of the benchmarks, as
well as a list of data connectors. We also provide a set of GitHub URLs where the use cases’ source
codes are made available, as well as the necessary architecture frameworks.
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2 Use Case: Genomics Epistasis
2.1 Short Description

This use case! addresses the development of a high-performance computational pipeline aimed at
uncovering groups of genomic variants associated with complex disorders at a genome-wide level
(GW). Identifying multiple variants linked to such conditions is essential for deepening our under-
standing of underlying molecular mechanisms. However, the exhaustive analysis of all possible
variant combinations remains a significant challenge, primarily due to the immense volume of data
that must be ingested, stored, processed, and analysed concurrently. Overcoming this bottleneck re-
quires the integration of scalable, dynamic, and distributed computational solutions capable of effi-
ciently managing complex analytical workloads. The proposed workflow initiates with the ingestion
and partitioning of large-scale genomic datasets, enabling the orchestrated combinatorial analysis
through machine learning techniques.

2.2 Data Spaces

To address this challenge, we employed two large-scale genomic datasets for the analysis of Type 2
Diabetes (T2D):

e 70KforT2D: 1.29 TB; 1.5 * 10° million variants; 22,802 paired case-control individuals
e UK Biobank: 3.29 TB; 1.5 % 10° million variants; 55,438 paired case-control individuals

These datasets, along with other genomic resources, are available through established public
repositories, biobanks, and data spaces such as the Database of Genotypes and Phenotypes (dbGaP),
the European Genome-phenome Archive (EGA), and the UK Biobank. Particularly, the individuals
included in the 70KforT2D belong to five studies: Resource for Genetic Epidemiology Research on
Aging (GERA), Finland-United States Investigation of NIDDM Genetics (FUSION), Wellcome Trust
Case Control Consortium (WTCCC), Gene Environment Association Studies initiative (GENEVA),
Northwestern University NUgene project (NUgene). The genetic information is publicly available
through the dbGaP platform for FUSION (phs000867.v1.p1), GENEVA (phs000091.v2.p1), NUgene
(phs000237.v1.p1), GERA (phs000788.v2.p3), and the Sanger platform for WTCCC. The UK Biobank
information is available through the UK Biobank portal (https://www.ukbiobank.ac.uk/). Due to
the sensitive nature of genomic data, access to genotype information typically requires a formal data
access agreement between the data custodians and the requesting researchers, ensuring compliance
with ethical and legal standards.

2.3 Targeted KPIs

The KPIs targeted in this use case correspond to:

e KPI-1: there is a need to improve the data ingestion throughput, to enable the reading of the
entire genomics datasets within a reasonable amount of time.

¢ KPI-3: since there is a lot of data and multiple variants that come to it, converting this use-
case into an extreme-data problem, as already discussed in deliverable D5.1, we require setting
up an architecture that allows for scaling to an extreme, as well as considering the trade-off
between resources required and available.

¢ KPI-5: the use case is typically managed by non-technical users (i.e, not coming from the com-
puter science world) who are not experts on HPC resource management. However, supercom-
puters typically expect a certain level of knowledge, which turns out not to be the case, making
them hard to manage. Therefore, another goal of the use case is to develop the solutions in a
user-friendly fashion for the end user, while ensuring proper scaling and throughput.

IThis use case’s scientific side is described throuhgouly in the pre-print paper "Genetic Profiling and Early Detection of
Type 2 Diabetes Subtypes through Sex-Stratified GWAS and Explainable AI" by Alonso et al. available at https://www.
medrxiv.org/content/10.1101/2025.07.24.256332120v1.full. The work in this section comprises Tasks 5.1 and 5.3.
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2.4 Challenges addressed

The implementation of this high-performance computing (HPC) genomic pipeline presents chal-
lenges both at the methodological and technical levels. From a research perspective, it requires the
development of a tailored approach that leverages a combination of machine learning (ML) models
to identify groups of genomic variants contributing to disease onset and progression. Technically,
the pipeline demands the integration of specialized tools capable of supporting the full data lifecy-
cle, including ingestion, storage, processing, orchestration, and analysis, to efficiently manage and
interpret large-scale genomic datasets.

* Machine Learning: Traditional association testing methods often overlook the combined con-
tribution of multiple genomic variants to disease development. Machine learning (ML) ap-
proaches have emerged as promising tools for identifying variant groups and assessing their
impact on disease risk. However, the structure of genomic datasets, characterized by millions
of features across a relatively limited number of individuals, poses significant challenges for
the effective application of ML techniques. To address this, we implement a combinatorial
strategy that aligns with the statistical constraints of ML methodologies. The genomic data is
first partitioned into manageable chunks that conform to the computational limitations of ML
tools, ensuring robust analytical performance. These chunks are then paired and analysed for
their association with the disease. This approach enables scalable, genome-wide analysis and
contributes to enhanced understanding of disease mechanisms, with potential implications for
early detection and precision medicine.

¢ Ingestion and processing: The substantial volume of data stored in genomic datasets, often en-
compassing tens of millions of variants across hundreds of thousands of individuals, presents
a significant challenge for efficient data ingestion. To ensure optimal performance and avoid
computational bottlenecks, it is critical to minimize redundant read operations from the same
file. This is particularly relevant when working with formats such as Variant Call Format (VCE),
Binary Call Format (BCF), or scalable alternatives like Apache Parquet, which support colum-
nar storage and compression. To address these challenges, the ingestion process is designed to
partition the data into discrete chunks that can be processed in parallel. This approach reduces
I/0O overhead and enables distributed execution using Lithops in combination with DataPlug,
facilitating efficient data access and transfer and, thus, allowing the scalable ingestion and pro-
cessing of large genomic datasets.

On the other hand, genomic data is sequentially structured and often distributed across multi-
ple large files. To ensure generalization and model performance, it is necessary that the chunk-
ing strategy incorporates data shuffling, and to ensure that the shuffle of the data across files
is efficient. Traditional shuffling methods require loading all files into memory, performing the
shuffle, and writing the results back to storage, an approach that is both time and resource-
intensive. The challenge is further compounded when experimenting with different chunk
sizes to optimize model training, as each configuration demands additional processing and
storage overhead. To tackle this problem, a data shuffle connector has been integrated into
DataPlug to make this process transparent and integrated into the reading of data.

* Orchestration: Once the use-case becomes deployed in a parallel fashion and leveraging Server-
less paradigms into HPC infrastructures, resource allocation becomes challenging. In such en-
vironments, resources are highly demanded, and so the more requested the longer the wait for
them to be allocated, impacting the time to service. Thus, one must consider whether to request
the optimal amount or request less in order to improve overall time to service. To mitigate this
issue, we have developed an auto-scaling mechanism for Lithops-HPC that handles dynamic
allocation of resources based on a forecast of available resources in the underlying system (i.e,
supercomputer and/or HPC infrastructure). This is deeply described in the following section
27.
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¢ Analysis: Conventional machine learning workflows typically begin with a hyperparameter
tuning phase, followed by model training and evaluation. While this sequence is essential
for optimizing predictive performance, it becomes computationally intensive when scaled to
millions of executions, even within a parallelized and scalable infrastructure. To mitigate this
challenge, we have developed a methodology (detailed in Section 2.7) that enables the identifi-
cation of optimal hyperparameters across all datasets in advance. This innovation allows us to
bypass the tuning step entirely, resulting in a substantial reduction in computational overhead.
Furthermore, our combinatorial strategy yields multiple feature subsets and a diverse array
of predictive models. To transform these outputs into a consolidated set of disease-associated
variants and a unified predictive framework, we have implemented bespoke analytical tech-
niques, also described in Section 2.7.

2.5 Data connectors developed

¢ Data shuffle and partitioning connector: this connector reads the input data, shuffles its con-
tents, mixing the variants, and splits into several partitions. This provides partitions that are
already disordered and can be later used by the data analytics engine that has been imple-
mented.

* Auto-scaling connector: this component leverages a time-series-based forecasting model, pre-
dicting resources available in supercomputers, to later auto-scale the amount of resources al-
located to the Lithops-HPC backends. This achieves dynamic resource handling of the infras-
tructure transparently and efficiently. With this connector, the users no longer need to decide
resources for themselves.

* ML accelerator connector: this component allows running the required random forest analytics
based on XGBoost on multiple GPUs, splitting the data. For this, Dask library has been merged
together with the Data Plug partitioner.

e HPC connector: this connector is the main component of Lithops-HPC. It connects the Lithops
architecture with HPC platforms, enabling not only the usage of HPC computing resources but
also handling heterogeneous supercomputing systems. This allows us to dynamically run on
GPUs and CPU partitions, as well as it would enables running on other devices (i.e., FPGAs)
when available.

2.5.1 Data shuffle connector

To overcome the machine learning challenges related to data shuffling and partitioning, we have
developed an innovative data connector designed to facilitate the ingestion of genomics data for Al
model training. This connector enables the reading of one or multiple text-based files (including VCF
format), automatically shuffling their contents during read operations and generating arbitrary-sized
chunks dynamically, without the need for intermediate storage files. The connector is implemented
as a new format extension within the Dataplug? library. It encapsulates one or more VCF files and
leverages Dataplug’s capabilities to read data in slices of arbitrary size at runtime. This functionality
is made possible through Dataplug’s concept of meta-slices (refer to the Dataplug library documen-
tation in D2.3 and D2.2). The format incorporates a data shuffling mechanism that ensures slice ac-
cess lines in a randomized order while maintaining complete coverage of the dataset across chunks.
During Dataplug’s preprocessing phase, the connector indexes the number of lines and their corre-
sponding byte positions. This index is stored in the object’s metadata and enables efficient random
access to lines using byte-range read operations, thereby eliminating the need for intermediate file
creation.

Performance evaluations indicate that slicing with this connector is as fast or faster than tradi-
tional partitioning methods that do not involve shuffling. The improved performance is attributed

2DataPlug is further explained in Deliverable 2.3
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to the index, which provides precise byte offsets for line starts, allowing direct access without scan-
ning for line endings. However, this efficiency comes at the cost of increased preprocessing time
and metadata size. For example, indexing a 4 GB dataset requires approximately two seconds, and a
naive indexing approach that stores a pointer for each line results in metadata of roughly 700 KB for
a 4.5 GB dataset.

In summary, our data connector offers a scalable and efficient solution for shuffling and chunk-
ing genomics data during ingestion, thereby enhancing the training of AI models while minimizing
resource consumption and storage overhead.

2.5.2 Auto-scaling connector

This component leverages a time-series-based forecasting model, predicting resources available in
supercomputers, to later auto-scale the amount of resources allocated to the Lithops-HPC backends.
This achieves dynamic resource handling of the infrastructure transparently and efficiently. With
this connector, the users no longer need to decide resources for themselves. This connector is further
explained in section 2.7.

2.5.3 HPC connectors

This is composed mainly of two connectors that are further described in Deliverable 3.2. The main
components are:

* ML accelerator connector: This component allows running the required random forest analyt-
ics based on XGBoost on multiple GPUs, splitting the data. For this, the Dask library has been
merged together with the Data Plug partitioner.

e HPC connector: This connector is the main component of Lithops-HPC. It connects the Lithops
architecture with HPC platforms, enabling not only the usage of HPC computing resources but
also handling heterogeneous supercomputing systems. This allows us to dynamically run on
GPUs and CPU partitions, as well as it would enables running on other devices (i.e., FPGAs)
when available.

2.6 Al-Enabled Variant Discovery: Combinatorial Machine Learning Approach

In this use case, Artificial Intelligence (Al) is applied to address the complexity of identifying groups
of genomic variants associated with disease risk. Unlike traditional statistical methods, which typi-
cally assess variants in isolation, machine learning (ML) approaches enable the exploration of com-
bined effects across variant groups. However, the scale and dimensionality of genomic datasets,
often comprising millions of features across hundreds of thousands of individuals, pose significant
statistical and computational challenges for ML-based analysis.

To overcome these limitations, we implement a combinatorial strategy in which the dataset is
partitioned into manageable chunks. These chunks are then pairwise combined to ensure that all
variants are tested in interaction with one another. This approach allows for scalable analysis while
preserving the capacity to detect complex variant associations.

Despite the scalability introduced by this strategy and the NearData project connectors, which
facilitate parallelization and resource optimization, the problem remains computationally intensive.
To address this, we introduce a complementary analytical solution:

1. Hyperparameter Optimization under Combinatorial Constraints: Hyperparameter tuning,
typically performed via k-fold cross-validation, becomes prohibitively expensive when ap-
plied across combinatorial datasets. To mitigate this, we conducted randomized tests based
on known genomic associations and evaluated model reliability across subsets. This enabled
the clustering of hyperparameters according to performance metrics, allowing us to select op-
timal configurations without exhaustive search.

Beyond the core scope of the NearData project, additional research-driven solutions have been
explored to address the problem through combinatorial approaches. As these developments are not
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Figure 1: Genome-Wide Discovery overview

directly aligned with the project’s primary objectives and do not exclusively impact the defined KPIs,
we provide here a brief summary for completeness:

1. Scoring and Prioritization of Variant Groups: The combinatorial approach yields extensive
lists of variant groups, many of which may be redundant or weakly associated with the dis-
ease. To prioritize meaningful results, we developed a scoring mechanism based on input-
output frequency across executions. This preliminary method ranks variant groups by their
recurrence and strength of association. Future iterations will incorporate graph-based models
and stochastic processes to enhance prioritization and reduce redundancy.

2. Ensemble Modeling for Predictive Robustness: The combinatorial framework produces mul-
tiple predictive models rather than a single unified predictor. To consolidate these outputs, we
implemented an ensemble learning strategy. Each model is treated as an expert predictor for a
specific genomic region, and its reliability is assessed to assign a weighted contribution to the
final ensemble. This approach improves overall predictive accuracy and robustness in disease
detection.

2.7 Al-driven Resources Autoscaling Connector

The Function-as-a-Service (FaaS) paradigm divides workloads into independent tasks, each one pro-
cessed by a dedicated CPU worker. When the number of tasks surpasses the system’s available
computational resources, an overload condition occurs (aka: demanding CPU Workload), leading to
a task-to-worker imbalance. In such cases, pending tasks are placed in a workload queue, which is
continuously monitored and iterated as computational resources become available, ensuring efficient
task execution. In other words, demanding only available resources ensures that HPC job schedulers
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(namely Slurm in our case) will grant resources much quicker than they could possibly do if we re-
quested more than is actually available. The latter is a typical occurrence when users run their jobs
requesting resources they really need without taking into account availability.

Users don’t ask for more than is available for no reason. They do so because they typically employ
MPI paradigm, which operates with a static set of resources. Consequently, if they did ask less,
although the job would start sooner, it would still be completed much later than if it had waited in
the first place.

To overcome these issues, Lithops-HPC is further extended with an autoscaling mechanism to
dynamically adjust resources in the backend.

We propose to manage the resources of Lithops-HPC with the knowledge of the overall resources’
availability in the system. This mechanism allows us to scale down resources as well, so we can
have as many resources in the system as are available, as well as to scale down when those are not
predicted to be required anymore. This autoscaling mechanism is what we call FaaSTs and explain
in this section.

With FaaSTs we can forecast how many resources will be available in the next period of time -
parametrizable - and acquire them faster as we request resources that are already available. To do
this forecast, we employ a time-series model that gathers publicly available data of the system and
allows us to do the prediction.

Lithops-HPC enables users to structure their applications as a collection of Python functions,
which are efficiently distributed across multiple CPU workers. With the time series model inte-
grated, it provides the scaleUP and scaleDown options, allowing to append (or release) workers into
a deployed compute backend. FaaSTs uses these options to effectively modify the CPU resources in
real time while also considering the HPC variations reported from the Time Series model, according
to a Scaling Policy.

This is a novel policy to decide if increase or decrease the number of workers for a given comput-
ing backend. The Scaling Policy takes into account the HPC system status by setting three levels of
system utilization, in terms of resources used:

* High - when the HPC system usage is over 80%?°
* Moderate - when the HPC system usage is between 40% and 80%;

¢ Idle - when the HPC system usage is under 40%*.

According to the status of the HPC system, the number of workers can increase or decrease by
a certain percentage. In the situation of the HPC system in state "High", the number of workers is
reduced to 10%, while if the state is "Moderate" or "Idle" the number of workers is increased of 10%
and 20% accordingly 5; this variation percentage is here called Scaling Factor. The Scaling Factor is
then used to compute the actual number of workers according to the equation 1.

Wit1 = min (maxW, max (minW, W; - (1 + SF;))) (1)

Where maxW and minW are arbitrarily chosen as upper and lower bounds for the size of the
Lithops backend, and, in the case of this paper, it was decided for maxW = 10000 and minW = 1000
just for experimental purposes.

In conclusion, based on the HPC system status, the Scaling Policy applies a scaleUp or scaleDown
with a certain Scaling Factor.

2.7.1 System architecture

Figure 2 presents the Function as a Service and Time Series (FaaST) architecture.

FaaSTs employs Lithops as Compute Backend (also called Lithops backend)(grey block at the top)
to execute the client functions, which can be dynamically resized at most convenience, as it will be
explained later in the paper. The Web Scraper (green block) is a web application listening for HTTP

2This threshold was chosen based on empirical observations, and it can be adjusted accordingly to the use case.
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Figure 2: A simplified FasSTs architecture

requests and providing HPC system stats by scraping a dedicated webpage. Based on the way it
is designed, a Prometheus database [1] (inside violet block) checks, at a given frequency (or scrape
frequency), target objects in order to collect telemetry data that is being exposed. In this context,
the target entities are three Prometheus Pushgateways ([2], [3], [4]), which serve as data containers
populated with telemetry data from various architecture components. For instance, the Web Scraper
component populates one Pushgateway with statistics from the HPC system (as illustrated in figure
2). The remaining two Pushgateways are used for inference and model evaluation tasks, and for col-
lecting Lithops metadata originating from the Compute Backend, respectively. Another Prometheus
component is the Prometheus Alert Manager [5] & [6] (again inside violet block), which catches the
Prometheus alerts firing and automatically transmits a message to a certain destination: it works as
a 'notifier" informing that a certain event just took place. The Alert Manager has a single target to
send the notification, this target is another web application, here called Interface Server. This appli-
cation sends HTTP requests to the Web Scraper when Prometheus requires new data (according to
the Prometheus scrape frequency). In addition, the Interface Server interacts with Apache Airflow [7],
an open source framework to schedule and monitor workflows, and here it is used to run several
pipelines like:

* Inference dag - this pipeline retrieves new data from Prometheus, transforms them if necessary,
and provides them to the trained model for inference;

* Scaling dag - this pipeline uses the most recent prediction to assess the future state of the HPC
system (meaning if the system is overloaded, stationary, or free) and dynamically allocate, re-
duce, or keep the current resources of the Lithops backend;

¢ Supplementary dags - this is a set of extra asset-aware pipelines designed to evaluate the good-
ness of the forecasting model in real-time and generate useful plots.

Specifically, the Scaling dag pipeline is triggered by the Inference dag if the last pipeline managed
to produce and serve a valid prediction; otherwise, the Inference pipeline is considered as failed, and
it is necessary to wait until the next scraping time, when Prometheus will request new data.

As the FaaST architecture is designed to leverage idle CPU resources, it implements the Scaling
Policy: scaleUp and scaleDown to increase or decrease the number of Lithops workers in the Com-
pute Backend. In the Scaling DAG pipeline, the Scaling Factor is computed based on the prediction of
the HPC system status, which determines the percentage of Lithops workers to allocate or de-allocate
from the Lithops backend.
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With a clear understanding of the individual components of the FaaST architecture, Figure 3 offers
a comprehensive depiction of the temporal sequence of interactions among the major components.
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Figure 3: A simplified FasSTs workflow

Where, for simplicity, all the Prometheus components (meaning Prometheus DB, Prometheus
Pushgateways, and Prometheus Alert Manager) are compressed inside Prometheus.

What is interesting to observe is that FaaST architecture is event-driven: by exploiting the Prometheus
scraping interval (i.e., the frequency at which it pulls data from the target object), it is possible to
trigger the forecasting model and, ultimately, the dynamic allocation of resources for the Lithops
backend, without the need for an orchestrator.

2.7.2 Time series forecasting methodology

The preparation of the Statistical and Machine Learning model relied on the following phases:

1. Data collection - system-related data (i.e., total available CPUs and the number of assigned
CPUs at a given timestamp) were collected at 2-hour intervals over a period of one month. A
total of 12 data points per day and 336 data points within a month were collected. Due to the
mainly constant nature of the total available CPUs it is more of interest to focus on the number
of assigned CPUs.

2. Data Exploration - prepossessed data was examined to understand their representation, mean-
ing, and seasonality. Several analyses were applied to detect trends, seasonal components, and
residuals. No relevant data points were removed during this phase.

3. Data Preparation - collected data were examined to extract insights and identify unseen pat-
terns. Outliers were treated to refine the dataset and shape an appropriate waveform for the
forecasting model. In order to ensure data stationarity, it is convenient to apply a differentiation
technique that should remove trend and smooth seasonality (if applied to certain lags).

4. Time Series Model Selection - Seasonal ARIMA model (or just SARIMA) was chosen as the
model requirements were met.
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5. Model Finetuning - a greedy search algorithm was employed to identify the optimal configu-
ration of SARIMA parameters. The total of possible parameter combinations was examined in
parallel. The best configuration was conserved for the future stages.

6. Model Evaluation - final model was selected based on performance scores derived from three
assessment categories, based on qualitative assessment of the model residuals and quantitative
assessment prediction by checking the error computed.

About the modeling part, a seasonal ARIMA model presents a set of hyperparameters:
* p - explain correlation with past values (it depends on significant lags in PACF plot);
* d - make series stationary (it depends on whether the time series is stationary or not);
* q - explain correlation with past errors (it depends on significant lags in ACF plot);

e P -seasonal AR order;

* D - seasonal differencing order;

¢ Q- seasonal MA order;

* s-seasonal period.

The subset (p, d, q) is a proper subset of the ARIMA model, while the subset (P, D, Q, s) makes
ARIMA addressing the seasonal part of the time series.

The SARIMA hyperparameters can assume any integer value between 0 to infinity; therefore set
of all possible combinations is also infinite. However, thanks to the data exploration and data prepro-
cessing applied it is possible to restrict the possible set of combinations to SARIMA(p,0,q9)(P,0,Q,13)
since it was previously applied the differentiation and there was recognized a daily seasonality was
recognized. For the remaining hyperparameters (p, q, P, Q) it is possible to apply a greedy search
algorithm over all possible values between 0 to 7 (larger could lead to overfitting), resulting in a set
of more than 4000 combinations of hyperparameters.

The various SARIMA models are evaluated according to three categories of evaluation metrics:
analysis of the residuals, prediction errors, and distances between real and predicted time series.

The residuals analysis is a qualitative assessment of the model’s goodness, and it is used to check
the reliability of the model based on some statistical tests over the residuals (meaning the differences
between the actual observed values in a time series and the values predicted by the SARIMA model).
The residuals need to hold some properties to ensure the model forecast is trustworthy. In particular,
the residuals have to be: homoscedastic, which means the variance of these residuals is consistent
across all observations; normally distributed to ensure the model catches the underlying pattern(s);
and finally, the residuals do not show any autocorrelation.

The prediction errors are a quantitative assessment of the model’s goodness, and it is composed
of: Log-Likelihood, which is a way to understand how much of the data is explained by the model;
BIC, AIC, and HQIC are from Game Theory and are used to balance model fit with complexity;
while MAE, MSE, RMSE, and MAPE are different ways to measure the error computed from the
model between the forecast and the actual value. Finally, a set of distance metrics as Dynamic Time
Wrapping (DTW), Manhattan, and Euclidean distances.

2.8 Integration with NEARDATA architecture components
¢ MPI: Parallelized HPC processing.

* Lithops: Scalable data analytics and AI/ML workloads.

¢ Lithops-HPC: this software integrates Lithops into the HPC supercomputing resources, lever-
aging the HPC connector [8]. The full architecture is further described in NEARDATA deliver-
able 3.2.
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¢ Dataplug: Dynamic partitioning tool.
* RabbitMQ: Workload manager.
* GekkoFS: Lightweight, temporary distributed file system for high-throughput HPC [9].

* NVIDIA: High-performance computing, deep learning, and Al workloads.

2.9 Results and KPIs achieved

In this section, we split the results in two, on one hand the results obtained by the auto-scaling
method. On the other hand, the results obtained using Lithops-HPC on our use-case.

2.9.1 Infrastructure used

In both situations MareNostrum 5 (MN5) supercomputer has used. MN5 combines Lenovo ThinkSys-
tem SD650 V3 and Eviden BullSequana XH3000 architectures, providing two partitions with different
technical characteristics. The MN5-General-Purpose Partition comprises 6.408 nodes based on Intel
Sapphire Rapids (4th Generation Intel Xeon Scalable Processors). This general partition was used for
the experiments described in the next lines.

Moreover, we have also used the accelerated partition of MareNostrum 5 whose main character-
istic is that each node contains 4 NVIDIA H100 GPUs, which are one of the most powerful GPUs
currently available. These GPUs are not built using traditional PCle ports but rather are built on top
of specialized motherboards and embedded to them, so the communication bus between CPU and
GPUs is as fast as a memory-CPU bus.

Additionally for some experiments we also used Nord4, which is a portion of the previous super-
computers generation: MareNostrum 4.

2.9.2 Auto-scaling methodology evaluation

In the following lines we assess the auto-scaling methodology. For this portion we have used MDR
use-case. As a reminder and already explained in previous deliverable D5.1 MDR is a statistical
approach used to identify pairs of genetic variants that, synergistically, contribute to the development
of these disorders. However, MDR demands evaluating all possible pairwise SNP-SNP interactions,
which can be computationally intensive. Equation (2) calculates the total number of such pairwise
combinations.

N-(N-1)

> @

Total pairwise SNP combinations = (I;]) =

where:
e N is the total number of SNPs (variants) in the dataset.

. (I;] ) denotes the binomial coefficient, representing the number of unique, unordered pairs of
SNPs.

* O(N?) denotes the computational Order.

Table 2 shows the synthetic datasets designed to evaluate the proposed strategy. They were in-
spired by the Northwestern NuGENE project cohort1.

2.9.3 System-Level Forecasting

The HPC system usage is represented by the number of CPUs the system has available and the
number of CPUs assigned to the users to run their applications as depicted in figure 4.

Figure 4 shows a snapshot of data from the supercomputer MareNostrum5. Data represents the
number of CPUs currently available in the supercomputer, from 0 to a maximum of around 700.000
CPUs available on the y-axis, while on the x-axis, a temporal window of 1 month of data with a
frequency of 2 hours. The orange line shows the total CPUs, which is the number of CPUs available
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SNPs # patients Tot.al.Combinations
(millions)
big (UK) 15586493 422000 1.2E+08
small (70K) | 1883192 1128 1.8E+06
tiny 100000 1128 5.0E+03

Table 2: Experimental Datasets
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Figure 4: Available and allocated CPUs over time

and ready to be assigned to a user of the supercomputer, while the blue line shows the allocated
CPUs, which is the number of CPUs already in use and allocated to users’ jobs. Finally, the vertical
red dashed line highlights a potential outlier in the time series, due to its extreme value.

The allocated CPUs time series can be further analysed by applying a Time Series Decomposition.
Figure 5 shows the Time Series Decomposition into three subplots, which share the x-axis represent-
ing the number of points ordered in temporal order.

At the top is shown, in blue, the trend component of the allocated CPUs time series, where the
y-axis is the number of CPUs in the supercomputer. The subplot in the middle shows, in yellow, the
seasonal component of the allocated CPUs with a frequency of 13 data points, representing almost a
daily seasonality with a variation between 4-20.000 CPUs as shown on the y-axis. Finally, the subplot
at the bottom shows, in red, the residual component of the allocated CPUs time series, which is
randomly fluctuating between £100.000 CPUs, as shown on the y-axis.

A different analysis to focus on the relation among the data points is provided by the autocorre-
lation and partial autocorrelation plots (figure 6). The figure is composed of three subplots, for each
of which, the x-axis represents the lags from the most recent data point (lag 0 is related to the current
data point at time t, lag 1 is the data point at time t-1, lag 2 is the data point at time t-2, and so on).
While the y-axis shows the autocorrelation between the current data point at time t with a certain
lag, and this value can vary in the range [-1, +1], where -1 means negative autocorrelation, 0 means
no correlation, and +1 means positive autocorrelation.

In Figure 6, we present the autocorrelation and partial autocorrelation analysis of the allocated
CPUs time series. The left subplot depicts the autocorrelation, where lag 1 exhibits a positive correla-
tion of 0.25 and lag 13 exhibits a negative correlation of 0.35. The center subplot showcases the partial
autocorrelation, where the current data point at time t is correlated with lags up to 40. Notably, lag
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Figure 6: Autocorrelation and Partial Autocorrelation

1 exhibits a positive correlation, while lags 13, 26, and 39 exhibit negative correlations with varying
magnitudes. The right subplot further extends the analysis up to lag 200, mirroring the informa-
tion observed in the left subplot. However, additional lags are observed around lag 89 that exhibit
positive correlations with the most recent data point.

As mentioned in 2.7.2, in order to ensure data are stationary, it is recommended to apply a differ-
entiation.

Figure 7 includes two subplots: on the right is the differentiated allocated CPUs time series, where
it was applied first order differentiation and differentiation at lag 13.

The second subplot on the right shows the Q-Q plot of the differentiated allocated CPUs time
series, where on the x-axis as shown the theoretical quantiles in the range [-3,4+3] and on the y-axis is
shown the quantile values in the range [-200.000, +200.000]. The blue dots are the quantile distribu-
tion of the differentiated allocated CPUs compared to the red line, which represents the theoretical
distribution of quantiles for the Normal distribution.

Several experiments were conducted to evaluate the performance of the SARIMAX model under
various hyperparameter configurations. The results presented below correspond to the five best-
performing configurations, i.e., the top-5 SARIMAX model settings.

Table 3 shows the Top-5 Seasonal ARIMA models among all the experiments conducted.
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Figure 7: Time Series Differentiation and Q-Q plot

ARIMA | Seasonal Comp.
p d q|/P D Q s

6 0 6/3 0 0 13
6 0 6/3 0 5 13
4 0 6/2 0 5 13
5 0 6|2 0 4 13

Table 3: Top-5 Seasonal SARIMAX hyper-parameters

Table 4 shows the Top-5 Seasonal ARIMAX models assessed on the set of prediction error metrics.

Finally, the distance between the actual and predicted time series is another set of metrics to quan-
titatively assess the goodness of the model. This category is composed of the following measures:
Euclidean, Shaped-Based, Manhattan, Minkowski, Dynamic Time Wrapping (DTW) [10], Shaped
DTW, Amerced DTW, Longest Common SubSequence (LCSS) [11], Edit Real [12], Move-Split-Merge
(MSM) [13]. These metrics, differently from the prediction errors metrics, are more flexible since are
less time-dependent (MSE and RMSE compute the error between the actual and predicted values
according the same timestamp, it means that MSE and RMSE might show a large error, even if the
predicted time series is just shifted forward of few data point, which is not a problem for DTW).

Table 5 shows the distance between the actual and predicted data points at the same timestamp.
At the top of the table it is shown the Top-5 SARIMAX models by hyperparameters are shown, which
are evaluated according to a set of distance metrics (in the left side of the table). Top-5 SARIMAX

Prediction Error

(p,q,d) (6,0,6) (6,0,6) (4,0,6) (5,0,6) (5,0,6)
P,Q,D,s) | (30,0,13) (3,0513) (2,05,13) (2,0513) (2,04,13)
Log-Like | -3425.04 -3426.35 -3441.72  -3442.1  -3442-04
AIC 6882.08 6886.7 6911.43  6914.19  6914.08
BIC 6904.4 6948.67 696247  6968.87  6968.76

HQIC 6905.46  6911.55 6931.89  6936.11 6936.0
MAE 31881.35 31626.39 34769.46 34987.73 35345.12
RMSE 37245.6  37098.07 40816.06 41100.51 41939.2

MAPE 260.61 242 .99 286.94 279.24 265.32

Table 4: SARIMAX model Top-5 experiments based on Prediction Error category
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models are sorted according to the minimum of the set of distance metrics, from left to right.

Distance Error

(p,q,d) (6,0,6) (6,0,6) (4,0,6) (5,0,6) (5,0,6)
P, Q,D,s) (3,0,0,13) (3,05,13) (2,0513) (2,05,13) (2,04,13)
Eucledian 1.17 1.18 1.22 1.23 1.27

Shape-Based 0.59 0.61 0.72 0.72 0.71
Manhattan 6.88 6.95 7.19 7.33 7.56
Minkowski 1.17 1.18 1.22 1.23 1.27

DTW 0.96 0.97 1.21 1.16 1.11
Shaped DTW 1.37 1.34 1.48 1.52 1.42
Amerced DTW 1.37 1.39 1.48 1.52 1.62
LCSS 0.0 0.0 0.0 0.0 0.0

Edit Real 0.61 0.61 0.67 0.66 0.59
MSM 6.88 6.95 7.19 7.33 7.56

Table 5: ARIMA model Top-5 experiments based on Distance Error

2.9.4 Auto-scaling with time series on Lithops-HPC

Table 6 shows the total number of combinations processed per worker per second for the different
implementations using the MDR use-case.

Total combinations (millions)

CPUs/Tool Python Spark MPIC Lithops
112 4906 29582 10770
224 9812 59164 21540
336 14718 88745 32310
448 19624 118327 43081
560 24530 147909 53851
672 29436 177491 64621
784 34343 207073 75391
896 39249 236655 86162
1008 44155 266237 96932
1120 49061 295819 107702

COMBS/SEC/CORE 507 3057 1113

Table 6: Total combinations per second computed for a execution time of 24 hours (86400 seconds)

Figure 9 shows a hypothetical execution of MDR-Lithops execution with 200 workers, maintain-
ing a minimum number of 100 active workers. It shows as the total of workers scale based on HPC's
CPU fluctuations.

On the x-axis is represented the time, while on the 1st y-axis (on the left) it is shown the percentage
of CPU occupation of the supercomputer, and on the 2nd y-axis (on the right) it is shown the number
of CPUs included in the minimal set of active workers. The chart illustrates the temporal trend of
the percentage of total CPU utilization of the supercomputer (blue line) alongside the trend in the
number of CPUs exceeding the baseline threshold over time. The plot background shows additional
information: as the percentage of CPU usage cross a 90% threshold, the HPC system is considered
overloaded and therefore the total number of workers decrease as expected from the Scaling Policy
introduced in section 2.7. This circumstance is well represented by the colored portions in the plot
backend, where red is associated with the overloading status of the HPC system, yellow represents
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Figure 8: FaaST scaling execution using the MND5 cluster

a moderate level of overloading, and green for overloading at all. An additional aspect of figure 8 is
given by the way the CPU Usage and number of workers lines are represented: here, the two lines
assume a "square" line-style where each square is associated with a certain value (depending on the
y-axis of reference). Focusing on the number of workers line, the distance (over the x-axis) between
two consecutive squares should represent the scraping frequency of the Prometheus database and,
consequently, the distance (in time) between one forecast and the successive forecasts from the Time
Series predictive model. While each square does not only represent the total number of workers
available (on top of the baseline), but also a specific SLURM job associated with the batch of new
CPUs where to execute new Lithops workers. Therefore, each square in the brown line is actually a
SLURM job running in the HPC system.
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Figure 9: Experimental FaaST scaling execution using the MN5 cluster

A more realistic situation is given by figure 9 where the main differences with figure 8 are the
following;:

¢ clear representation of the Scaling Down Policy from the grey-squares on the brown line;
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* not constant distance between consecutive brown-squares, possibly due to connection issue
with the scrape webserver;

¢ status of the HPC system, previously represented with a background color, is now show as
colored bars in a subplot.

Figure 10 shows the execution time of the same matrix multiplication problem for MP]I, Lithops
with a fixed number of available workers (hpc-baseline), and FaaST architecture with an extendable
cpu backend (hpc-default). The amount of CPU’s available for the three frameworks is the same and
corresponds to 100 CPUs, except for FaaST, which could extend its CPU backend over time.
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Figure 10: Execution time comparison among MPI, Lithops and FaaST Architecture

The execution time of the three frameworks is shown in the "Executors Timing" chart (at the bot-
tom), where there is a single application using MPI (in blue), 10 applications are using the same hpc-
baseline cpu backend (in green), and the other 10 applications are using the extensible hpc-default
cpu backend (in red). On the y-axis is shown the ID of each application (regardless of what frame-
work they are using), and on the x-axis the time, which is shared with the "Scaling vs Backend" chart
(at the top). The top chart shows how the hpc-default backend is extended as soon as new work-
ers are available (brown step-line) in comparison with the hpc-baseline dashed line, which remains
fixed.

2.9.5 Auto-scaler experiments discussion

Given that each pairwise interaction is independent, they can be processed in parallel. It makes
Function-as-a-Service (FaaS) paradigm ideal to decompose the workload into tasks and distribute
them across multiple workers, enabling efficient batch processing. In this context, each task corre-
sponds to a unique pairwise interaction, which is assigned to a CPU worker for evaluation. However,
due to the vast number of interactions to be computed, the work queue may quickly exceed available
resources (demanding CPU condition), leading to a long task queue and an unreasonable waiting
time for MDR to finish.

For the forecast model to predict the HPC system overload, the analysis conducted reveals several
insights from the data.
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From figure 4 it is evident that the available CPUs is mostly constant and represents an upper
bound for the allocated CPUs; therefore, it is more of interest to focus on the allocated CPUs time
series. In fact, the allocated CPUs not only illustrate the number of CPUs assigned to users’ jobs, but
it seem to follow some kind of user pattern, for example, fewer CPUs are allocated outside working
hours or during the weekend, where a decrease in magnitude occurs. In addition, the same plot high-
lights a rare situation around the 12th of January where both availCPUs and allocated CPUs decay
immediately to zero, showing a strong fluctuation probably due to the outage of the HPC service.
This was probably an exceptional situation that led to an anomaly in the supercomputer: similar cir-
cumstances may occur again in the future for unexpected disruption, maintenance, or outages and
they should be taken into account while dealing with this specific type of data.

Another aspect of the data examined is whether data is stationary, i.e., whether the time series
data shows any gradual upward or downward trends over time.

Stationarity is a property that is crucial for the application of certain statistical models, such as
the Autoregressive Integrated Moving Average (ARIMA) model, which rely on the assumption of
stationarity for accurate forecasting.

In other words, a stationary time series can be described as one that does not exhibit a gradual up-
ward or downward movement over time. This implies that the mean, variance, and autocorrelation
function (ACF) of the series remain constant over time.

The stationarity property is an essential prerequisite for utilizing models like ARIMA, which
assume that the data exhibits no long-term patterns or trends. By ensuring stationarity, forecasters
can increase the accuracy of their predictions and gain confidence in the reliability of their forecasts.

Further information can be derived from the Time Series Decomposition in figure 5: from the
decomposition it is not clear if there is any trend involved, due to the no linearity of this component,
different situation is for the seasonal component where it shows a strong and well-defined repeti-
tion representing the daily seasonality, as shown by the recurrent spikes. Finally, from the residual
component, there should be no clear pattern, meaning that the decomposition successfully explains
each component; however, from the plot, it is not clear if the residuals present some seasonality that
is not fully captured by the seasonal component. For all three subplots in figure 5, the lag 0 is trivial
since it is the most recent data point and it can be ignored, while all the lags falling inside the blue
shady area are not relevant or barely relevant since the fall in the shady area (lags in this area are not
statistically significant and can be ignored).

Further insights can be deduced from the data by looking at the autocorrelation and partial au-
tocorrelation plot [14] of the allocated CPUs time series, where it is possible to infer the stationarity
and seasonality of the data.

From figure 6, the autocorrelation plot shows a trend component, due to the magnitude of the first
10 lags, which tends to decrease lag by lag. This, in combination with the decomposition analysis,
may suggest the presence of a weak trend in the data. For this reason, it is recommended to apply
statistical tests to assess if the time series is trend dependent: the Augmented Dickey-Fuller test [15]
report a value of -4.465770 (p-value = 0.000227), while the KPSS test [16] report a value of 0.602767
(p-value = 0.022385); for both cases the p-value does not cross the probability thresholds of 0.05 and
therefore both test suggest the stationarity property of the time series. Nevertheless, considering the
results from the statistical tests, the autocorrelation analysis and time series decomposition, it cannot
be ruled out that the possibility of a weak trend needs to be taken into account.

Again, from 6 it is evident that the seasonal nature of the data is due to the sinusoidal shape of
the lags. In fact, the partial autocorrelation plot reveals that:

* lag 1 is clearly significant, which means any new data point has a strong dependency on the
most recent past data;

* lags around lag 12 are significantly relevant, which suggests daily seasonality, probably due to
the HPC users’ behavior, which tends to use the HPC system during working hours;
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* considering a much larger window, it is clear that also lags around lag 89 are also significant,
which reveal a weekly seasonality.

Data stationarity is an important property for any time series. For the allocated CPUs, it was
achieved by applying a double differentiation to remove trend and daily seasonality, as shown in
tigure 7, while the weekly seasonality is converted to an exogenous variable, as Fourier terms, for the
SARIMAX model.

The differentiated allocated CPUs is still a similar time window of 1 month on the x-axis, but
this time the number of CPUs varies in the range [-150.000, +150.000]. As for the Q-Q plot, the
differentiation had a positive impact, where, now, data are mostly normally distributed, but extreme
quantiles tend to deviate from the normality assumption; therefore, it might be appropriate to check
for outliers. There are many ways to perform outlier detection but they depend on the data shape
and properties. In this case, the Modified Z-Score [17] is used since the normality assumption is not
guaranteed and it is more robust against outliers. The Modified Z-score revealed 3 outliers: 2025-
01-31, 2025-02-01 and 2025-02-07, which can be mitigated using the mean of the values around the
outliers, in order to preserve the information on these points.

The preprocessed allocated CPUs time series is used to fit multiple ARIMA models, the top-5
shown in table 4 according to the prediction error and table 5 according to the distance error are
evaluated by measuring the error computed between the forecast and the actual values. From the
tables, it is clear that the ARIMA(6,0,6)(3,0,0,13) is the best in most of the evaluation metrics (both in
prediction and distance tables). However, even if this is the best model, it still computes a relevant
error as it is clear from the MAE and RMSE that the error computed is around 35000 CPUs from
the real number of CPUs allocated in the near future. Not much can be said looking at 5, where the
differences between the best ARIMA model and the rest seem minimal.

Concerning the experiments conducted in section 2.9.4, figure 8 shows an ideal behavior of the
FaaST architecture; however, it does not take into account some events that may deflect the total
number of workers line:

1. Newly available workers are associated with a Slurm job and each Slurm job has a planned
completion time (meaning the job is supposed to complete after a certain amount of time). This
will result in the Slurm job being de-allocated and, consequently, the workers will be lost.

2. FaaST architecture is empowered by Airflow and the allocation of a Slurm job is associated with
a specific Airflow Task. If the Slurm job remains pending for too long, Airflow will cancel the
Airflow Task, throwing an error.

3. A Slurm Job can be canceled due to the CPU percentage usage crossing the threshold, meaning
that the workers associated with the Slurm job are forced to terminate.

4. Anything else that could prevent the FaaST Architecture from deploying new workers, for
example, temporary disconnection with the scrape webserver running outside the HPC system.

Except for item (3), all the others are unexpected events that are impacting the correct functioning
of the FaaST Architecture and they should be taken into account, as shown in figure 9.

Figure 10 reports the execution time of the Flops Benchmark for a set of applications, grouped
according to the underlying framework used: MPI, Lithops, and FaaST. The plot indicates that MPI
applications achieve the shortest execution time for small problem sizes, followed by FaaST, while
applications based on Lithops require the longest time to complete. Except MP], it is noteworthy
that FaaST, combined with the extendable hpc-default backend, delivers the best performance, ow-
ing to the additional workers allocated, as illustrated by the n_workers step-line in the “Scaling vs
Backend” chart. Specifically, the number of workers increases from 100 to 224 after 13:20 and re-
mains available long enough to significantly accelerate FaaST-based executions—nearly halving the
runtime compared to Lithops with the hpc-baseline backend. These findings demonstrate that appli-
cations leveraging the FaaST architecture are more likely to acquire supplementary resources, thereby
reducing overall execution time.
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2.9.6 Limitations

Although many challenges were successfully addressed during the development of the FaaST ar-
chitecture, several limitations persist concerning the collected data, the time-series model, and the
overall design of FaaST.

* Data collection: The available HPC usage data are limited in granularity, aggregated across the
entire system, which restricts insights into partition- or group-level behavior. Data are provided
only as a univariate time series, omitting additional factors such as job-specific information
from the Slurm queue. Furthermore, temporal patterns are influenced by system maintenance,
outages, and user behavior variability, complicating trend analysis.

e Time series model: The forecasting model exhibits several limitations. While it captures gen-
eral trends, prediction errors remain substantial, partly due to unmodeled seasonal components
and the inherent limitations of ARIMA. Hyperparameter tuning relied on a greedy search, and
model selection considered all error metrics equally rather than prioritizing those most rele-
vant to the use case. The model also depends on stationary data and linear relationships, and
it currently does not handle potential data-shift issues, which could degrade performance over
time.

2.9.7 GWD Execution

The different integrations and architectures have been introduced in the GWD use case. These have
resulted in a new implementation within the NearData project. These improvements have had a
direct impact on key performance indicators, notably performance (KPI-1) and auto-scaling capabil-
ities (KPI-3). Moreover, Lithops-HPC improvements on user experience have made GWD execution
more user-friendly for non-technical users (KPI-5). Such improvements are explained in D3.2

A major advancement stems from the integration of the Lithops-HPC backend, which enables
parallelized data ingestion and orchestrated analysis. This integration has led to a 36-fold increase
in processing speed. Specifically, Lithops-HPC facilitates the concurrent reading of multiple files and
coordinates the subsequent analytical steps, thereby eliminating redundant file access operations.
Prior to this integration, the estimated computational time for data ingestion and model training
was approximately 6 minutes using 6 CPUs. With the adoption of Lithops in combination with
DataPlug (and the shuffle connector), execution time has been reduced to just 10 seconds under
the same computational configuration. Considering a total of 15 x 10° executions, this optimization
enables the full execution of the GWD pipeline within a feasible timeframe of approximately 22 hours
using 22,400 CPUs.

An additional advancement in the GWD use case stems from the analysis of hyperparameter
optimization under combinatorial constraints. Given that genomic variation contributes to complex
disease risk through predisposition rather than direct causality, we anticipated limited variability in
optimal hyperparameter selection during the tuning phase. To validate this assumption and identify
a robust set of hyperparameters, we conducted multiple randomized experiments using diverse vari-
ant configurations associated with disease. These experiments enabled us to cluster datasets based
on their accuracy and F1-score performance metrics.

A consistent pattern emerged among the hyperparameters of the top-performing models, which
were subsequently applied across datasets. Comparative analysis between fold-cross validation us-
ing dataset-specific parameters and models trained with generalized parameters revealed no statis-
tically significant differences in performance.

This insight enabled us to define a universal set of optimal hyperparameters, effectively elimi-
nating the need for iterative tuning. As a result, we achieved a 5-fold improvement in performance,
rendering the full execution of the GWD pipeline both feasible and efficient.
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Figure 11: Model performance clustering
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2.9.8 KPIs achieved

In table 7 we summarize the KPIs achieved on this use-case with the aforementioned experiments®.
The development of the HPC extreme data connector and its integration within Lithops, as explained
in Deliverable D3.2, has allowed for speed-up improvements of up to 36x in the data ingestion of the
GWD use-case, solving its main bottleneck. Moreover, further improvements on the hyperparameter
tuning and selection improved its performance by another 5x. On the other hand, the Lithops-HPC
data connector not only has improved performance but also the user experience by providing a much
easier handling of the supercomputing resources. This enhancement allows non-technical users to
manage the supercomputer and launch the GWD use-case without dealing with the hurdles of HPC
resource management.

Finally, the integration of Al on resource management and its integration within the Lithops-
HPC connector allows for effective scaling of resources as available in the system and enhances the
execution of the use-cases by 1.5x.

2.10 Use-case repositories

In the next list, we indicate where to find the source code of the different connectors and the pipelines.
Note that the HPC connector and ML accelerator are part of the Lithops-HPC and GWD, respectively.

OKPI-5 refers to metrics explained in Deliverable 3.2 as part of the HPC data connector integrated into the Lithops-HPC
architecture
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] KPI \ Summary of results ‘
KPI-1 | Lithops-HPC connector improves data ingestion in GWD pipeline by 36x.
KPI-1 GWD hyperparameter selection improves performance by 5x.
KPI-5 Cyclomatic-Complexity reveals 1.5x fewer execution paths.
KPI-5 Yaqin’s metrics reveals 1.6x fewer branches, loops and nesting depth.
KPI-3 The auto-scaler improves execution time of MDR use-case by 1.5x.

Table 7: Summary of KPIs achieved on this use-case

¢ GWD pipeline: https://gitlab.bsc.es/datacentric-computing/lithops-hpc-genomics
* MDR pipeline: https://gitlab.bsc.es/datacentric-computing/mpi-genomics-mdr

* MDR pipeline with Lithops: https://github.com/neardata-eu/lithops-hpc/tree/main/examples/
mdr

e Lithops-HPC: https://github.com/neardata-eu/lithops-hpc
¢ Lithops-HPC user guide: https://gitlab.bsc.es/datacentric-computing/lithops-hpc-examples
¢ Data shuffle connector: https://github.com/danielBCN/dataplug/tree/filesystem

* Auto-scaling connector: https://gitlab.bsc.es/datacentric-computing/lithops_telemetry_
forecasting/lithops_deployment_agent

2.11 Conclusions

This use-case presented multiple challenges: (1) a bottleneck on the ingestion of the data due to an
inefficient reading and huge datasets, (2) a challenge on the way the dataset was presented with a
structurally ordered data in terms of variants and/or chromosomes, (3) the challenge of efficiently
selecting hyperparameters of the model to identify potentially problematic variant pairs, which was
computationally very expensive and (4) improving those issues while addressing user experience.

To solve these issues, we have combined Lithops, a serverless platform capable of scaling to
thousands of cores in a user-friendly manner, and the supercomputing resources made available
after the award of two grants to access such infrastructure. The combination resulted in an HPC
connector that allowed overcoming the security issues encountered in such HPC environments and
made Lithops able to run without the traditional cloud backends. With that, we improved (1) data
ingestion and (4) user-friendliness.

Moreover, we have developed a data shuffle connector that not only partitions the data but also
shuffles it to avoid the inherent order of the data in the original dataset, solving challenge (2). Finally
(3) was solved using innovative techniques for hyperparameter selection that improved the training
stage of the model by 1.5x.

Additionally, we have combined all this with an auto-scaling Al-based methodology to add re-
sources to the computational backend as soon as they become available. This avoids workloads from
starving for a long waiting period, awaiting the resources to be available. This was possible since we
can now start running with as many resources as available in the system and then increase as they
become more available, so overall the time to service is improved.

2.12 Future work

We leave as future work to improve the usage of the system’s storage, as of now, it uses the cen-
tralized shared storage, which is at times inefficient. To do so, we plan to use GekkoFS system,
leveraging the local hard disks of the computational nodes as a cache. Doing so, however, poses the
challenge of dealing with many open network connections across the different nodes efficiently. On
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the other hand, improvements can be made on the resource management of our Lithops-HPC plat-
form, adapting state-of-the-art policies to the use-case requirements. Finally further improvements
can be done on the auto-scaler. Further research will focus on refining the Time Series model for sys-
tem occupancy, incorporating GPU acceleration for high-throughput workloads, and extending the
approach to other computationally demanding applications. The findings indicate that FaaST’s ar-
chitecture provides a scalable and efficient alternative to conventional resource allocation strategies,
contributing to more flexible and cost-effective computing solutions in bioinformatics and beyond.
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3 Use Case: Computer-Assisted Video Surgery

The National Center for Tumor Diseases (NCT, Germany) [18] is an institution that mixes data scien-
tists and surgeons to apply Al techniques on surgery-related multimedia to analyze surgical work-
flow with the purpose to assist surgical staff. Maier-Hein et al. have shown the importance of this
research field (Surgical Data Science) which aims to improve surgical healthcare through data analy-
sis and machine learning, with a focus on overcoming the translational challenges to implement these
data-driven approaches into clinical practice [19, 20]. For this, NCT requires video data from laparo-
scopic cameras to be durably ingested and processed in real-time. Moreover, video data should be
durably stored in long-term storage, so it can be accessed via batch analytics (e.g., Al model training).
In deliverable D5.1, we presented a proof-of-concept for NCT by using Pravega and GStreamer for
managing video streams and feeding containerized Al jobs.

Nonetheless, a new challenging requirement for NCT is to search for specific video fragments,
or even individual frames, in a collection of video streams. This is required for multiple reasons,
ranging from the creation of specialized Al model training datasets to help surgeons or medical
students locating specific video fragments of certain anatomies. If we consider a large collection
of video streams, using just the metadata of video streams is not enough to satisfy content-based
queries. Moreover, data scientists may require to find videos based on unstructured data as input,
like an image. We need a content-based approach for indexing, querying, and retrieving relevant
video stream data in streaming systems.

3.1 Short Description

While streaming systems are often associated with managing event-like data types (e.g., logs, sen-
sors), there is an increasing interest in using these systems for managing multimedia. For instance,
AWS Kinesis can ingest video streams and serve them in real-time to analytics applications [21]. Sim-
ilarly, Pravega [22] offers a GStreamer connector for building video analytics pipelines [23]. Use cases
like object identification in surveillance cameras, computer-assisted surgery, and quality control on
manufacturing processes are just some examples that motivate streaming systems to support video
streams as a first-class citizen [24, 25].

Furthermore, with the advent of Al, video streams are increasingly valuable not only when pro-
cessed in streaming fashion, but also in batch. For instance, historical video data is a key asset in
Al-related tasks like model training [26]. We also realize that this aligns naturally with the shift of
streaming systems towards supporting storage tiering for data streams [27, 28]. Tiering stream data
to a scale-out, cost-effective storage is an ideal solution when ingesting and storing video data for
extended periods of time.

Unfortunately, while tiering stream data is a key requirement for managing historical video data,
this alone is not enough. When training AI models, data scientists require the means to query and
locate video streams, or even specific video fragments, within a large pool of videos. Such queries
could be related to the content of videos, which goes beyond what video metadata can express. This
requires some sort of semantic video search solution for streaming systems that, to our knowledge,
is not available today.

3.2 Challenges addressed

Our main goal is to devise a flexible semantic video search solution for streaming systems. Achieving
this goal could provide added value to data streaming platforms supporting video stream ingestion
and analytics [29, 30]. For example, users could index video streams based on their own models and
get accurate query results in the form of video fragments. Even more, data loaders in Al inference
frameworks could exploit such a mechanism by ingesting only relevant video fragments for training
a model, discarding the rest.

While promising, achieving this goal entails some challenges:

(C1) Flexible content-based video stream indexing: Although a video stream is immutable, its contents

®The content of this section maps to task T5.6 and is related to the paper “StreamSense: Policy-driven Semantic Video Search
in Streaming Systems”, published in ACM/IFIP Middleware’24 (Industry Track).
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Figure 13: Overview of StreamSense design and main components in the NCT use case.

can be indexed in multiple ways. For instance, a data scientist may use a surgery video for training
an Al inference model for liver segmentation, while another user may resort to the same video stream
for learning surgery techniques with specific instruments. As one can infer, both users are interested
in different fragments of the same video stream. But supporting queries for both users requires
the system to understand what a "liver" and a "surgical instrument" are in order to build an index
accordingly. Therefore, our solution should enable users to (re)index the same video stream based
on different models.

(C2) Scalable semantic search: Dealing with tiered video streams for long retention periods requires
managing large amounts of index data. In use cases like health video analytics, we may require
indexing each video stream with fine granularity (e.g., embedding per key video frame). On the one
hand, it seems apparent that building a global index for all the videos would not scale, as the amount
of required memory per query is, in some cases, the size of the indexed vectors [31, 32]. On the other
hand, the cost of querying individual per-stream indexes may grow linearly with the number of
video streams. Thus, we need to devise an index management approach that provides a reasonable
solution to this trade-off.

(C3) Programmatic search interface: We see potential in exposing a semantic search mechanism via
APIs to external programs, in addition to serve data scientists. For instance, Al inference frameworks
could reduce data transfers when loading data that is related to the specific model to train, instead of
bulk loading a whole collection of video streams. However, this topic requires further exploration.

3.3 Targeted KPIs
This work is related to the following project KPIs:

¢ KPI-2 - Video Indexing Performance: We evaluate on the indexing performance of Stream-
Sense both in streaming and batch.

¢ KPI-2 - Semantic Video Search Latency: We analyze the latency of inter/intra video queries in
StreamSense.

¢ KPI-1 - Data Transfer Savings in Al Data Loading: We analyze the data ingestion problem
when data scientists attempt to download relevant video data for training their AI models.

3.4 Integration with NEARDATA architecture components

Next, we describe the design of StreamSense: our policy-driven semantic video search solution for
streaming systems. Moreover, we describe its integration with other NEARDATA components.

3.4.1 Policy-driven Video Embeddings Generation

In Fig. 13, we provide a high-level overview of the architecture of StreamSense and the use case that
motivates it. First, we identify the video ingestion phase. As visible in step (D of Fig. 13, video
frames from surgery cameras are ingested in Pravega as video streams. Pravega achieves low latency
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and durability upon video ingestion thanks to the WAL [33], which is expected for streaming com-
putations. Moreover, the storage tiering mechanism in Pravega automatically moves video data to
LTS. Upon a batch job processing video data, Pravega will exploit the high read throughput and par-
allelism of LTS systems (e.g., NFS, AWS S3, HDFS). Therefore, using a tiered streaming system like
Pravega achieves a sweet spot in the latency vs throughput trade-off when ingesting video data.
The indexer controller is the main component of StreamSense. One of its tasks is to orchestrate
indexing activities via policies [34]. To this end, users can define policies for indexing video streams
(step @ in Fig. 13). Such policies are expressive enough for capturing relevant aspects of the indexing
process, like the embedding model to be used or the index sampling granularity. For example:

[ FOR STREAM s USE EMBEDDINGS MODEL m INDEX SAMPLING i ]

With the policy above, the data scientist instructs the system to index a video stream s via the em-
beddings model m, as well as to use an index sampling algorithm i (see §??). The indexing controller
keeps the information of policies in a metadata store.

Indexing policies may be in two states: active and completed, depending on whether the indexing
process for a video stream has finished or not. The indexer controller triggers the embedding genera-
tion process for active policies. Retaking the previous example, the indexer controller spawns a new
indexing instance (e.g., container or VM) with the requested embedding model running inside and
consuming data from stream s (step Q) in Fig. 13). Note that policies apply to both real time and his-
torical video streams. Exploiting tiered data streams abstracts stream readers from the data location,
while achieving good performance in both streaming and batch computations. With StreamSense, a
data scientist could trigger multiple indexing instances for the same video stream, thus generating
multiple semantic indexes for the same content.

For simplicity, StreamSense provides an indexing container image that handles IO with the stream-
ing system and contains the necessary dependencies. StreamSense creates a new indexing instance
using the indexing container image with the appropriate model from the model registry (i.e., repos-
itory of embeddings models on top the indexing container image). Under the hood, the indexing
container image ingests the video frames, passes them through the model, and writes the index data
in the vector DB.

3.5 Data connectors developed

The StreamSense indexer controller is the connector proposed in this piece of research. It deploys
NCT Al models to generate embeddings from video frames and is in charge of replying to semantic
queries. In what follows, we justify its design and main novelties.

In health use-cases like NCT, every frame may contain critical information pertaining to surgical
events, such as serious complications. Missing video frames could result in overlooking vital details,
which motivates us to store full video stream indexes (step @) in Fig. 13). However, while vector
DBs can create indexes over large vector embeddings collections, performing efficient queries on a
single index containing all the video embeddings can be challenging [35]. For example, vector DBs
like Milvus [36] are limited in their query capabilities to the amount of available memory [31]. On
the other hand, just creating an index per video stream and embeddings model can be problematic
too. To wit, since each query can only access one video stream index, the cost of searching for content
may grow in the order of the number of video stream indexes. This is an interesting trade-off that
calls for a vector DB-agnostic solution.

In StreamSense, we build a two-level video stream indexing layout per embeddings model (see
Fig. 14). First, indexing policies define an indexing sampling algorithm. StreamSense currently offers
time-based index sampling (e.g., index a frame every 1 or 30 minutes), but more sophisticated "shot
boundary" algorithms can be added in the future [37, 38]. New video sampling algorithms just need
to implement the do_sampling(frame, embedding, offset) method in the indexing container im-
age. The index sampling algorithm determines the embeddings that will be stored in the stream sam-
pling index (via the add_to_sampling_index (embedding, stream) call). Such an index will contain a
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Figure 14: The stream sampling index helps us to find video streams in which any of their computed
sample embeddings matches a similarity query. A per-stream index allows us running semantic
search within video streams.

small set of embeddings for all the videos in the system associated to the video stream. The stream
sampling index enables StreamSense to search for videos in which any (sampled) frame satisfies a
similarity query.

An indexing instance also builds a full index for the stream at hand (e.g., one embedding per
key frame). The outcome of the embeddings model running in the indexing instance is written to
the vector DB via the add_to_index(stream, embedding, frame_id, offset) call. With this index,
StreamSense can perform fine-grained search on any video stream. This is key for finding relevant
video fragments given a specific similarity criterion.

In summary, our two-level video indexing layout trades-off a small storage penalty building the
sampling index (e.g., 1% to 5% additional vector embeddings depending on the sampling model) for
better query scalability (see results in §3.7.3). Next, we describe how StreamSense uses this index for
serving semantic queries.

3.5.1 Semantic Video Search

The indexer controller also takes care of orchestrating the query workflow in StreamSense. First, it
receives the input data for the query at hand. We consider two types of input data: vector embeddings
and images. In the former, the provided embedding is directly used to perform the similarity search
against the vector DB. For the latter, the indexer controller should first generate the embedding from
the input image and then perform the similarity search.

Based on the generated indexes, StreamSense allows users to perform two types of queries: inter-
video and intra-video (step ® in Fig. 13). Queries target the index generated from the embeddings
model m (step ©) in Fig. 13). Let’s see an inter-video query example:

GET k STREAMS FROM f FRAMES xJ, LIKE [IMAGE] USE EMBEDDINGS MODEL m

Inter-video queries use the sampling embeddings index for the given embeddings model and
enable users finding video streams in which any (sampled) frame matches the similarity criterion.
Inter-video queries expose four parameters to users: i) the maximum number of video streams to
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return to the user (k), ii) the number of closest sample frames to retrieve from the vector DB (f), iii)
the similarity threshold or percentage required for result video streams (x), and iv) the embeddings
model (m). The query workflow boils down to retrieving from the sampling embeddings index for
model m the top k - f sample frame embeddings most similar to the input embedding. We filter out
the embeddings that do not meet the similarity threshold x for retrieving the relevant best k streams.

Intra-video queries allow users finding fragments within a video stream that match the similarity
criterion. Let’s see a query example:

FROM k STREAMS GET f FRAGMENTS WITH FRAMES x%
LIKE [IMAGE] FRAGMENT_LENGTH t USE EMBEDDINGS MODEL m

The query workflow works in two steps: first, the indexer controller runs an inter-video query
with the input embedding to retrieve the most similar k video stream candidates and discarding the
ones not respecting the similarity threshold x. Then, with the resulting video stream collection, the
indexer controller will search the specific video stream full indexes for the f most similar frames —
described by <embedding:frame_id:offset> triples— to the input image reference. For each video
stream, the query filters the <embedding:frame_id:offset> triples with an accuracy that meets the
embedding similarity threshold x. The length of the video fragment surrounding a relevant frame
is determined by the query parameter f (e.g., 20 seconds). The cost in terms of vector DB queries
of this process is 1 query to the sampling embeddings index and up to k queries to find frames to
the individual video stream full indexes, which can be parallelized for better performance. Note
that it may be the case for several relevant frames to be consecutive in a video stream. To minimize
redundant results, video fragments with overlapping offsets are merged into a single one.

Both inter/intra-video queries are exposed via APIs in the indexer controller (i.e., find_streams (image,
k, f, x, m) and find_fragments(image, k, f, x, t, m)). This enables external programs to ex-
ploit the semantic video search in StreamSense. We believe the use-case of collecting relevant datasets
for Al training in inference frameworks (e.g., PyTorch) is especially interesting. As we assess in §3.7.4,
this allows users to easily find and load relevant training datasets, while reducing data transfers dur-
ing the process.

Finally, the indexer controller gets the video stream names or video fragments offsets from a
query and interacts with Pravega for displaying the query results back to the data scientist (step (7) in
Fig. 13). StreamSense also provides facilities for visualizing the outcomes of queries, thus providing
a full end-to-end solution for semantic video search (step @ in Fig. 13).

3.6 How Al is enabled in the use-case

Al is central to the NCT surgery use case through the StreamSense framework, which enables seman-
tic indexing and search of surgical video streams:

¢ Leverage deep learning models (e.g., ResNet50) generate semantic embeddings from surgical
video frames.

¢ StreamSense uses these embeddings to build searchable indexes for real-time and batch video
analytics.

* Two-level indexing enables scalable inter- and intra-video semantic search.
¢ APIs allow querying with images or embeddings to retrieve relevant video fragments.

* Integration with PyTorch enables Al model training using only semantically relevant data,
reducing transfer overhead.

3.7 Results and KPIs achieved

Our evaluation focuses on: i) what is the video indexing performance of StreamSense? (§3.7.2), ii)
what is the semantic search latency of video streams/fragments? (§3.7.3), iii) can StreamSense reduce
data loading phase for Al training via semantic search? (§3.7.4).
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3.71 Setup

We summarize here the configuration used in our AWS experiments.

Prototype Implementation. Our implementation relies on Pravega for video stream IO via the
GStreamer connector [23] and Milvus [36, 39] as a vector DB. We also have a base docker image
with the necessary dependencies for managing video streams from Pravega which are consumed by
Al inference models. The indexer controller is implemented in Python and manages indexing poli-
cies and the life-cycle of indexing instances (e.g, as VMs or Kubernetes pods). The code StreamSense
is publicly available [40].

Deployment. StreamSense is deployed in a EC2 cluster of 4 nodes (us-east-1a) inside the same
VPC. Pravega uses an i3en.2xlarge instance (8 vCPUs, 64GB of RAM, and 2 NVMe) running a
Pravega controller, a Pravega segment store, a Bookkeeper instance, and a Zookeeper instance. We
use an EFS share as long-term storage for Pravega. The indexer controller runs on a p3.2xlarge
instance (8 vCPUs, 61GB of RAM, and an NVIDIA V100 GPU) jointly with the AI inference model.
An official standalone Milvus hosted on a m5.2x1arge instance (8 vCPUs, 32GB of RAM) configured
with a global Collection that will store the embeddings from the sampled frames, and a Collection
per video stream that will store the embeddings from all the key frames (e.g., 1 per second). In Milvus,
we use the Inverted File Index index type with 64-point clusters and the cosine similarity metric
for the search and bounded staleness consistency mode (default). A c5.4xlarge VM (16 vCPUs,
32GB of RAM) generates h264 (25FPS, 940x560) video streams emulating surgery cameras. We run a
GStreamer pipeline that reads MP4 files from our datasets and writes them to Pravega as streams.

Datasets and Embedding Models. We utilize three publicly available datasets of surgical videos:
CATARACTS [41], which includes videos of cataract surgeries; CHOLECS80 [42], which comprises
videos of cholecystectomy surgeries; and AUTOLAPARO [43], which consists of videos of laparo-
scopic hysterectomy surgeries. To extract the embeddings, we make use of ResNet50 [44] trained
with the IMAGENET1K_V1 dataset for its performance in our similarity use case. It is also widely used
for surgery processes, as seen in [45, 46].

3.7.2 Video Indexing Performance

Next, we focus on the indexing performance of StreamSense both in streaming and batch (Fig. 15).
In the streaming case, Fig. 15a the total indexing latency for key video frames and the latency break-
down. Indexing latency is measured by time-stamping video frames at the source and calculating
the delta through the indexing process.

In Fig. 15a, the total key frame indexing latency ranges between 63ms and 360ms in average, de-
pending on the decoding configuration. This is the waiting time for a data scientist to perform seman-
tic search on ingested video frames in StreamSense. We observe that video decoding is a compute-
intensive task that seems to dominate indexing latency. A plausible explanation to this is that, while
inference models use the available VM GPU, GStreamer decoding by default uses CPU. Some decod-
ing configurations also entail buffering frames, which has a toll on latency as well. The latency dif-
ference between the default GStreamer decodebin and the fast configuration (i.e., ultrafast speed
preset, fastdecode) gives a sense on the room for optimization in this indexing stage.

Fig. 15a shows a latency breakdown indexing key frames in StreamSense. The Pravega IO latency
shows a p99 latency under 7ms. This confirms that Pravega achieves good performance for managing
video data in real-time, while providing automated storage tiering to LTS. For comparison, we have
performed a micro-benchmark measuring the latency of writing and reading 10KB events in AWS
Kinesis at a rate of 25 events/second (same rate as our video streams). Visibly, Kinesis exhibits
a higher IO latency than Pravega (e.g., 10.7x higher latency at p95) and does not provide storage
tiering. The Al inference latency to generate embeddings takes around 12-14ms per key frame and
inserts to Milvus take 3-6ms. This latency meets the requirements for streaming workloads. Again,
the video decoding phase dominates latency (30-330ms).

Next, we focus on the batch indexing throughput depending on the video encoding configuration.
Fig. 15b compares the indexing throughput of parallel VMs depending on if video uses h264 encod-
ing (fast configuration) or no encoding (i.e., raw frames). Visibly, there is an interesting trade-off
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Figure 15: StreamSense performance: i) key frame streaming indexing latency with h264 encoding
(left), ii) throughput indexing parallel streams in batch depending on the encoding type (center), and
iii) inter /intra stream semantic query latency (right).

between indexing throughput and data storage/network efficiency. With h264 encoding, VMs index
video at a rate of 8.5MBps after decoding (5.5 key frames/second), which translates to ~ 1MBps of
read throughput (8x transfer reduction). On the other hand, an indexing VM with the no_encoding
option achieves an indexing throughput of ~ 55 key frames/second thanks to avoiding the decod-
ing overhead, which translates into 85MBps at the IO level. In the 8-VM case, the Pravega instance is
saturated at 400MBps. However, the raw video storage size is around 200x larger compared to h264
encoded video. StreamSense lets users to pick the best encoding based on their needs.

3.7.3 Semantic Video Search Latency

Next, we evaluate the latency of inter/intra video queries in StreamSense. The upper plot in Fig. 15c
shows the latency of querying the stream sampling index to find streams (k = 2, k = 5) whose
sampled frames meet a certain similarity threshold (x = 90%) for various dataset sizes. Visibly,
neither the tested number of streams to retrieve (k) nor the tested dataset sizes (15GB to 50GB) seem
to have an impact on mean query latency, which is around 30ms. Most of the inter-video query time
is spent on generating the input image embedding (=~ 19ms), whereas 3 — 4ms are related to Milvus
query and the rest to filtering query results. This is mainly because the sampling index grows slowly,
as the sampling interval is set to 30 seconds. We have micro-benchmarked (VectorDBBench [47]) our
Milvus instance and found that the sampling index exhibits similarity search latency > 15ms with
0.5 million embeddings. With the same sampling interval, that would allow us storing 4.2k video
hours before sampling index queries take two digit milliseconds.

The lower plot in Fig. 15c shows the intra-query latency per dataset downloading f = 100 video
fragments of t = 20 seconds from the top k = 5 video streams that meet a x = 90% similarity. As
expected, depending on the dataset, > 98% of query time is related to downloading video fragments
from Pravega. This is reasonable as the amount of data to be downloaded ranges from 6MBs to
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15 videos CATARCT query | CHOLEC query | LAPARO query
k=2,f=50 89.12% 97.13% 99.77%
k=5, f =100 83.79% 87.97% 99.77%
45 videos CATARCT query | CHOLEC query | LAPARO query
k=2, f=>50 97.00% 98.38% 99.83%
k=5, f =100 93.94% 92.82% 99.79%

Table 8: Data transfer reduction of downloading relevant intra-video query fragments vs transferring
full dataset.

160MBs. Still, we observe that increasing query parallelism from 1 to 5 threads reduces intra-video
query execution in 32% to 51%.

3.7.4 Data Transfer Savings in Al Data Loading

In this experiment, we address the problem of data scientists downloading relevant video data for
training their Al models. In Table 8, we exercise the preliminary integration our PyTorch data loader
for StreamSense. We allow the data loader to use an embedding as input —as well as the other
intra-video query parameters— and calling the StreamSense service for downloading similar video
fragments. As can be observed, StreamSense allows data scientists to automatically load relevant
data for training their AI models while achieving a transfer reduction from 83.79% up to 99.83%
compared to bulk transferring the whole dataset, depending on the intra-video query parameters (k
and f) and the dataset.

3.7.5 Evaluation of Video Loading Strategies in NCT

We also performed a battery of experiments exploring a data loading connector for Pravega and
GStreamer. To wit, in this project have shown that the utilization of Pravega and GStreamer to store
laparoscopic video streams within the framework offers compelling advantages in comparison to
typical data storage of images or videos on network storages, particularly in the context of high-
volume, real-time surgical video data. Furthermore, the framework is able to handle continuous,
high-resolution data streams efficiently and addresses the extreme data challenges inherent in mod-
ern surgical environments. In this use case we do not only need to capture and process videostreams
with pravega but we also want to load also Pravega-GStreamer-Videostreams to perform machine
learning to train new models. Therefore, the research question of how much can we increase our
data loading speed with Pravega-GStreamer compared to traditional methods of storing and access-
ing surgical video data was tackled.

Our experimental setup was designed to compare the performance of different data loading
strategies for surgical video data. We utilized three distinct dataloaders:

* Frame Dataloader: This method involves pre-extracting individual frames from videos and
storing them, then loading these stored frames for processing.

¢ Pravega Dataloader: This approach leverages Pravega to stream and load frames directly from
a Pravega stream.

* Video Dataloader: This involves loading frames directly from a Ceph-based network-attached
storage (NAS).

As an example, we used a 16-minute long video as the source data. To simulate data loading dur-
ing Machine Learning (ML) Training, frames were loaded at a rate of one frame every two minutes.
Loading frames for ML three different processes happens: preparation, initialization, and frame load-
ing. The first two are executed once and the last one for every batch. The time needed for preparation
is the time for extracting frames, once before using the data is possible. The initialization time is the
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time needed per video when initializing the dataloader, e.g. counting frames and extracting frames
from the video stream. The loading time is the time to load a single frame for training. The follow-
ing table shows the time needed to prepare the data, initialize the dataloader, and load individual
frames.

Table 9: Data Loading Strategy Performance Comparison

Time (s) Preparation Time Ini,}iiillij?;i)on I"E?ri??s% g;ogi%li
Frames | 0.336746 + 0.025617 0.000095 + 0.000023 0.003397 + 0.000457 | large

Pravega | 0 (assuming videos are already | 11.995750 + 0.325696 | 0.018268 + 0.007544 | small
in pravega as they are streamed
there during the OR to enable as-
sistance functions)

Video 0 (assuming videos are directly | 0.008763 + 0.002081 | 0.027855 = 0.002863 | small
stored on the network storage)

The expected change when the video length grows is displayed in Table 2. For the frame data
loader a significant increase of storage on the disk is needed for extracted frames. The Pravega data
loader with its current setup needs more time to get corresponding timestamps to load from Pravega,
whereas the video data loader the loading time takes more time because with longer videos more
frames need to be loaded.

The analysis of the results presented in Table 1 and Table 2 highlights the strengths and weak-
nesses of each data loading strategy, particularly concerning their performance under varying video
lengths.

The Frame Dataloader demonstrates the fastest initialization and loading times for individual
frames, making it efficient for immediate access once data is prepared. However, its significant prepa-
ration time (for extracting frames) and the large to significant increase in storage on disk with grow-
ing video length pose considerable practical limitations for high-volume, real-time surgical video
data. This method essentially trades storage efficiency and initial setup time for rapid individual
frame access.

The Pravega Dataloader exhibits a unique set of advantages. Its preparation time is negligible (0
seconds), primarily because it assumes videos are already streamed into Pravega for intraoperative
analysis jobs, suggesting excellent synergy with existing clinical workflows. While its initialization
time is the highest among the three, and increases with video length, though loading time remains
stable, its small storage footprint on disk is a major benefit for handling large datasets. The cur-
rent implementation’s higher initialization time for getting corresponding timestamps from Pravega
presents an area for future optimization, but overall, it offers a good balance between data accessibil-
ity and storage efficiency for continuous streams.

The Video Dataloader offers the simplest setup with zero preparation time and minimal initializa-
tion time, assuming direct storage on network-attached storage (NAS). Its storage on disk is "small"
and increases proportionally with video length. However, its "Loading Time" is the slowest, and this

Table 10: Comparison of data loading strategies: Symbols indicate expected change with increasing
video length: " for increase, " for significant increase, and = for no significant change.

Preparation Time | Initialization Time | Loading Time | Storage on disk
Frames | " = = AN
Pravega | = A = =
Video = = A N
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time "increases" significantly with longer videos, as more frames need to be loaded directly from the
video file. This method is straightforward but less performant for intensive, real-time ML training,
where rapid frame access is critical.

In conclusion, the Pravega Dataloader appears to be a good trade-off between the other two dat-
aloaders for the specific use case of machine learning training with surgical video data. Its ability to
integrate seamlessly with real-time video streams, assuming existing Pravega infrastructure from OR
assistance functions, and its efficient storage make it suitable for extreme data challenges in modern
surgical environments. While improvements in its initialization time are desirable, its overall perfor-
mance and synergy with clinical data capture workflows position it as a robust solution for enabling
Al in surgery. The study effectively demonstrates the compelling advantages of utilizing Pravega
and GStreamer for handling continuous, high-resolution data streams in comparison to traditional
data storage methods.

3.8 Use-case repositories

For this work, we used three publicly available datasets of surgical videos (see §3.7). The code for
StreamSense is publicly available at [40].

3.9 Data Spaces

Throughout this project, our primary focus will be on utilizing existing dataset to thoroughly test
and fine-tune the developed systems. Below are some datasets currently available for our use:

1. Dresden Surgical Anatomy Dataset (DSAD) (University Hospital Dresden and NCT/DKFZ) [3]
HeiChole (University Hospital Heidelberg and NCT/DKFZ) [4]

Cholec80 (University of Strasbourg) [5]

Synthetic video data (NCT/DKFZ) [5]
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Furthermore, NCT’s close collaboration with the surgical facilities of the university hospital cam-
pus will enable the expansion of our dataset collection to encompass a broader spectrum of surgical
workflows. As an example, within the scope of this project, the Appendix300 dataset has been com-
piled. This dataset comprises intraoperative minimally invasive appendectomy videos from multiple
German hospitals, representing a diverse patient demographic.

3.10 Discussion and final remarks

The validation of the NEARDATA platform in the NCT surgery use case demonstrates the feasibility
and effectiveness of integrating Al-driven semantic search into streaming architectures for clinical
video analytics. The StreamSense framework enables flexible, policy-driven indexing of surgical
video streams and supports both real-time inference and batch-oriented training workflows.

The system successfully addresses three key project KPIs:

¢ KPI-2 - Video Indexing Performance: StreamSense achieves low-latency indexing of key video
frames, with total latency ranging between 63ms and 360ms depending on decoding configu-
ration. This confirms its suitability for real-time workloads.
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Figure 16: Preliminary data ingestion and query performance results for our S3 vector API measure-
ment.

¢ KPI-2-Semantic Video Search Latency: Inter-video queries consistently achieve mean latencies
around 30ms, while intra-video queries benefit from parallel execution, reducing latency by up
to 51%.

¢ KPI-1 - Data Transfer Savings in Al Data Loading: Integration with PyTorch data loaders en-
ables targeted retrieval of relevant video fragments, achieving data transfer reductions from
83.79% to 99.83% compared to bulk dataset loading.

The two-level indexing strategy—combining a global sampling index with per-stream full in-
dexes—proved effective in balancing scalability and precision. This design enables StreamSense to
scale to large video collections while maintaining fine-grained search capabilities.

3.11 Future work

This work shed light on the potential applicability of streaming storage and Al embedding models for
building a semantic video search platform in NCT. In this regard, a key element is the vector database
(DB) used for storing and querying video frame embeddings. There is an increasing interest in the
convergence of vector DBs and object storage, which clearly aligns with NEARDATA’s approach and
research lines. For example, AWS has recently launched S3 vectors’, which is a new API that allows
managing vector embeddings directly from an S3 bucket. As visible in Fig. 16, we have recently
performed a measurement analysis of this s3 vectors to evaluate the practicality of object storage-
based vector DBs for use cases like NCT. Moreover, this directly relates to our research regarding
serverless vector DBs on top of object storage reported in D3.2. This new branch of research will help
us to understand the trade-offs and practicality of vector DBs beyond typical stateful services.

"https://aws.amazon.com/en/s3/features/vectors
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4 Use Case: Computer-Assisted Surgery - Federated Learning
4.1 Short Description

In the previous part of the surgical use case we investigated how to search for specific video frag-
ments, or individual frames, in a collection of video streams. With this we can get data to train ma-
chine learning models. For the surgical use case we need advanced models who perform robust and
well on heterogeneous data to minimize false prediction. A key focus is on leveraging foundation
models, which are defined as large-scale, pre-trained models capable of performing a wide range of
tasks and adapting to new domains with minimal data. However, the development of these models
is extremely data-intensive. We can employ two main data strategies. One approach involves using
publicly available images for training. While easily accessible, these images might not fully repre-
sent the specific domain of surgical procedures. Alternatively, we can utilize unpublished hospital
data from platforms such as Pravega, GStreamer, or Orpheus. This second method offers the benefit
of highly relevant data. Nevertheless, the aggregation of data from multiple hospitals is restricted
by significant data-sharing restrictions due to regulations such as GDPR [48] and HIPAA [49]. To
overcome this, we adopted the federated learning paradigm for our second use case experiment.
Federated learning is a decentralised machine learning approach that trains models across multiple
distributed servers holding local data samples, without exchanging the data itself. In collaboration
with TUD Dresden University of Technology, we ensured the secure and protected execution of our
federated learning framework using SCONE. Furthermore, we organized a EndoViS sub-challenge
Federated Learning for Surgical Vision (FedSurg) 2024. The EndoViS challenge format is an interna-
tional benchmarking for computer vision algorithms in endoscopic video analysis, to evaluate cur-
rent strategies in the Surgical Data Science domain. The goal of our sub-challenge is to benchmark
the current state of the art of federated learning strategies on a newly collected Appendix300 dataset
[50]. In particular, to test the generalization and adaptation ability of the models trained within the
federated setup. Finally, besides this, another experiment aimed to demonstrate that federated learn-
ing performs comparably to, or even outperforms, traditional centralized learning, thereby proving
its viability as a secure and effective solution for training foundation models on sensitive surgical
data.

4.2 Data Spaces

For the FedSurg sub-challenge we used a preliminary version of the Appendix300 dataset [50]. This
dataset is curated through our close collaboration with the surgical facilities of the university hospital
campus and their connection to other hospitals world wide and our goal of expanding our dataset
collection to encompass a broader spectrum of surgical workflows.

The Appendix300 dataset addresses the critical need for diverse and representative training data
in surgical Al by providing 330 laparoscopic video recordings of appendectomies and control surg-
eries, collected from five German medical centers, along with detailed clinical metadata and anno-
tations of intraoperative appendicitis grades [50]. This comprehensive, multicentric dataset includes
patient demographics, medical history, clinical symptoms, laboratory parameters, and histopatho-
logical findings, facilitating novel computer vision validation tasks in laparoscopic surgery, such as
classifying appendicitis grades and differentiating perforated from non-perforated cases. Despite
some limitations, including incomplete clinical data for certain parameters and the inherent ambi-
guities of the Gomes et al. [51] classification used for grading, Appendix300 represents a significant
step forward in developing clinically relevant Al-based surgical video analysis tools and enables the
evaluation of decentralized machine learning approaches.

Otherwise, we focused on utilizing existing dataset to thoroughly test and fine-tune the devel-
oped systems. Below are some datasets currently available for our use:

* Dresden Surgical Anatomy Dataset (DSAD) (University Hospital Dresden and NCT/DKFZ)
[52]

* HeiCo and HeiChole (University Hospital Heidelberg and NCT/DKFZ) [53, 54]
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¢ Cholec80 (University of Strasbourg) [55]
* Synthetic video data (NCT/DKFZ) [56]
e GLENDA [57]
* SurgicalActions160 [58]
e hSDB-instrument [59]
e LapGyn4 [60]
e ESAD [61]
e PSI-AVA [62]
4.3 How Al is enabled in the use-case

Al is integral to the surgical use case as we develop and utilize AI models to address challenges
in Federated Learning and surgical video streaming. We aim to create robust and well-performing
ML models, particularly foundation models, for tasks like video appendicitis stage classification,
semantic segmentation, and classification. Our work involves leveraging federated learning to over-
come data-sharing restrictions and demonstrating its viability compared to centralized learning for
training these models. Furthermore, we integrate Al inference models into surgical video stream-
ing applications to provide real-time assistance to surgeons via specialized GStreamer plugins for
segmentation, phase detection, and tool detection.

4.4 Integration with NEARDATA architecture components

Our use case leverages two key components of the NearData architecture: the data plane component
Pravega for efficient data streaming and storage, and the control plane component Scone to ensure
secure and confidential execution of our experiments.

4.5 Targeted KPIs

Our targeted KPIs are a mixture out of following main KPIs:

e KPI-2: Significant data speed improvements (throughput, latency) in storage and access, and
real-time analysis of video and sensor data.

e KPI-3: Demonstrated resource auto-scaling for batch and stream data processing, validated
thanks to data-driven orchestration of massive workflows.

e KPI-4: High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

¢ KPI-5: Demonstrated simplicity and productivity of the software platform, validated with real
user communities in International Health Data Spaces.

Within this Federated Learning experiment, we are tackling following KPIs:

* KPI - FedSurg Sub-challenge: Evaluate the generalization and adaptation performance of cur-
rent state-of-the-art federated learning methods in surgical vision, specifically for appendicitis
classification.

¢ KPI - FL-EndoViT Foundation Model: Demonstrate the viability of using federated learning
to train a robust and generalizable foundation model, validating its performance on several
surgical downstream tasks.

¢ KPI - Secure Computing and Platform Validation: Validate the security and efficiency of
the federated learning framework by confirming that SCONE provides a secure and high-
performing environment for model training on confidential data while maintaining platform
simplicity and productivity.
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Figure 17: FedSurg24 Challenge Highlights: The top panel shows example images of intraoperative
appendicitis grades, defined according to Gomes et al. [51], which were used for video annotation.
The lower panel illustrates the FedSurg Challenge workflow: teams submitted Docker containers
via Synapse, which were executed on a secure cluster simulating FL across three centers with local
training and centralized aggregation. Final performance was assessed by testing each center’s best
local model on its own test set, while the global model was evaluated on the unseen hold-out center
to measure generalization. The challenge timeline with key dates is shown alongside.

4.6 Results and KPIs achieved
4.6.1 FedSurg Challenge

FedSurg24 Challenge Highlights: The top panel shows example images of intraoperative appendici-
tis grades, defined according to Gomes et al. [51], which were used for video annotation. The lower
panel illustrates the FedSurg Challenge workflow: teams submitted Docker containers via Synapse,
which were executed on a secure cluster simulating FL across three centers with local training and
centralized aggregation. Final performance was assessed by testing each center’s best local model
on its own test set, while the global model was evaluated on the unseen hold-out center to measure
generalization. The challenge timeline with key dates is shown alongside.

The primary objective of the challenge was to benchmark various Federated Learning strategies
within the domain of surgical vision, with a specific focus on examining the inherent trade-off be-
tween personalization and generalization that arises from data heterogeneity across the centers. The
challenge utilized a subset of the Appendix300 dataset [50], comprising laparoscopic video record-
ings from appendectomy procedures conducted at four distinct German medical centers. Challenge
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participants developed FL algorithms to classify appendicitis stages. The evaluation focused on two
principal goals: first, assessing the global server model’s ability to generalize to data from an unseen
medical center, thereby demonstrating the clinical benefit of utilizing models from other centers. Sec-
ond, it aimed to evaluate the local client model’s capacity for adaptation, specifically its ability to be
fine-tuned and perform effectively on data from each individual training center. This dual approach
incentivizes clinical institutions to participate in federated learning initiatives by providing them
with high-performing models for practical application, ultimately encouraging the development of
robust, adaptable, and privacy-preserving artificial intelligence models across diverse surgical en-
vironments. Evaluation was based on expected cost (EC) and F1-Score metrics, with bootstrapping
employed to ensure ranking stability. Additionally, a Wilcoxon signed-rank test is conducted to con-
firm the statistical significance of the ranking. Among the four received submissions, three teams
presented valid methods. Team Santhi utilized a pre-trained Video Vision Transformer (ViViT) [63]
with a frozen backbone, choosing to fine-tune only the final classification layer. Their approach used
FedAvg [64] for model aggregation within the Flower FL framework and placed emphasis on specific
temporal regions within the video frames. Team Elbflorenz adopted a foundation model strategy, us-
ing a pre-trained EndoViT [65] with a frozen encoder while training a lightweight classification head.
They classified frames independently and aggregated these into a video-level prediction through
majority voting, using adaptive FedSAM [66] for federated optimization to improve generalization.
Team Camma employed a metric learning approach featuring a Siamese network with a ResNet-50
backbone [67, 68]. Their model, trained using triplet margin loss, mapped images to embeddings for
classification, and they incorporated Switchable Normalization and FedMedian for aggregation to
address domain heterogeneity and enhance robustness.

Expected Cost (EC) F1 Score
Team Team
0.6 M Camma mm Camma
mmm  Elbflorenz 04 mm Elbflorenz
B Santhi B Santhi
0.5
0.3
0.4
C C
© @©
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) * ‘ ‘
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Center Center
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Figure 18: Bootstrapped Performance Results. Visualization of the performance results with stan-
dard deviation as error bars for all teams and tasks after bootstrapping with 10,000 repetitions. The
plot illustrates the variability and stability of the outcomes across different centers.

The final results placed Team Santhi in the first position, as they achieved the top rank in both
the generalization and adaptation tasks. Team Elbflorenz and Team Camma tied for the second final
rank. In the generalization task, Team Elbflorenz placed second and Team Camma third. In the adap-
tation task, Team Camma secured the second rank while Team Elbflorenz placed third. However,
bootstrapping and statistical analysis revealed that the ranking for task 2 is unstable. The challenge
ultimately revealed several critical limitations of FL in this context, including significant difficul-
ties with generalization, managing class imbalance, and effectively tuning hyperparameters within
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Figure 19: Ranking Stability. Bootstrapped ranking distributions for each metric and task, based
on 10,000 bootstrap iterations. Circle size indicates the percentage of times a team’s model achieved
a specific rank across samples. Black crosses show median ranks, and black lines denote the 95%
bootstrap confidence intervals. Subfigures (a) and (b) correspond to Task 1 (generalization ability)
with metrics EC and Fl-score, respectively, while (c) and (d) represent Task 2 (adaptation ability)

using the same metrics.
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decentralized settings. It underscored the importance of advancing future research in federated sur-
gical AI by focusing on improved temporal modeling, context-aware preprocessing, and the design
of data-sensitive loss functions. Those results will be soon published in a journal paper. 8

The FedSurg challenge is a significant component that underscores the project’s EU-level rele-
vance. It directly addresses the critical challenge of sharing sensitive medical data across national
borders. By employing a federated approach, it provides a viable mechanism for collaborative Al
model training among multi-national partners, while ensuring robust data security and strict GDPR
compliance. This is possible precisely because the Al model is trained locally at each institution,
meaning the sensitive raw patient data never leaves the hospital’s secure environment. This achieve-
ment is key as it validates a secure and scalable framework for collaboration, effectively safeguarding
patient privacy while simultaneously advancing pan-European health research.

4.6.2 FL-EndoViT

This experiment investigates the viability of federated learning (FL) as an alternative to centralized
training for developing foundation models in minimally invasive surgery. The study seeks to deter-
mine if a foundation model trained via a federated approach can perform comparably to a centrally
trained foundation model across various surgical tasks. The work builds upon the established En-
doViT model by Bati¢ et al. [65] and incorporates the Sharpness-Aware Minimization (SAM) [66]
optimization strategy as adapted by Caldarola et al. for federated environments.

The centralized baseline for this study is EndoViT [65], a model trained in two stages. Ini-
tially, it undergoes self-supervised pretraining using a Masked Autoencoder (MAE) on the exten-
sive Endo700k dataset collection. The model develops powerful data representations during its pre-
training phase by learning to reconstruct heavily masked image patches, usually 75% of the image.
This learning process is significantly enhanced by a heterogeneous data collection, which includes
diverse surgical procedures and anatomies. By being exposed to such varied data, the model is com-
pelled to form robust, generalizable representations applicable across different surgical scenarios,
rather than simply memorizing features specific to one dataset. Subsequently, the pretrained model
is fine-tuned for specific downstream applications, including Surgical Scene Segmentation (SSS), Ac-
tion Triplet Recognition (ATR), and Surgical Phase Recognition (SPR). Performance is benchmarked
using metrics appropriate for each task: IoU for SSS, mAP for ATR, and accuracy for SPR. EndoViT
has demonstrated strong performance, often matching or exceeding models pretrained on the Ima-
geNet dataset, particularly in scenarios with limited data.

To adapt this process for a decentralized setting, the study leverages Adaptive Federated Sharpness-
Aware Minimization. This approach was designed to address the performance degradation and lim-
ited generalization often seen in FL due to heterogeneous data across different clients. The strategy
links these issues to the sharpness of the loss landscape. By introducing SAM on the client side, the
model training targets flatter regions of the loss landscape to enhance generalization. Concurrently,
Stochastic Weight Averaging (SWA) is employed on the server side during the aggregation of client
models to promote convergence to these flatter minima.

The proposed Federated EndoViT (FL-EndoViT) framework mirrors the two-stage approach of
the original model but adapts it for federated foundation model training. The first stage consists
of federated self-supervised pretraining where decentralized centers collaboratively train a shared
global model using their local datasets without direct data sharing. Each center has access to one of
the dataset of the Endo700k dataset collection [65]. During this phase, each center uses the adaptive
FedSAM [69] optimizer to reconstruct masked patches. The resulting client models are then aggre-
gated by a central server using federated averaging (Fed Avg). SWA is applied during the final epochs
to ensure a smooth and stable final model. In the second stage, the pretrained FL-EndoViT encoder
serves as a foundation model for centralized fine-tuning and feature extraction on the SSS, ATR, and
SPR tasks.

For implementation, the Endo700k dataset, a composite of nine public surgical datasets, was
utilized for pretraining. To simulate a FL scenario and prevent data overlap, task-specific versions of

8Pre-print available here: https://wuw.arxiv.org/abs/2510.04772
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Table 11: Pretraining performance comparison: Pretraining performance comparison across feder-
ated optimization methods on the Endo700k dataset. The table reports the distribution of recon-
structed patches below different reconstruction loss thresholds out of 256 total patches. Results show
that combining MAE pretraining with adaptive FedSAM achieves performance closest to the central-
ized baseline, highlighting its effectiveness in handling the non-iid and heterogeneous data distribu-
tions of the federated setting.

Method Threshold 0.3 Threshold 0.1 Threshold 0.05 Threshold 0.01
Centralized Baseline 171 (171) 126 (120) 92 (90) 45 (45)
FedASAM (ours) 168 (166) 112 (107) 82 (80) 39 (38)
FedAvg 67 (67) 25 (25) 11 (11) 0(0)
FedMedian 39 (39) 5 (5) 0 (0) 0(0)

QFedAvg (Q =2) 53 (49) 8(7) 1(1) 0(0)

QFedAvg (Q =0.5) 65 (63) 20 (16) 6 (4) 0 (0)
FedAvgM 67 (66) 24 (24) 11 (11) 0(0)

KRUM 65 (65) 23 (23) 10 (10) 0 (0)

FedAdam 67 (66) 24 (24) 11 (11) 0(0)

the dataset were created, with each FL client having access to only one out of the nine subdatasets of
Endo700k. The server operated without any direct data access. The entire process was implemented
using the Flower FL Framework [70] with PyTorch, running on NVIDIA V100 GPUs. To ensure
comparability, hyperparameters were adopted from the original EndoViT repository.

A series of experiments were conducted to evaluate the framework. An initial ablation study on
federated pretraining compared commonly used FL approaches against one enhanced with adaptive
FedSAM. The results demonstrated that while common approaches (FedAvg [64], QFedAvg [71],
KRUM [72], ...) underperformed, the integration of FedSAM significantly improved reconstruction
error and the number of accurately reconstructed patches.

Although this did not fully match the performance of centralized pretraining, it confirmed the
benefits of FedSAM and SWA in improving reconstruction. Consequently, the FL-EndoViT model
incorporating adaptive FedSAM and SWA was selected for all further evaluations.

Further experiments on the downstream tasks began with an ablation study to determine the
best fine-tuning strategy. This study compared the performance of full fine-tuning against freezing
the model’s backbone and fine-tuning only the task-specific head. The results clearly indicated that
freezing the backbone led to suboptimal performance, particularly for the FL-EndoViT model. Full
fine-tuning yielded substantial improvements across tasks and was therefore deemed necessary for
effective adaptation.

In the final fine-tuning experiments, for Surgical Scene Segmentation, the centralized CEN-EndoViT
performed better in low-resolution settings, but FL-EndoViT consistently outperformed it in high-
resolution settings, especially with smaller training sets. For Action Triplet Recognition, FL-EndoViT
showed superior performance with larger datasets, achieving a notable improvement over the cen-
tralized model, while performance was comparable in few-shot settings. Finally, for Surgical Phase
Recognition, both the federated and centralized models exhibited similar performance across stages
that both excluded and included temporal components, demonstrating the robustness of FL-EndoViT
in capturing temporal information.

In conclusion, this study successfully demonstrates that foundation models trained with feder-
ated learning can generalize effectively across diverse surgical datasets while preserving data pri-
vacy. The integration of adaptive FedSAM during pretraining is shown to be a key factor in enhanc-
ing generalization and robustness in a heterogeneous data environment. The findings underscore
that for optimal performance, full fine-tuning of both the model backbone and the task-specific head
is crucial. The work validates the efficacy of federated foundation models in achieving performance
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Table 12: Impact of Frozen Fine-Tuning in comparison to Fully Fine-Tuning: This table compares
the performance of fully fine-tuned and frozen-backbone models across Surgical Scene Segmentation
(SSS), Action Triplet Recognition (ATR), and Surgical Phase Recognition (SPR). The reported values
represent the mean metric computed per image or video, followed by the mean and standard devi-
ation calculated across all images. The bold values indicate whether CEN-EndoViT or FL-EndoViT
performs better. Statistically significant differences, determined using the Wilcoxon signed-rank test

with & = 0.01, are marked with an asterisk (*).

Task SSS ATR
High Res Low Res
Metric 10U mAP
Full CEN-EndoViT 67.810/0 :I: 8.030/0* 67.540/0 :I: 8.060/0* 31.330/0 + 4:.610/0
FL-EndoViT 65.98% £ 8.10%  67.42% £ 8.18% | 40.79% = 6.65%*
Frozen CEN-EndoViT | 68.57% = 8.14%* 67.28% = 8.94%* | 31.33% =+ 4.61%*
FL-EndoViT 67.23% +7.37%  65.22% +7.55% | 26.90% + 5.58%
Task SPR
S1 S2 S1 S2
Metric ACC F1
Full CEN-EndoViT | 81.58% = 8.02% 88.37% + 7.16% 71.47% =+ 8.46%  84.48% + 6.15%
FL-EndoViT 81.46% + 7.59% 89.04% = 7.03% 71.19% +8.26%  85.05% =+ 5.92%
Frozen CEN-EndoViT | 72.26% =+ 8.96%* 79.88% =+ 10.88%* | 59.71% =+ 8.70%* 75.12% =+ 9.50%*
FL-EndoViT | 65.72% £+ 10.72%  75.26% £ 11.55% | 53.39% + 8.82%  72.29% =4 9.46%

Table 13: Impact of Few-Shot Fine-Tuning on Surgical Scene Segmentation (SSS): This table com-
pares the SSS performance of FL-EndoViT and CEN-EndoViT in a few-shot setting across different
training set sizes. The reported values represent the mean IoU-Score computed per image over the
technical repetitions, followed by the mean and standard deviation caclucation across all images. The
bold values indicate weather CEN-EndoViT or FL-EndoViT performs better. Statistically significant
differences, determined using the Wilcoxon paired test with a = 0.01, are marked with an asterisk

(*)-

Fine-Tuned on | Res. | CEN-EndoViT FL-EndoViT

1 Video Low | 42.87% =+ 6.84%* | 40.50% =+ 7.60%
High | 25.68% £ 8.32% | 42.03% = 6.50%*

2 Videos Low | 56.60% =+ 5.54%% | 53.32% =+ 5.40%
High | 37.12% +3.82% | 56.39% =+ 6.39%*

4 Videos Low | 61.06% = 5.62%* | 58.98% =+ 6.25%
High | 45.51% +5.61% | 60.34% + 6.58%*
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Table 14: Impact of Few-Shot Fine-Tuning on Action Triplet Recognition (ATR): This table com-
pares the ATR performance of FL-EndoViT and CEN-EndoViT in a few-shot setting across different
training set sizes. The reported values represent the mean average precision score computed per im-
age over the technical repetitions, followed by the mean and standard deviation caclucation across
all images. The bold values indicate weather CEN-EndoViT or FL-EndoViT performs better. Statis-
tically significant differences, determined using the Wilcoxon paired test with « = 0.01, are marked
with an asterisk (¥).

Fine-Tuned on | CEN-EndoViT = FL-EndoViT

2 Videos 22.61% =+ 3.04% 21.76% =+ 4.30%
4 Videos 26.00% = 4.18% 27.24% =+ 4.75%
8 Videos 33.16% =+ 6.41% 32.53% £ 5.71%

Table 15: Impact of Few-Shot Fine-Tuning on Surgical Phase Recognition (SPR): This table com-
pares the SPR performance of FL-EndoViT and CEN-EndoViT in a few-shot setting across different
training set sizes. The reported values represent the accuracy and F1-Score computed per video over
the technical repetitions, followed by the mean and standard deviation calcucation across all videos.
The bold values indicate weather CEN-EndoViT or FL-EndoViT performs better. Statistically sig-
nificant differences, determined using the Wilcoxon paired test with « = 0.01, are marked with an

asterisk.

Metric Accuracy F1-Score

Fine-Tuned on | TeCNO Stage | CEN-EndoViT FL-EndoViT CEN-EndoViT FL-EndoViT

2 Videos S1 63.83% 1= 8.94%* | 61.30% £ 8.51% | 48.95% = 8.26%* | 45.70% + 6.96%
S2 78.13% £ 8.94% | 76.35% % 10.53% | 75.15% % 6.86% | 75.22% =+ 8.13%

4 Videos S1 66.79% £ 9.92% | 66.23% +9.15% | 52.50% =+ 10.00% | 53.22% =+ 8.94%
52 79.75% +9.55% | 80.07 £ 8.33% 77.67% £ 7.50% | 77.89% = 8.04%

8 Videos S1 74.04% = 8.65%* | 71.96% % 10.32% | 58.76% £ 9.90% | 60.62% =+ 10.02%*
52 84.34% +7.94% | 84.61 £ 8.33% 80.73% + 6.86% | 81.55% = 6.46%

Table 16: Fine-Tuning Performance on Classification of Unseen Data: This table compares the per-
formance of CEN-EndoViT and FL-EndoViT after fine-tuning on three representative downstream
tasks of the GynSurg dataset: action recognition, bleeding detection, and smoke detection. Reported
metrics are accuracy and F1-score (mean =+ standard deviation) after bootstrapping with 10,000 repe-
titions. The bold values indicate weather CEN-EndoViT or FL-EndoViT performs better. Statistically
significant differences, determined using the Wilcoxon paired test with « = 0.01, are marked with an
asterisk.

Fine-Tuned on CEN-EndoViT FL-EndoViT

Accuracy F1-Score Accuracy F1-Score
Action 49.74% £ 3.25%  38.64% +3.42% 65.88% £ 3.01%* 57.93% =+ 3.68%*
Bleeding 78.00% £3.52% 76.74% £ 3.84% 87.24% =+ 2.97%* 86.72% = 3.19%*
Smoke 82.29% £1.68% 82.28% +1.67% 87.38% £ 1.44%* 87.36% =+ 1.45%*
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that is comparable, and in some cases superior, to traditional centralized training methods 9,

4.7 High Levels of Data Security and Confidential Computing Validated Using TEEs and Feder-
ated Learning in Adversarial Security Experiments

Federated Learning (FL) enables collaborative model training while preserving data confidential-
ity and integrity. The integration of the SCONE secure container environment leverages Trusted
Execution Environments (TEEs) to protect both computation and data, even in adversarial settings.
Recent SCONE releases introduce advanced features such as dynamic attestation, fine-grained policy
enforcement, and confidential orchestration, further strengthening the security posture of FL deploy-
ments.

Security Validation via Memory Inspection

To validate SCONE's security guarantees, we employ a memory inspection methodology. In Linux,
process memory can be accessed via the /proc filesystem, specifically through the mem and maps files
associated with a process ID (PID). For example, if the FL process has PID 1310177, an adversary
with privileged access can attempt to read /proc/1310177/mem and /proc/1310177/maps, dumping
their contents for analysis.

The security assertion proceeds in two phases:

1. Memory Dumping: The adversary dumps the process memory to a file.

2. Secret Search: Knowing a secret value (e.g., the string “SURGERY”) that should be present
in memory during non-confidential execution, the adversary searches the dump using tools
like grep. In a properly secured (confidential) execution, this secret should not be found in the
memory dump, demonstrating that sensitive data remains protected even against privileged
attackers.

Experiment 1: Federated Learning within SGX Enclaves Using SCONE and CAS
Objectives:

* Assess how confidential federated learning with TEEs mitigates key security challenges in FL,
including threats from privileged attackers, colluding malicious clients, and adversarial ma-
nipulation of local updates.

* Measure the impact of SCONE’s network shield (configured via the Data Broker’s Configura-
tion and Attestation Service, CAS) on FL execution time, compared to both a standard (non-
SGX) environment and a basic SGX-enabled setup.

* Analyze the effect of SGX-based optimizations on the startup latency of FL application func-
tions.

e Evaluate the benefits of new SCONE features such as dynamic attestation and confidential
orchestration.

Experimental Setup

e Hardware: Intel Xeon® CPU Silver 4314 @ 2.40 GHz, 128 GiB RAM, 500 GB SATA SSD.

¢ Software: Ubuntu 20.04, Docker 20.10.19, SCONE v6.0+ with enhanced attestation and policy
features.

¢ Environment: All experiments conducted within Docker containers orchestrated via Kuber-
netes with SCONE Confidential Orchestration.
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Scenario Description
Vanilla (Intel /no SGX) FL application running on Intel CPUs without SGX support.
SCONE (Intel SGX/hard- | FL application running on Intel CPUs with SGX, benefiting from
ware mode) hardware-backed security guarantees.

SCONE  (SGX/hardware | FL application running with SCONE and CAS, enabling advanced
mode) + CAS + New Fea- | security features:

tures Network Shielding: Protects network connections between FL
clients and servers.

File Shielding: Encrypts input training data using SCONE’s en-
hanced file system shield, now supporting dynamic key rotation and
granular access policies.

Dynamic Attestation: Continuous verification of enclave integrity
and policy compliance during runtime.

Confidential Orchestration: Secure deployment and scaling of FL
workloads using Kubernetes, with all orchestration metadata and
secrets protected within enclaves.

Table 17: Evaluated Scenarios

Evaluated Scenarios
Results

As shown in Figure 20, the primary overhead introduced by SCONE in SGX mode, compared to the
vanilla environment, is due to enclave startup. This startup time is largely fixed for a given enclave
size. For more complex or longer-running applications, this overhead becomes a smaller proportion
of the total execution time.

Security Features:

¢ Network Shield: Configured via the Data Broker’s CAS, this feature ensures that all network
traffic between FL clients and servers is encrypted and authenticated.

* File System Shield: SCONE encrypts all input training data at rest, decrypting it only within
the secure enclave for processing. The latest version supports dynamic key rotation and fine-
grained access control, reducing the risk of key compromise.

* Dynamic Attestation: SCONE now supports continuous attestation, ensuring that enclaves re-
main in a trusted state throughout their lifecycle. Any deviation from expected measurements
or policies triggers automatic revocation of access to secrets and data.

* Confidential Orchestration: With Kubernetes integration, SCONE ensures that deployment
metadata, secrets, and configuration files are only accessible within enclaves, preventing leak-
age even if the orchestrator is compromised.

Function Startup Optimization

To further analyze performance, we measured the startup time of a no-op enclave as a function of
the allocated heap size (SCONE_HEAP). Results are summarized below:

These results indicate that enclave startup time decreases as heap size increases, but remains a
significant factor in total application runtime, especially for large enclaves.

Conclusion

The proposed solution ensures that both input training data and code (e.g., Python scripts) are en-
crypted and that all training computations—local and global—are executed within TEE-protected

9This paper is already available as preprint here: https://arxiv.org/abs/2504.16612
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Figure 20: FL Execution Time

Heap Size | Startup Time (s)
6 GB 220.69
8 GB 210.15
10 GB 209.13
12 GB 193.66

Table 18: Startup time of a no-op enclave depending on the dedicated heap size for SGXv1

enclaves. All gradient updates are transmitted over Transport Layer Security (TLS) connections be-
tween client and server enclaves, ensuring end-to-end confidentiality and integrity.

The Data Broker, integrated with the CAS component, leverages remote attestation to guarantee
that only authorized code and data are used in training. With the latest SCONE features, dynamic
attestation and confidential orchestration further ensure that computations are performed with the
correct, unmodified code and data, and that secrets are never exposed outside trusted enclaves.

Preliminary evaluations demonstrate that this approach maintains the confidentiality and in-
tegrity of federated learning computations without sacrificing model utility or accuracy. Attackers,
even with privileged access, are unable to compromise the integrity or confidentiality of the training
data, code, or models, validating the effectiveness of SCONE and TEE-based confidential computing
in adversarial settings.

Key Takeaways:

* SCONE and TEEs provide robust protection for federated learning, even against privileged
attackers.

* Memory inspection experiments confirm that sensitive data remains confidential within en-
claves.

* Performance overhead is primarily due to enclave startup, which can be mitigated for longer-
running workloads.

¢ The integration of CAS, dynamic attestation, and confidential orchestration ensures the in-
tegrity and authenticity of the entire FL workflow.

Page 48 of 99



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

¢ Enhanced file system shield and policy enforcement features in SCONE further reduce the at-
tack surface and support compliance requirements.

4.8 Use-case repositories
e https://github.com/KirchnerMax/FL-EndoViT

* https://gitlab.com/nct_tso_public/challenges/miccai2024 /FedSurg24

* https://gitlab.com/nct_tso_public/challenges/miccai2024/snippet

4.9 Discussion and final remarks

We demonstrated the feasibility of federated learning for training foundation models in surgical vi-
sion, showcasing its potential to overcome data-sharing limitations while achieving comparable or
superior performance to centralized approaches. The FedSurg challenge further solidified the impor-
tance of FL in addressing real-world surgical Al challenges. We also highlighted the advantages of
utilizing Pravega and GStreamer for efficient handling of high-volume, real-time surgical video data,
demonstrating significant improvements in data loading speed compared to traditional methods.
These advancements contribute significantly to enabling robust and privacy-preserving Al solutions
in computer-assisted surgery.

410 Future work

The insights gained from this project, particularly regarding federated learning and efficient video
stream handling, will serve as a crucial foundation for subsequent initiatives such as the Surgical Al
Hub Germany. This collaborative venture aims to further advance the application of Al in surgery.
A key area for future work involves deploying and testing streaming technologies like Pravega and
GStreamer directly within the operating room, providing a platform for real-world validation and
surgeon assistance. Following this, the implementation of federated learning is planned within the
Surgical AI Hub Germany to translate these research advancements directly into clinical practice.
Furthermore, future work will address pressing clinical needs identified by surgeons, including the
automated identification and analysis of adverse events and the autonomous generation of surgical
reports. The streaming and Al technologies developed will be leveraged to address these critical
requirements, aiming to provide valuable clinical insights and streamline essential documentation
processes.
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5 Use Case: Transcriptomics
5.1 Short Description

The use case is organized into two key experiments, each representing a separate scenario with dif-
ferent challenges and datasets. The experiments are listed below:

¢ Transcriptomics Atlas (processing of RNA-seq data)
¢ Federated Learning for Genomics Data Analysis

Transcriptomic analyses are most often performed in a comparative framework, examining differ-
ent health states, diseases, or stimuli relative to baseline conditions. However, acquiring data under
standardized conditions substantially increases experimental costs [73]. In addition, the absence of
such data during the planning phase complicates the optimization of experimental design. The so-
lution to those challenges is the Transcriptomics Atlas, in which data from a representative set of
human tissues were uniformly processed. This resource can be of use in a wide range of scientific
applications, including pharmacogenomics and biomarker discovery.

The Transcriptomics Atlas pipeline steps are described below:
1. Downloading SRA file using prefetch tool.
2. Converting into FASTQ files using fasterg-dump tool.

3. Alignment and quantification of reads using Salmon [74] or STAR [75] [76].

4. Count normalization using DESeq?2 [77].
SRA

Ali t STAR DESeq2 i
1gnmen » .fastq fles ——— > .bam files —)q .csv files Tran;(;r(ljpetlome
database
data
Salmon DESeq2 i
- » .fastq fles ——— > .txtfiles —q) .csv files Vs
Pseudoalignment model

Figure 21: Transcriptomics Atlas Pipeline.

Alignment of RNA-sequences is the most expensive step in terms of compute resources and time.
Processing hundreds of terabytes of such data is challenging and requires a cost-efficient approach
and thoughtful optimizations. The cloud architecture designed for this task is presented in Fig. 22.
The pipeline itself is deployed on EC2 worker-nodes within AutoScalingGroup.

The second key experiment was initially designed to apply a federated learning (FL) framework
to Human Genome Variation Analysis. This domain was selected as a canonical use case for FL,
as human genomic data is exceptionally sensitive and strictly regulated, forcing it to remain siloed
within different research institutions. This presents a perfect challenge for an FL model, which can
train collaboratively without moving or exposing the raw data. However, procuring a suitable, dis-
tributed, and well-annotated human genomic variation dataset for this project proved to be a signifi-
cant logistical challenge. We therefore made a decision pivot this experiment to microbiome data, for
which we had a readily available model and dataset. Microbiomics domain preserves the original
experiment’s core technical challenge. Microbiome data (i.e., metagenomic data) faces privacy and
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Figure 22: Cloud architecture for Transcriptomics Atlas Pipeline.

logistical hurdles that are highly similar to those of human genomic data. A person’s microbiome is a
unique fingerprint that can be used for identification and reveals sensitive health information about
their diet and lifestyle. Therefore, this data is also siloed within institutions and subject to stringent
data-sharing restrictions, making it an ideal use case for demonstrating the viability of federated
learning for privacy-preserving analysis.

5.2 Data Spaces
5.2.1 Transcriptomic Atlas

In this part of the Use Case, we focus on data available from the NCBI Sequence Reads Archive repos-
itory [78] and European Nucleotide Archive (ENA). The available dataset size exceeds 30 petabytes
of sequence data [79] [80]. However, we select RNA-sequence data generated by human samples
sequencing only, based on tissue/cell, lack of disease, and appropriate technical parameters of se-
quencing. The files themselves are hosted on AWS (us-east-1), with computations performed in the
same (or close-by) region for proximity and efficiency. The data for the Transcriptomics Atlas consists
of sequences of 20 human tissues. In total, our dataset consists of 17TB of SRA data (compressed)
which corresponds to 130TB of FASTQ data (uncompressed). Extending the dataset is possible with
additional tissues in order to create a broader Transcriptomics Atlas.

5.2.2 Federated Learning experiments

For the federated learning experiment, the model integrated with our FL framework is based on
DeepMicro [81]. This model is compatible with several publicly available human gut metagenomic
datasets, such as those aggregated in the MetAML repository [82]. These datasets consist of whole-
genome shotgun (WGS) metagenomic samples from six different disease cohorts: inflammatory
bowel disease (IBD), type 2 diabetes in European women (EW-T2D), type 2 diabetes in Chinese (C-
T2D), obesity (Obesity), liver cirrhosis (Cirrhosis), and colorectal cancer (Colorectal). All samples
were derived from Illumina paired-end sequencing technology, and each cohort contains a mix of
healthy controls and patient samples from different studies. In total, these six cohorts comprise 1,156
human gut metagenomic samples.
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5.3 Targeted KPIs
This work is related to the following project KPIs:

¢ KPI-1- Significant performance improvements: We improved the Transcriptomics Atlas pipeline
with cloud-related and application-specific optimizations that resulted in two-order of magni-
tude cheaper computations (full analysis in Tab. 19).

¢ KPI-3 - Demonstrated resource auto-scaling for batch and stream data processing: We uti-
lized services such as AWS EC2 AutoScalingGroup, ECS in Fargate mode, AWS Lambda which
allowed to easily scale resources for the current need.

5.4 Challenges addressed
5.4.1 Transcriptomic Atlas

The main challenge in this part of the Use Case is to design cost-efficient batch processing of RNA-
sequences for resource-intensive pipeline. Below, we outline the challenges we encountered.

* Resource-intensive application: STAR aligner requires indexed human genome to be loaded
into worker node’s memory in order to perform alignment on a FASTQ file. By using the newest
release of the genome we were able to reduce the requirement from 80GB to 35GB therefore save
resources, reduce costs and improve significantly processing time.

¢ Large-scale dataset of RNA-sequences: For the Transcriptomics Atlas use case we need to
process 130TB of FASTQ data. With the optimizations (Tab. 19) implemented this was very
efficient and that allows possible extension of the Atlas with additional tissues.

* Index distribution to worker nodes: The STAR index which is a 30GB file has to be distributed
quickly and efficiently to worker-nodes in order to prevent under-utilization of resources.

5.4.2 Federated Learning experiments

The primary challenge addressed by integrating a federated learning (FL) framework is the ability
to perform large-scale machine learning analysis on sensitive, distributed datasets while preserving
patient privacy.

e Enhanced Privacy and Data Governance: A person’s microbiome is a unique "fingerprint"
that contains highly sensitive Protected Health Information (PHI). It can be used to identify an
individual and reveals sensitive data about their health, diet, and lifestyle. Moving this raw
data to a central server for analysis creates a significant privacy risk and is often prohibited
by data governance regulations like GDPR and HIPAA. The FL framework directly addresses
this by training the model locally on the "siloed" data at each institution. Only the anonymous
model updates (e.g., weights) are shared, not the raw data itself, thus enforcing privacy by
design.

¢ Overcoming Data Silos: Microbiome datasets, particularly those for specific diseases, are of-
ten small and held by different hospitals or research centers worldwide. It is logistically and
ethically difficult, if not impossible, to pool this data. Federated Learning provides a robust
framework to collaboratively train a powerful, global model using all the available distributed
data without any institution having to share its private dataset.
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5.5 Data connectors developed
5.5.1 Indexed genome connector

Each worker node that performs alignment with STAR must have access to the indexed human
genome. From multiple possible solutions, we decided on an NFS-based approach due to better
performance than alternatives (e.g. using object storage or embedding the index into the virtual ma-
chine image). Earlier versions of the pipeline used a custom NFS server deployed among the worker
nodes. The improved version uses the Elastic File System service, which reduced/removed data
transfer and operational costs compared to the previous approach.

Furthermore, extensive research has been carried out to evaluate the feasibility and performance
impact of a novel index access strategy. The central research question is as follows: given that cer-
tain portions of the index are frequently accessed while others are rarely utilized, is it possible to
distribute only the core of the index to worker nodes while retrieving the remaining parts remotely?
Such an approach could reduce the memory requirements of the nodes; however, remote access is
expected to introduce performance overhead. Based on the Fig. 23 we can determine that while the
idea is valid since 20% of index consists of roughly 80% of total index accesses. Early research results
on this topic were published in [83]. However, more research is needed to decide if performance
degradation due to increased latency is worth the memory reduction. Initial results suggest that this
idea is more suitable for HPC deployments with fast interconnects.

100 -

80 1
60 -
40 -
201

01 . . . .
0 20 40 60 80 100
Index cache percent [%]

Cached access ratio [%

Figure 23: Index access pattern. Relation between size of the local index and local/remote access
ratio.

5.5.2 Dataplug - SRA format

Since SRA is the default input format for pipelines, while the first step is usually conversion to FASTQ
format, we developed an SRA-to-FASTQ extension for the Dataplug library. It allows for seamless
partitioning and distribution of chunks of FASTQ file, while the data on the storage remains in SRA
format. The main challenge lies in the fact that SRA is a compressed format, requiring a decompres-
sion tool to generate FASTQ files. The default method is downloading whole SRA file and converting
it to FASTQ locally. To overcome this our approach establishes a mapping between FASTQ lines and
the corresponding byte ranges in the original SRA file. This mapping is constructed by monitoring
which byte ranges are accessed during decompression, allowing us to link the required bytes to the
resulting FASTQ lines without needing detailed insight into the internal mechanics of the decom-
pression tool.

To implement this we slightly modified the NCBI VDB library, which can be used for access-
ing SRA file. Since the library uses a layered architecture that interfaces with Linux system calls at
the lowest level, these calls can be overridden to track which byte ranges are accessed during de-
compression. This enables precise mapping between compressed data and the logical units of the
decompressed format. The method is termed system-level data slicing because it leverages syscalls
monitoring to establish the link needed for efficient random access and logical partitioning of SRA
data when converting to FASTQ.
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Figure 24: Schema of Dataplug SRA extension interaction with libncbi-vdb.so.

5.5.3 VFS and MPI Connectors

We have created 2 solutions for distributed memory access and compared them with the baseline
using local memory. Our first solution uses the LD_PRELOAD mechanism to replace local memory
access with the distributed one, keeping built-in memory allocation functions. We cannot use kernel
customizations due to the lack of root-level access, so we have developed a custom library based
on mmap(). It tracks memory allocations and is backed by custom-developed virtual file-system
(VFS) stored on on Lustre. We have also developed a solution based on MPI which features one-way
communication based purely on RDMA mechanism. We hypothesize that an MPI based solution
would provide better performance than VFS. However it cannot be used with proprietary software
due to the need of application code instrumentation. Those architectures are shown in Fig. 25 which
also compares them with local non-distributed memory access (A) as baseline for the evaluation of
our solutions.

The solutions have been tested on two HPC Clusters offered by the PLGrid Infrastructure - Ares
and Helios. Each of those clusters offers different type of interconnect - Infiniband and Slingshot. We
are presenting results in Fig. 26. As expected the local access is faster than any remote mechanism.
The VES is prone to severe performance degradation as seen in the plot. We expect that this can
be improved with faster shared storage or interconnect. On the other hand we have also found out
that MPI-based memory access is comparable to local access based on memcpy() which makes it best
suited for our goal.

5.6 How Al is enabled in the use-case

While the transcriptomics atlas does not heavily rely on AI methods and tools, there are places where
Al has been used. In the federated learning experiment, we use a deep learning model (DeepMicro)
which is based on deep learning to train an autoencoder to build a deep representation for disease
prediction based on human microbiome data. We extend this model by using federated leaning ap-
proach, thus helping preserve the data privacy. Our developed Flower-Lithops simulation backend
is a contribution towards enabling serverless experiments with federated learning frameworks in a
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Figure 25: Proposed architectures for memory access - a baseline and two distributed.

more automated and flexible way thanks to Lithops capabilities. Moreover, we have started initial
experiments with using LLM-assisted execution planning and optimizing of bioinformatics batch
processing, in order to see how the architectures and optimizations we implemented in our use case
can be automated with the help of Large Language Models.

5.7 Integration with NEARDATA architecture components

As transcriptomics sequences in FASTQ files are independent, a natural step is to partition them
into chunks and process them separately. This makes the problem highly parallelizable, opening
the door to utilizing the massive parallelism of serverless platforms. We developed two solutions to
explore this approach. The first uses Lithops together with Dataplug to process FASTQ.gz files in the
AWS cloud. In this setup, Lithops is configured with AWS Lambda as the compute backend. Input
data must be stored in S3 in FASTQ.gz format and preprocessed with Dataplug, after which Lithops
distributes the computation, collects the outputs, and assembles the final result.

The second solution builds on the first but adapts it to high-performance computing environ-
ments. It utilizes the LithopsHPC extension, which we adapted to the Ares supercomputer at ACC
Cyfronet. In this version, DataplugSRA is used to eliminate the need to prepare FASTQ files in S3,
since SRA files are already publicly accessible on AWS. This adaptation allows efficient integration
of Dataplug with both cloud-native serverless workflows and HPC infrastructures.
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Figure 26: Local memory access vs VFS vs MPI RDMA on: (A) Ares (Infiniband), (B) Helios (Sling-
shot).
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5.7.1 Flower-Lithops Serverless Integration

We integrated the Lithops serverless execution framework with the Flower federated learning frame-
work. This integration unlocks the ability to conduct large-scale federated learning simulations with-
out the need for a standard, persistent compute cluster, such as Flower’s default Ray-based backend.
Instead of provisioning and managing stateful infrastructure, this integration allows researchers to
execute thousands of federated learning clients as ephemeral, on-demand serverless functions. This
serverless approach fundamentally changes the accessibility and scale of FL experimentation. It can
remove the significant operational overhead of infrastructure management, allowing researchers to
focus on model development rather than cluster deployment. This unlocks a new level of elastic scal-
ability, making it feasible to simulate tens of thousands of clients automatically—a scale that would be
cost-prohibitive or logistically impractical for many to provision using traditional, persistent clusters.
Furthermore, it introduces a highly efficient pay-per-use cost model, which eliminates the expense of
idle cluster resources, a common issue with the baseline approach. The development branch for this
feature is available at https://github. com/janprz/flower/tree/add-1lithops-backend-support.
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5.8 Results and KPIs achieved

The optimization of Transcriptomics Atlas has been a success. In total, the processing time and cost
have been reduced by two orders of magnitude. The summary of all optimizations is presented in
Tab. 19. Moreover, we processed 130TB of FASTQ data representing RNA-seq data from 20 different
human tissues.

Table 19: Summary of architectural and optimization benefits.

Optimization Benefit
Cloud-native architecture Scalability, flexibility, cost-efficiency, lower operational overhead
~12 times faster STAR alignment time
STAR index generated on newer release ~8.4 times reduced cloud costs

of Ensembl GRCh38 reference gene set Reduced worker-node memory requirement (80GB -> 32GB)
Cheaper and faster index distribution to worker-nodes.
STAR Early Stopping Significant (~20%) STAR pipeline throughput increase.
Fast and scalable index distribution solution in the cloud.
Index on NFS / EFS Reduced data transfer costs (~10% of the total costs).
Improved efficiency of computations.
Improved throughput for both Salmon and STAR pipelines
Improved cost-efficiency of the solution using
Instance type analysis the most optimal instance type (x86 architecture).
R7a.2xlarge is > 10% cost-efficient than alternatives.
Reduction of ~50% on compute costs.
Robust solution to handle interruptions.
EBS optimizations (right-sizing) Improved cost-efficiency of EBS volumes

Scalability analysis of aligners

Spot instances usage

5.8.1 KPI-1: Significant performance improvements (data throughput, data transfer reduction).

Early stopping is an optimization we introduced in
order to save resources by terminating the processing
of low-quality files (which cannot be estimated accu-
rately before alignment) or invalid sequences. STAR
supports this by measuring intermediate mapping
rate, which allows us to identify such sequences. As
shown in [84], using live metrics can boost alignment
throughput by up to 19.5%. The examples when such
terminations occur are presented in Fig. 29.

For the Transcriptomics Atlas project, the map-
ping rate threshold is set at 30%. However, this is 0
highly dependent on the use case. Pipelines that uti- 0 20 40 60 80 100
lize STAR in a similar scenario and require sequences Mapping rate threshold [%]
of the highest quality will greatly benefit from this
feature. The usefulness of this approach shows that
other aligners should also support monitoring of in-
termediate mapping rate which currently is not the case. In Fig. 28, we provide an extended analysis
based on the experiment reported in [84]. Setting the threshold at 80% results in a 60% reduction in
total computation time, indicating that this feature becomes particularly critical when a high map-
ping rate is desired.

100

80
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20

Total compute time savings [%]

Figure 28: Impact of early stopping threshold
on total alignment time.

Execution time reduction due to usage of newer release of human genome. STAR alignment step
requires an index to be loaded into memory. Such index is generated on the human genome available
on e.g. Ensembl [85]. Index generation is a one-time task and then it can be distributed to workers in

Page 57 of 99



HORIZON - 101092644 NEARDATA
31/10/2025 RIA
10000 -
EEl Early stopping ON
L, Early stopping OFF
()
€ 5000
=
0 SIS CENCEN = =« s o 8 0 % 0 2 lll-llllllllllll
COOOI=MOLAINANNYONVYSOQODYNDOTNDDDD DTN ON O~y
AR AR AL L AT R E IO NN NNATCE S

Figure 29: Time savings due to early stopping feature.

the initialization phase. By using a newer release (with a smaller number of patches) of the genome,
we generate a much smaller STAR index: 28.5GiB instead of 90GiB. This allows to reduce data trans-
fer cost and time during the initialization phase of each worker. Since each worker loads this index
to RAM, we can use smaller instances to run the pipeline. On top of the memory optimizations,
we also get significant performance improvement by using a smaller index - over 12 times faster on
average (weighted by FASTQ size). We performed an A /B test for 49 SRA files and ran the pipeline
with different index releases. The execution times are presented on Fig. 30. This is applicable almost
exclusively to the STAR aligner path of the pipeline.

STAR execution time with index generated on different genome releases.
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Figure 30: STAR alignment execution time using index generated on Ensembl release 111 and on
release 108.

Spot instances Using spot instances in AWS can reduce the compute cost by up to 90%, but in our
case it is usually about 50-65%. This, however, comes with a downside of possible interruption in
contrast to the on-demand model. Each running spot instance can be terminated with a 2-minute
notice. Our initial analysis suggests meaningful cost reduction using this execution model. Such
analysis takes into account the cost of restarting the worker, starting the computation once again if
necessary, and block storage (EBS) costs. This is applicable for both Salmon and STAR pipelines.
With good configuration (e.g. using instance type with low interruption rate) and in an optimal
scenario, using spot instances should result in relatively stable computations as shown in Fig. 31.
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Here we present results of processing 1000 SRA files on r7a.2xlarge instances with the STAR pipeline.
During the experiment, only five interruptions occurred and resulted in wasting less than 1% of the
total running time among all instances.
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Figure 31: Spot instances usage experiment. Timeline for instances and successfully computed files.

Cost-efficient instance type for STAR There are many available instance types on EC2. It is im-
portant to choose a type that fulfills all the requirements and is cost-efficient. Loading STAR index
into shared memory results in over 29.5GiB of allocated memory. Since STAR is a memory-intensive
program, we decide to focus on instances with a higher memory-per-CPU factor (mainly "r" family)
with at least 64GiB of RAM. It is possible to use other types with a lower factor and more cores;
however, this may require faster block storage and increased under-utilization during other, much
less CPU-intensive steps (e.g. prefetch step). Selected current generation instance types that fulfill
those requirements are compared in Table 20. This table also presents the total cost and time of per-
forming STAR alignment on 50 random FASTQ files. We consider only STAR processing time - other
pipeline steps make up for 24-31% of total execution time. The results indicate r7a.2xlarge as the
fastest and cheapest (on-demand) type. Although, when using spot instances, one should also take

into consideration the spot availability of a given type.

Table 20: Cost-efficiency analysis of selected instance types.

Instance vCPU | Cores | RAM [GiB] On-(;lemand Tot'al STAR Total
type price [h] execution time [h] | cost
r6a.2xlarge 8 4 64 $0.4536 8.00 3.63 %
r6i.2xlarge 8 4 64 $0.5040 8.04 4.05%
r7a.2xlarge 8 8 64 $0.6086 5.48 3.33%
r7i.2xlarge 8 4 64 $0.5292 7.66 405%

5.8.2 KPI-3: Demonstrated resource auto-scaling for batch and stream data processing.

Scalability The cloud offers a wide range of services that are easily scalable and fit our use case.
Such services include but are not limited to AWS Lambda, ECS running on Fargate, EC2 virtual
machines. By using the AutoScalingGroup service on AWS, we can define scaling policies for the
processing of the workload. Our solution presents efficient utilization of the resources with good
scalability. On HPC, a possible approach for this use case would leverage array-job functionality to
run multiple instances of the same job. However, HPC may have limits to the number of available
nodes/ cores, fair-share policies, queue system, etc. which is not the case in the cloud. By using cloud
services and their large compute/storage resources, we can instantly launch multiple instances of
workers and therefore, easily parallelize the workload without any queue waiting time (as seen in
Fig. 31).

5.9 Use-case repositories

The main repositories relevant for this Use Case are listed below:

Page 59 of 99



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

¢ Transcriptomics Atlas - https://github.com/neardata-eu/transcriptomics-atlas-sano
* Serverless Salmon Pipeline - https://github.com/neardata-eu/salmonless

* Federated Learning for Transcriptomics - https://github.com/SanoScience/neardata-fl-for-
transcriptomics

5.10 Discussion and final remarks

The Transcriptomics use case has achieved multiple valuable and measurable optimizations and ad-
dressed KPIs described in the project. The total impact of combined optimizations for Transcrip-
tomics Atlas reduced processing cost by two orders of magnitude. Many optimizations are appli-
cable for environments other than cloud (e.g. early stopping on HPC). We successfully integrated
and tested Lithops and Dataplug for Salmon pipeline running on AWS Lambda which improved
processing time. Also noteworthy addition to Dataplug is the SRA connector. Moreover, we used
LithopsHPC to run the pipeline on HPC cluster. Finally, the development related to STAR index ac-
cess helped us to better understand the memory access pattern of the tool. We have also developed a
federated learning framework suitable for transcriptomic and metabolomic experiments.

5.11 Future work

Next steps for this use case include expanding the Transcriptomics Atlas dataset with additional
tissues. Following the extension, the data will be processed through the established pipeline and
the results collected. The finalized dataset will be prepared, analyzed, and then published on e.g.
Zenodo.
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6 Use Case: Pathogen genomics for public health

The UK Health Security Agency (UKHSA) plays a critical role in safeguarding public health across
the United Kingdom. As part of its mission, UKHSA routinely sequences a wide range of human
pathogens —both viral and bacterial— to generate clinical reports and respond swiftly to outbreaks.
The scale of this operation is substantial, with sequencing volumes reaching up to 20,000 pathogens
per week, or approximately 1 million per year. This translates to an estimated 0.1-1 petabyte (PB)
of raw input data annually, with total data volumes significantly higher when accounting for inter-
mediate and processed outputs. Managing, storing, and analyzing this data efficiently is essential to
ensure timely public health interventions and maintain national biosecurity.

Note that while both this use-case and the one in Section 2 nominally target applications of ge-
nomics, they are in fact very different — while the former targets Type 2 diabetes, this one focuses on
pathogen outbreaks.

6.1 Short Description

In this use case, we address two types of efforts:

¢ Advances in genomics algorithms for classification, retrieval and comparison of sequences
of pathogens. To support UKHSA’s high-throughput pathogen sequencing workflows, re-
search efforts have focused on developing novel genomics algorithms tailored to the agency’s
infrastructure and operational constraints. Such algorithms aim to optimize the processing of
large-scale FASTQ datasets, improve the accuracy and speed of pathogen identification, and
enable real-time analytics for outbreak detection. This effort resulted in a novel k-mer based
method, KPop [86]. KPop computes complete k-mer frequency spectra and embeds them into a
low-dimensional space tailored to each dataset, enabling accurate downstream classification,
clustering, and nearest-neighbour searches.

¢ Technical improvements in the infrastructure needed to perform modern pathogen genomics
at scale. Emerging use cases like real-time pathogen genomics monitoring during outbreaks
motivate the exploration of stream processing in genomics [87]. UKHSA is evaluating tech-
nologies such as Pravega’s byte-oriented streams [88] to ingest FASTQ files and run cutting-
edge methods such as KPop on them, aiming to enable streaming analytics while maintaining
efficient, tiered storage for batch processing. The goal is to allow FASTQ data to be accessed
both via Pravega and directly from object storage. In particular, this work evaluates potential
advantages of using NEARDATA technologies proposed in D3.2.

6.2 Data Spaces

For this use case we focus on the operation at UKHSA of the reference laboratory for a well-known
pathogen, Mycobacterium tuberculosis, which causes a large burden of infections, many of them pre-
senting several degrees of resistance to treatment, in the UK and worldwide. A clinical pipeline to
process tuberculosis (TB) data internally used at UKHSA has been in operation for many years now,
resulting in a set of close to 120,000 processed samples. Given that the FASTQ files associated with
each sample typically range from 0.5 to 2GB in size, this amounts to a large amount of data, in the re-
gion of 100 TB. Due to concerns related to privacy and possible risks that genomic data derived from
the host might lead to the sample being identified, this data set is currently being stored locally on
UKHSA infrastructure and servers. However, as part of the “cloud-first” approach being currently
implemented across the UK government, a move to S3-based storage is being considered for this and
other datasets. Hence, it is of paramount importance that a future-proof solution for ingestion from
sources in the cloud is considered.

In the meantime, several smaller curated TB datasets from which identifiable information has
been eliminated, produced at UKHSA and elsewhere, are currently available in public repositories
such as the NCBI Sequence Reads Archive (already described in section 5.2) and can be accessed from
AWS S3. These have been used as sources for the experiments presented in this section.
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6.3 Targeted KPIs
This work is related to the following project KPIs:

¢ KPI-2 - Genomics algorithmic improvements: We validated our novel method, KPop [86],
on both simulated and real data, including more than 1,000 Mycobacterium tuberculosis (TB)
genomes and more than 1.28 million SARS-CoV-2 genomes. KPop achieves near-perfect classifi-
cation accuracy and fast query times. By representing genomes as numerical vectors, it bridges
genomics and machine learning, offering a foundation for scalable, Al-driven approaches to
microbial comparative genomics. In particular, highly parallelizable parts of KPop that are an es-
sential, compute-hungry prerequisite to subsequent postprocessing have been reimplemented
with NEARDATA technology (see Fig. 32).

e KPI-1 - Data transfer and storage reduction in FASTQ files: The integration of the Nexus
FASTQGzip streamlet enables significant compression of genomic data during ingestion, achiev-
ing up to 3.8 x compression ratio while preserving parallel access capabilities. This reduces
storage footprint and data transfer costs in batch processing jobs.

¢ KPI-5 - Ease of genomics pipeline development: By abstracting complex infrastructure man-
agement and enabling seamless access to genomic data via both stream and object interfaces,
FaaStream significantly simplifies pipeline development in NEARDATA. This lowers the bar-
rier for deploying scalable analytics workflows in public health genomics.

6.4 Challenges addressed

The UKHSA genomics use case builds upon novel algorithms for sequence analysis and the archi-
tectural and methodological innovations introduced in NEARDATA to tackle the unique challenges
of processing large-scale datasets relevant to pathogen genomics and human health in a secure, scal-
able, and efficient manner. The following challenges have been identified and addressed as part of
this validation effort:

6.4.1 Quickly process, store, compare and retrieve a large number of pathogen genomic sequences

During everyday operation of clinical services at reference laboratories for specific pathogens (for
instance, Mycobacterium tuberculosis) a large number of biological samples is received, and such sam-
ples subsequently undergo genome sequencing in order to establish whether the sample is known,
whether it harbors known markers of resistance to treatment, and whether it is likely to be connected
to ongoing or past outbreaks. Each sample generates a relevant amount of raw sequencing data ( 1
GB / sample) that then needs to be processed and analyzed. A large number of samples (in excess
of 10,000 / year) is received and processed. In addition to obvious issues related to sheer data size
and scalability, one also has to tackle the problem of being able to efficiently store and retrieve the
genomic sequence derived from each sample, and to meaningful compare them with one another.
In particular, a “relatedness question” is often formulated — is my new sequence related to others
already present in the (large) database of known sequences? What are the closest sequences? Are
they part of an ongoing outbreak or likely related to the ones which originated another outbreak in
the past?

In order to answer such questions, representations of the sequence in terms of specialized data
structures do exist. However, such methods are usually cumbersome and/or resource hungry, which
makes their implementation cumbersome and their maintenance complex and costly.

6.4.2 Manage redundant and accessible genomic data across stream and object interfaces

The genomics research community is exploring streaming data infrastructures that support both real-
time stream processing and long-term object storage [87]. However, most of the legacy genomics
workflows still rely purely on file systems or object stores to manage data. Enabling efficient dual-
mode access —where the same genomic data must be accessible both as a stream and as a com-
pressed object— introduces significant complexity. A key challenge is how to reduce enable such
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Figure 32: Integration of UKHSA use case components in NEARDATA architecture.

a unified dual access via streaming and object storage APIs. Moreover, there may be multiple data
management and data reduction mechanisms that can be explored in the storage tiering process be-
tween event streaming systems and object storage. Handling these problems in a unified manner is
a challenges we wanted to explore in this work.

6.4.3 Reduce complexity in deploying scalable stream analytics for genomics

Executing genomic analytics jobs over —such as KPop or other variant prioritization pipelines— typ-
ically requires deploying and managing complex data processing engines (e.g., Nextflow, Apache
Flink). While these engines offer robust performance, they come with substantial operational over-
head, including cluster provisioning, configuration, and maintenance. This complexity becomes a
barrier in scenarios where rapid deployment and elasticity are critical, such as in public health ge-
nomics. The challenge lies in finding a scalable, low-footprint alternative that can deliver comparable
performance without the burden of managing heavyweight infrastructure, especially when work-
loads are bursty or short-lived.

6.5 Integration with NEARDATA architecture components

The UKHSA genomics use case demonstrates a comprehensive integration of NEARDATA architec-
ture components to support scalable, efficient, and flexible processing of large-scale FASTQ datasets.
At the core of the data ingestion pipeline is Pravega, which handles byte-oriented FASTQ streams
and enables seamless integration with dataflow engines such as Apache Flink and Spark. These
engines feed genomic data into Pravega for initial stream-based processing.

However, in addition to traditional cluster-based dataflow engines, the FaaStream framework or-
chestrates serverless genomic analytics jobs, such as KPop, using AWS Lambda functions. FaaStream
leverages Pravega’s tiered storage and stream-native primitives to dynamically invoke Al-driven
genomic workloads, supporting elastic scaling and low operational overhead.

Once ingested, the data is routed through Nexus, a tiered data management mesh that applies
streamlet-based transformations. In this use case, the FASTQGzip streamlet compresses subsets of
DNA sequences while annotating offsets for parallel access. This enables efficient batch processing
without compromising the ability to perform real-time analytics.

Processed data can be consumed by batch job frameworks such as Lithops or Nextflow, which
operate on compressed FASTQ chunks, or stored directly in object storage for long-term retention.
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This dual-access architecture —stream and object— ensures compatibility with both legacy genomics
workflows and modern, cloud-native analytics pipelines. Together, these components form a cohe-
sive and modular architecture that enables UKHSA to manage petabyte-scale genomic data with high
performance, flexibility, and resilience, while supporting real-time outbreak monitoring and scalable
Al-driven analysis (see section 6.9).

6.6 Data connectors developed

The UKHSA genomics use case leverages several data connectors developed within NEARDATA to
address the challenges of scalable ingestion, processing, and analytics of large genomic datasets:

* Nexus FASTQGzip streamlet: We developed a ByteStreamlet that performs GZip data com-
pression on subsets of DNA sequences of an input stream data chunk (e.g., 100K DNA se-
quences). Each compressed subset of sequences is written as an individual GZip member.
Moreover, the streamlet stores the start offset of each GZip member as an object tag. This allows
batch jobs to perform parallel access on compressed chunks of tiered stream FASTQ data [89],
while regular streaming reads remain unaffected.

¢ FaaStream streaming KPop job: This job ingests a parallel stream of FASTQ data from Pravega
at the FASTQ record level. It is implemented as a two-stage map-reduce pipeline, where each
stage consists of multiple workers (AWS Lambda functions). In the map stage, each worker
processes a distinct subset of Pravega stream segments, reading FASTQ records and computing
hashes for every subsequence of length k within each genomic sequence. These hashes are then
shuffled to the reduce stage, where each reduce worker aggregates the counts for its assigned
hashes. The final output is a frequency table of all genomic hashes present in the input stream.

6.7 Setup

All the infrastructure-related experiments are conducted in the AWS us-east-1 region. Unless oth-
erwise specified, AWS Lambda functions are configured with 1, 769MB of memory, corresponding to
1 vCPU as per AWS documentation [90]. FaaStream deploys the Pravega cluster and AWS Lambda
functions within the same VPC and availability zone to minimize latency and costs. A m5.4xlarge
EC2 instance, equipped with 16 vCPUs and 64GB of RAM, serves as the client VM for running the
FaaStream orchestrator. The Pravega and Nexus clusters are deployed on i3en.2xlarge instances,
each featuring 8 vCPUs, 64GB of RAM, and 2 dedicated NVMe drives, running Ubuntu 22.04. To
simplify provisioning, each instance hosts a Pravega controller, a Pravega segment store, a Book-
keeper instance, and a Zookeeper instance. One NVMe drive is allocated for the Bookkeeper journal
and the other for the Bookkeeper ledger and Zookeeper. For long-term storage, Pravega uses an S3
bucket via a VPC S3 endpoint.

Whenever needed, comparisons with HPC implementations were performed on the UKHSA
SLURM computer clusters, both the on-premises one (which has about 50 nodes with 100 CPU cores
and 756 GB of RAM each, and a Lustre filesystem with 3 PB of space) and the contingency cluster im-
plemented on AWS, which has roughly the same basic specifications but can be scaled up elastically
to meet demand peaks.

6.8 Results and KPIs achieved
Results at a glance are presented in Table 21.
6.8.1 KPop workflows to improve pathogen classification, comparison and retrieval

In our paper KPop: accurate and scalable comparative analysis of microbial genomes by sequence embed-
dings [86] we introduce KPop, a new method for large-scale comparative genomics that combines the
precision of full k-mer analysis with the scalability of vector-based computation. The motivation be-
hind KPop was to overcome the trade-off between resolution and efficiency in existing approaches:
while sketch-based tools such as mash are fast, they only sample part of each genome’s sequence
content, losing information that can be critical when distinguishing closely related strains.
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Table 21: Summary of conceptual, architectural and optimization-related KPIs achieved

Achievement Benefit
Improved pathogen classification, comparison and retrieval:
Almost perfect classification (>98% in all use cases);
Retrieval in seconds from a database of >1M sequences;
Produces sequence embeddings ready for ML/ Al applications

Our Nexus FASTQGzip streamlet offers a 3.8 x compression ratio with
12.1s parallel processing time, balancing speed and data reduction. Conversely,

FASTQ GZip (4.56 x compression ratio) cannot parallelize data access

and raw FASTQ (=2 9.4s parallel processing time) provides no data reduction.

Novel algorithms (KPop)

Nexus FASTQGzip streamlet

Serverless stream-based FaaStreamis up to 57% faster and up to 65% cheaper than Flink

KPop job
KPop implementation Compact code;
in a Flink-like syntax FaaStream syntax similar to the Flink one.

Table 22: Summary of KPop validation datasets and classification performance.

Type Dataset / Description Total Train/Test Classes Accuracy
Simulated M. tuberculosis (synthetic genomes) 1,000 500 / 500 10 100%
Real data M. tuberculosis complex (SRA) 1,318 668 / 650 16 98.8%
Simulated =~ SARS-CoV-2 (synthetic genomes) 10,000 5,000 / 5,000 100 99.8%

Real data SARS-CoV-2 (GISAID dataset) 1.28M 640K / 640K 1636 98.1%

KPop instead computes the complete k-mer frequency spectrum for each genome or sequenc-
ing dataset and transforms it into a compact, dataset-specific embedding using a dimensionality-
reduction procedure. This produces a representation in a lower-dimensional space in which each
genome is represented as a numerical vector suitable for clustering, classification, and nearest-neighbor
search. The method therefore enables full-resolution, reference-free comparison of microbial genomes
at unprecedented scale.

We validated KPop on both simulated and real datasets, including Mycobacterium tuberculosis
and SARS-CoV-2 (see Table 22). In simulated bacterial data, it achieved 100% correct classification,
compared with 13-33% provided by MinHash-based methods. On real Mycobacterium tuberculosis
data, a KPop-based classifier obtained 98.8% accuracy. For viral datasets comprising up to ten thou-
sand genomes, accuracy exceeded 99.8%. Applied to a real-world dataset of more than 1.28 million
SARS-CoV-2 genomes, KPop correctly classified 98.1% of sequences at lineage level, while allowing
efficient retrieval of nearest neighbors in seconds.

Quite interestingly, the modular nature of KPop allows the same results produced at the beginning
of the analysis (which are also the ones we re-implemented with NEARDATA technology) to be used
for a variety of purposes. In particular, both classification and nearest-neighbor searches can be
performed with slightly different workflows (see Fig. 33). This provides a satisfactory solution to all
the problems presented in 6.4.1.

In general, by embedding complete genomic information into vector form, KPop opens the way
for Al-driven analyses such as clustering, anomaly detection, and integration with vector databases.
We see this as a step toward a new generation of microbial genomics tools that combine accuracy,
scalability, and adaptability to modern data volumes.

6.8.2 Post-processing FASTQ data from tiered data streams

We compare a simple AWS Lambda job (i.e., DNA sequence count) working on FASTQ files ingested
as Pravega streams and processed via our streamlet (see Section 6.6) with two common baselines:
FASTQ Gzip and plain FASTQ.

Fig. 34 shows that the compression ratio (4.56x) for the FASTQ Gzip file is the highest, as the
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Figure 33: Conceptual designs of a KPop-based classifier and relatedness engine. Comparison shows

that most of the computing stages, and all the ones happening upfront, are shared between the work-
flows (from [86]).
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Figure 34: Compression ratio and execution time of AWS Lambda batch jobs on FASTQ data stored
via our FASTQ Gzip streamlet versus common baselines.

whole file is processed by the GZip compressor. However, compressing a FASTQ file as a single
unit prevents multiple lambdas from accessing it in parallel (i.e., A = 1). On the other hand, the
plain FASTQ file can be processed much faster in parallel (=~ 9.4 seconds), but at the cost of no data
compression. Our streamlet provides a compelling trade-off between compression and processing
time compared to the tested counterparts (3.8 x compression ratio, 12.1 seconds of processing time
for A = 38), while being totally transparent to the event streaming system. This allows UKHSA to
access FASTQ data either via Pravega or directly processing chunks of tiered stream data via batch
frameworks.

6.8.3 Serverless stream-based KPop

We compare the performance of our FaaStream KPop job with a baseline Apache Flink implemen-
tation that reads FASTQ data from S3 and is deployed via AWS EMR. Fig. 35 shows that FaaStream
achieves execution times similar to Flink (on average 23% slower for end-to-end execution), and even
outperforms it in certain scenarios (e.g., for the 8 FASTQ files case, FaaStream is up to 16.53% faster).
When including cluster allocation and deployment time, FaaStream is substantially faster (on aver-
age 57.24%) than Flink, as serverless functions are invoked almost instantly, whereas Flink clusters
require several minutes to provision.

In terms of cost, FaaStream is on average 46.58% more expensive than Flink for end-to-end execu-
tion, primarily due to the higher per-unit compute cost of AWS Lambda compared to EC2 instances.
However, thanks to its elasticity, when accounting for cluster allocation and deployment time, FaaS-
tream becomes on average 65.14% cheaper than Flink (and up to 221.26% in the case of 1 FASTQ file
and parallelism 64), as it avoids the cost of idle resources during cluster provisioning.

Listings 1 and 2 show the KPop job implementation for FaaStream and Flink, respectively. As
can be seen, FaaStream’s programmatic abstractions are similar to those of Flink, facilitating the
transition for developers already familiar with Flink’s dataflow abstractions. This similarity lowers
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Figure 35: Performance of FaaStream vs Flink executing KPop algorithm on AWS.

Listing 1: KPop job implementation for FaaStream.

Source<FastqMessage> source = Source.fromStream (input);

Pipeline <FastqMessage , HashMap<String , Integer>> pipeline = source
.flatMap (new KpopMap(k), new KpopHash(), workers)
.reduce (new KpopReduce(), workers)
.writeToStream (output);

manager . execute (pipeline , new StaticScalingPolicy ());

RIA

the learning curve, allowing teams to quickly adopt FaaStream for serverless (genomics) analytics

without extensive retraining.

6.9 How Al is enabled in this use-case

Al capabilities in this use case are enabled through the following distinct architectural contributions

that support scalable, efficient, and intelligent processing of genomic data:

¢ Providing input to Al-based genomic workflows with KPop-generated embeddings. Other
preexisting popular algorithms for the classification and comparison of microbial genomes (for
instance, the class of MinHash-based methods) focus on providing an estimate of distances
between different sequences, with the goal of using the generated distance matrix to produce
phylogenetic trees with methods such as Neighbor Joining. While this is sufficient for some
applications, it is not helpful with more advanced applications based on deep-learning (or
machine-learning) which usually need data points as vectors in some abstract space (“embed-
dings”) as a starting point. Given this, KPop brings a distinctive novelty to the field by being
able to generate embeddings as a key point of its design, which represents a significant strength.
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Figure 36: Cost of FaaStream vs Flink executing the KPop algorithm on AWS.

In addition, KPop can do that in a way which is optimized for each specific dataset, which sig-
nificantly improves the quality of the generated embeddings at all scales, both for close and
distant sequences (see Fig. 37). Also note that strictly speaking, the method used in KPop can be
applied to general text, not just DNA or proteins, and the operations of encoding text and k-mer
extraction can be performed in different ways. These parts of the method have been completely
re-implemented and generalized to support advanced features in October 2025.

¢ Enabling seamless Al-driven genomic workflows across stream and object interfaces. Al en-
ablement in this use case is driven by the integration of Nexus streamlets into a dual-access
data architecture that supports both streaming and object-based interfaces. This design allows
diverse Al and ML engines —including serverless functions, batch pipelines, and inference
frameworks— to operate seamlessly over genomic datasets without requiring format conver-
sion or data duplication. The streamlets play a critical role in managing and transforming

Listing 2: KPop job implementation for Flink.

DataStream <FastqMessage> source = env.createlnput(
new FastqlnputFormat(new Path(input)));
DataStream <HashCount> pipeline = source
.flatMap (new HashFunction (k))
. keyBy (HashCount : : getHash)
.sum("count");

pipeline.sinkTo (sink);
env.execute ("KPOP_Flink _Job");
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Figure 37: Visualization of multi-dimensional embeddings generated by KPop in a test example
(from [91]).

FASTQ data during ingestion, applying windowed Gzip compression to reduce data volume
while preserving parallel access capabilities. This enables efficient execution of Al-driven ana-
lytics across compressed genomic data, supporting scalable model training and inference. By
combining data reduction with flexible access paths, the architecture ensures that AI workloads
can be deployed dynamically and efficiently across heterogeneous infrastructures.

* Serverless Al execution for genomic pipelines via FaaStream. To support scalable execu-
tion of genomic analytics jobs like KPop, we leverage FaaStream —a serverless framework
built on tiered data streams. FaaStream enables the orchestration of AI workloads using cloud
functions, eliminating the need for complex cluster deployments. In this use case, Al is en-
abled through the dynamic invocation of functions that process genomic data in parallel, using
stream-native primitives such as shuffling and stateful coordination. This architecture allows
for rapid deployment and elastic scaling of Al pipelines, making it suitable for bursty or short-
lived genomic tasks.

6.10 Use-case repositories

The UKHSA genomics use case builds upon the KPop method and algorithms as well as core com-
ponents of the NEARDATA architecture, including Nexus and FaaStream. The source code and doc-
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umentation for these components are publicly available to support reproducibility and community
adoption. Specifically:

* The KPop suite of applications are available at [91]. A set of user-friendly workflows based on
Nextflow can be found at [92].

¢ The Nexus streamlet framework for tiered data management and the FaaStream serverless or-
chestration engine can be accessed at [93] and [94], respectively.

6.11 Discussion and final remarks

The UKHSA genomics use case demonstrates the applicability of NEARDATA’s architectural innova-
tions to real-world, high-throughput public health genomics. By integrating cutting edge new meth-
ods, stream-native data connectors and serverless analytics frameworks, UKHSA is able to address
key challenges in managing large amounts of pathogen samples relevant to public health. Sequenc-
ing data derived from them can be efficiently and scalably processed, retrieved and compared; this
goes all the way from the original FASTQ files to the high-level representation of genomic sequences
produced by our novel method KPop. These results pave the way for a robust, scalable system where
biological samples can be automatically turned into an Al-friendly format ready for further down-
stream processing.

The Nexus FASTQGzip streamlet offers a compelling balance between compression and parallel
access, enabling efficient ingestion and analytics without compromising performance. Meanwhile,
the FaaStream framework allows for elastic, serverless execution of genomics pipelines such as KPop,
reducing operational overhead and enabling rapid deployment in outbreak scenarios. On top of that,
stream-based workflows allow for real-time, per-sample tracking of the current state of the compu-
tation; this makes it possible to deploy dashboards to which selective access can be provided, which
is paramount in an inherently federated system such as UKHSA where many entities —hospitals,
pathogen reference labs, epidemiologists and decision makers— work together to improve human
health.

These results validate the feasibility of stream-based genomics infrastructures for national-scale
pathogen surveillance and open the door to further innovations in real-time analytics, Al-driven
variant prioritization, and secure data sharing across health institutions.

6.12 Future work

Building on the validation efforts carried out in the UKHSA genomics use case, future work will
focus on expanding the integration of NEARDATA technologies into operational public health in-
frastructures. One key direction is the deployment of real-time outbreak monitoring systems that
leverage stream-based ingestion and analytics to enable faster sample processing and response. This
may involve extending the use of Pravega and Nexus to support continuous sequencing pipelines
and dynamic analytics workflows.

Another important area of development is the enhancement of the streamlet functionality to sup-
port additional genomic formats such as CRAM and BAM, which are widely used in clinical ge-
nomics. This will improve compatibility with existing tools and broaden the applicability of the
NEARDATA architecture.

Finally, improvements in metadata tagging and indexing for sequencing data will be explored to
support advanced search, retrieval, and auditability across tiered storage systems. This nicely sup-
plements the native capabilities offered by stream-based processing —namely the provision of real-
time updates about sample processing and selective access control— to different actors of a complex,
federated public health system such as UKHSA, in which many actors with different roles interact
and require access to sensitive information. Together, these technical enhancements will contribute
to a more robust, scalable, and intelligent genomics infrastructure for national biosecurity and public
health.

Page 70 of 99



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

7 Use Case: Metabolomics
7.1 Short Description

The starting point for this use case is the METASPACE platform, which provides an open ecosys-
tem for processing and sharing metabolomics datasets. METASPACE offers end-to-end function-
ality, from raw imzML/ibd files to annotated molecular features and visualization-ready outputs.
However, when deploying this workflow at scale within NEARDATA, we encountered three main
challenges that required methodological and architectural innovations.

First, the challenge of data fragmentation. Public metabolomics data are distributed across mul-
tiple repositories, each with its own access mechanisms, metadata standards, and usage constraints.
To address this, we developed a federated Data Space that unifies four key repositories: Metas-
pace, AWS Open Registry, MetaboLights, and Metabolomics Workbench. This integration is enabled
through dedicated connectors, with DataCockpit supporting AWS and Metaspace, DATOMA inte-
grating MetaboLights and Metabolomics Workbench, and PyRun leveraging DataCockpit to execute
pipelines directly on this federated Data Space. Together, these components mitigate fragmentation
and ensure datasets are delivered in a standardized, partitioned form, ready for large-scale analysis.

Second, the challenge of scalability. The metabolomics pipeline mixes stages with heterogeneous
compute and I/O profiles, making fixed clusters either underutilized or overloaded. We addressed
this by adopting a fully serverless execution model, allowing concurrency to scale elastically per
stage. We conducted two experiments to stress different pipeline dimensions: (i) fixing the dataset
size (1.8 GB) while increasing the reference database from 500 to 12 000 formulas, and (ii) fixing the
database at 12 000 formulas while scaling dataset size (1.8 — 7.0 GB). We further optimized ingestion
by migrating from the sequential 1oad_ds to the distributed load_ds_parallel and tuning partition
size with DataPlug + DataCockpit. These optimizations significantly improved performance while
maintaining reproducibility.

Finally, the challenge of confidential computing. Metabolomics data often involve sensitive biomed-
ical information, requiring protection not only at rest and in transit but also in use. We therefore
explored the application of confidential computing to the metabolomics pipeline, leveraging Trusted
Execution Environments (TEEs) to execute unmodified code securely, thereby extending the Data
Space and pipeline execution model into a privacy-preserving domain.

7.2 Platforms Description

The development of a federated Data Space for metabolomics is enabled by three key technologies
within the NEARDATA ecosystem: DataCockpit, DATOMA, and PyRun. Each plays a complemen-
tary role, addressing data access, application availability, and execution scalability.

* DataCockpit is a lightweight orchestration and browsing tool that connects directly to object
stores such as AWS Open Registry and Metaspace. Built on top of DataPlug, it enables on-
the-fly dataset partitioning and prepares data for large-scale parallel execution. By combin-
ing dataset discovery with automatic chunking, DataCockpit transforms raw, heterogeneous
repositories into standardized, benchmarkable inputs for serverless pipelines. Implemented
as a reusable Jupyter notebook widget, it allows researchers to interactively explore datasets,
configure partitioning, and orchestrate execution from within their analysis environment. This
capability is particularly valuable in the metabolomics use case, where large imzML/ibd files
can be partitioned into optimal chunks (e.g., 50 MB) and executed efficiently across thousands
of cloud functions.

e DATOMA is conceived as an app store for metabolomics that integrates MetaboLights and
Metabolomics Workbench repositories. It provides researchers with direct access to curated
datasets while offering pre-configured applications that can be executed without deep techni-
cal expertise. Within the Data Space, DATOMA plays the role of lowering the entry barrier
for non-expert users, linking high-quality, FAIR-aligned datasets with reusable workflows. By
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abstracting technical details of data access and format heterogeneity, DATOMA fosters repro-
ducibility and community adoption of metabolomics applications.

* PyRun functions as a marketplace of pipelines across multiple scientific domains, with metabolomics
as a key application area. It provides a managed execution environment that integrates seam-
lessly with DataCockpit, enabling reproducible and scalable workflows over the federated Data
Space. PyRun automates provisioning, scaling, and monitoring on cloud infrastructures, re-
ducing operational complexity for both expert and non-expert users. By positioning pipelines
as modular, shareable assets, PyRun broadens the reach of NEARDATA and facilitates cross-
domain adoption of serverless analytics.

Together, these three components form the operational backbone of the metabolomics use case:
DataCockpit standardizes and partitions data, DATOMA bridges repositories and applications, and
PyRun orchestrates scalable pipeline execution.

7.3 Data Spaces

The metabolomics Data Space we developed brings together the most relevant open repositories,
each with its own protocols, APIs, and access constraints:
Four representative datasets are considered for the experiments:

* Metaspace: specialized in mass spectrometry imaging (MSI).

* AWS Open Registry: cloud-based open datasets hosted on Amazon Web Services, supporting
large-scale distributed analysis.

* MetaboLights: curated FAIR datasets maintained by EMBL-EBI, closely linked to scientific
publications.

* Metabolomics Workbench: an international reference repository for standardized metabolomics
studies, especially in biomedical research.

This heterogeneous landscape is made usable through our integration layer, which transforms it
into a federated and standardized Data Space. DataCockpit currently supports AWS Open Registry
and Metaspace, automatically partitioning datasets via DataPlug for parallel execution. DATOMA
extends the ecosystem by integrating Metaspace and MetaboLights into an app store for metabolomics,
providing FAIR datasets alongside ready-to-use applications. Finally, PyRun acts as a pipeline mar-
ketplace across multiple domains, including metabolomics, and leverages DataCockpit to execute
workflows reproducibly over the federated Data Space.

Through this infrastructure, we accessed and processed representative MSI datasets for our scala-
bility experiments — Brain02 Bregma +1.42 (50 MB), CT26 xenograft (1.8 GB), Mouse brain test434x902
(3.9 GB), and X089-Mousebrain (7.0 GB) — as well as centroid libraries of 500 and 12 000 formulas.
The federated design ensured that these heterogeneous datasets could be delivered in a partitioned
and ready-to-process form, enabling optimal performance in serverless pipelines.

7.4 Targeted KPIs
This work is related to the following project KPIs:

* KPI-3 - Resource auto-scaling (data-driven orchestration): The pipeline runs fully serverless
on Lithops, so concurrency adapts to stage demands. Compute-intensive, database-dependent
steps (e.g., centroid matching/processing) fan out to hundreds of workers, while lighter or
sequential steps run with few or single workers, producing clear “concurrency waves” across
the workflow. As input size or database complexity grows, the system scales the number of
invocations but maintains stable per-Lambda CPU/memory profiles, indicating elastic right-
sizing rather than fixed over-provisioning.
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Figure 38: Federated metabolomics Data Space integrating providers, connectors, and platforms
(DataCockpit, DATOMA, PyRun).

¢ KPI-1 - ETL performance: throughput/transfer reduction: We target ETL efficiency by replac-
ing the original load_ds (a single-Lambda, sequential loader) with the distributed load_ds_
parallel. The former concentrated parsing, sorting and partitioning in one function, which
limited peak throughput and, in practice, prevented execution on larger datasets due to mem-
ory and wall-time constraints. The parallel loader applies a distributed sort pattern. We then
tuned upload_ partitions using Dataplug + DataCockpit, sweeping chunk sizes and selecting
50 MB as a robust operating point. Compared to a 130 MB baseline, 50 MB reduced ingestion
time.

¢ KPI-5 - Simplicity and productivity: Running on PyRun (managed serverless Python) and
Lithops (FaaS orchestration) removed setup and provisioning overheads, enabling rapid, itera-
tive experimentation (e.g., chunk-size sweeps, parameter ablations) with built-in telemetry for
CPU, memory, disk, network and timelines. The FaaS model further improves developer pro-
ductivity by abstracting infrastructure management (autoscaling, failure handling, packaging),
so effort focuses on stage logic and measurement rather than cluster configuration.

¢ KPI-4 - High levels of data security and confidential computing validated using TEEs: The
pipeline execution in TEEs of ported applications into confidential computing and other pro-
tection mechanisms.

7.5 Challenges addressed

This use case exposed several methodological and engineering challenges stemming from the het-
erogeneity of the metabolomics pipeline, the characteristics of imaging MS data (imzML/ibd), and
the choice of a fully serverless execution model. Below we summarize the main challenges and how
we addressed them.
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Pipeline heterogeneity and fit-for-purpose parallelism: The pipeline mixes stages with very different
compute and I/O profiles. Database-dependent steps (e.g., centroid matching and centroid-segment
processing) are CPU and memory-intensive and benefit from massive fan-out, whereas dataset-
dependent steps (e.g., ingestion, per-segment merges) are I/O-bound and sensitive to object-storage
behavior. Besides, there are some sequential steps (e.g., bounds estimation, database preparation)
which limit overall speedups (Amdahl’s law). Because fixed-size clusters tend to be either underuti-
lized during light phases or insufficient during bursts, we used a serverless, stage-oriented design
where concurrency is granted on demand and remains low otherwise, avoiding idle capacity and
simplifying cost/performance trade-offs.

Data ingestion bottleneck and scaling limits: The original load_ds ingested an entire imzML/ibd
pair inside a single function, which directly limited the dataset size to a certain point. We replaced
our executions with load_ds_ parallel, a distributed ingest that estimates m/z bounds, performs a
map over partitions with windowed reads from the ibd file, and reduces into per-segment outputs,
permitting the user to execute the serverless version of this pipeline with larger dataset sizes.

Resource allocation under FaaS constraints: Since the number of chunks used for dataset ingestion is
configurable by the user, this becomes a tuning problem: small chunks reduce per-task memory and
speed up seeks but increase overhead (more invocations, more small writes); large chunks amortize
overhead but inflate serialization time and memory. The optimal point depends on dataset size and
format, storage throughput and runtime packaging. We made allocation evidence-driven using the
DataCockpit tool implemented on Pyrun, which uses Dataplug for dataset partitioning and permits
the user to benchmark a given function for finding the optimal chunk size. We extracted the logic
of the upload_partitions stage into a benchmarkable function, swept chunk sizes and selected a
setting that minimized elapsed time. Empirically, a 50 MB chunk size provided the best time-to-
ingest across our datasets when compared with a 130 MB baseline, and the same optimum held
when validating the stage in isolation.

Data Space heterogeneity and provider constraints: In parallel, we faced challenges from the diversity
of data providers (Metaspace, AWS Open Registry, MetaboLights, and Metabolomics Workbench).
Each exposes different protocols and APIs, and several impose restrictions such as bandwidth limits
or selective access policies. We addressed this by developing dedicated data connectors and integrat-
ing them into DataCockpit and DATOMA, enabling standardized and partitioned access to hetero-
geneous datasets. While this mitigates fragmentation, full interoperability and guaranteed openness
remain open challenges.

Pipeline execution ported to confidential computing: Keeping the secrecy of data throughout the com-
puting continuum is essential in cases where leaking PII (Personally Identifiable Information is any
information related to an identifiable natural person) can expose a person’s private information or
even endanger them. To counter this issue, Metaspace has been ported to SCONE and executed
in TEE (Trusted Execution Environment is piece of hardware which allows secure processing) and
supported by other mechanisms of confidential computing.

7.6 Data connectors developed

To enable this federated access, we developed a set of data connectors that link our components with
the repositories in the Data Space:

* AWS Open Registry — connector available in DataCockpit.
* Metaspace — connector available in both DataCockpit and DATOMA.
¢ MetaboLights — connector integrated into DATOMA.

* Metabolomics Workbench — connector integrated into DATOMA.

These connectors eliminate the need for users to work directly with heterogeneous APlIs, offer-
ing a unified access point to data. Combined with DataPlug, they transform diverse datasets into
partitioned, analysis-ready blocks suitable for parallel and reproducible processing.
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Table 23: Integration matrix between Data Providers and Platforms in the metabolomics Data Space.

Data Provider DataCockpit | DATOMA PyRun
Metaspace X X via DataCockpit
AWS Open Registry X via DataCockpit
MetaboLights X

Metabolomics Workbench X

7.7 How Al is enabled in the use-case

In the spatial metabolomics use case, artificial intelligence is the core enabler of metabolite identifi-
cation within the METASPACE platform. Building on the work described in the previous deliver-
able, NEARDATA D5.1, the rule-based expert system originally deployed in METASPACE has been
replaced in production by a machine-learning (ML) pipeline that learns from features computed di-
rectly from imaging mass spectrometry data and associated metadata. As reported in D5.1, this shift
from rules to learning consistently improved scientific performance across 720 test datasets: the aver-
age PR-AUC rose from 0.25 to 0.45, the MAP increased from 0.3 to 0.5, and the number of metabolites
identified at 10% FDR grew by 10-100 per dataset. These results demonstrate that Al not only repro-
duces expert judgments but systematically recovers additional biochemically plausible signals—the
so-called “dark matter” of spatial metabolomics.

The Al pipeline is engineered for extreme-data operation by running near the data in a server-
less architecture orchestrated by Lithops, as detailed in D5.1. Feature extraction, model inference,
and FDR estimation are expressed as fine-grained, data-driven tasks that auto-scale across hetero-
geneous inputs. D5.1 documented that end-to-end runtimes for the ML-based FDR stage remained
in the 1.7-4.58 s range with only minor dependence on dataset size, validating scalability under in-
creasing loads. Although the ML workflow is about 1.5-2x slower than the legacy rule-based path
due to the larger set of molecules it confidently annotates, the execution cost remains essentially un-
changed (101-110% of the baseline), thanks to the elasticity and parallelization afforded by serverless
execution.

Besides, the output of the metabolomics pipeline—partitioned and processed ion images derived
from datasets in METASPACE—can be directly reused as input for Al models addressing the off-
sample recognition problem. In particular, convolutional neural networks such as ResNet50, as de-
veloped in OffsampleAl [95], can classify ion images into on-sample and off-sample categories.

By exposing ion images in a standardized and ready-to-use format through the federated Data
Space, our pipeline eliminates the need for manual preprocessing and enables Al models to operate
at scale. The combination of DataCockpit + DataPlug ensures that large MSI datasets (imzML/ibd)
are efficiently partitioned, while PyRun orchestrates the execution of these Al-enabled workflows
across cloud infrastructures. This integration demonstrates how data preparation and large-scale
processing feed directly into machine and deep learning methods, strengthening the interpretability
and automation of metabolomics analyses.

7.8 Integration with NEARDATA architecture components

The metabolomics Data Space and its supporting tools have been designed to align seamlessly with
the NEARDATA architecture, ensuring that data access, preparation, and scalable execution are inte-
grated into the broader ecosystem. Their contributions map onto the architecture’s layers as follows:

e Data Plane:

— Data Connectors and Partitioning: The connectors we developed for Metaspace, AWS
Open Registry, MetaboLights, and Metabolomics Workbench extend NEARDATA’s Con-
nector Engine capabilities. Through DataPlug, large and heterogeneous metabolomics
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datasets are automatically partitioned and converted into analysis-ready chunks, enabling
efficient downstream processing.

- DataCockpit serves as an interactive interface within the Connector Engine, allowing users
to browse and select datasets across repositories, trigger partitioning via DataPlug, and
orchestrate parallel ingestion. This directly supports the NEARDATA goal of making het-
erogeneous data sources accessible through a unified entry point.

— Metaspace, already present in NEARDATA as a Data Catalog, is further leveraged in our
integration as a metadata-driven entry point for spatial metabolomics datasets, connecting
discovery with automated ingestion and scaling.

* Analytics Layer:

- Lithops acts as the serverless execution engine that consumes partitioned metabolomics
data at scale. When datasets from the federated Data Space are prepared via DataPlug and
DataCockpit, Lithops orchestrates massively parallel function execution close to storage,
ensuring elastic and efficient processing.

— The scalability experiments we carried out (varying dataset sizes and database formulas)
directly benefited from this integration, as partitioned data streams generated through
NEARDATA’s Data Plane fed seamlessly into Lithops-based analytics pipelines.

e Control Plane:

— PyRun provides orchestration across cloud infrastructures, integrating with Lithops, Ray,
and Dask to deploy metabolomics pipelines. Within NEARDATA, PyRun contributes to
Confidential and Federated Orchestration, automating provisioning, scaling, and cleanup,
while exposing a unified web IDE for workflow execution.

- DATOMA, although primarily conceived as an app store for metabolomics, complements
the orchestration perspective by enabling discoverability and deployment of FAIR-compliant
metabolomics applications. Together with PyRun, it closes the loop between data access,
pipeline execution, and application delivery.

By embedding the metabolomics Data Space within NEARDATA’s architectural framework, we
demonstrate how federated data access, automatic partitioning, and scalable execution can be achieved
in a domain-specific context. This integration not only validates NEARDATA's abstractions in the
metabolomics use case but also highlights the generalizability of the architecture to other scientific
domains.

7.9 Results and KPIs achieved
7.9.1 Pipeline Execution with Different Database Sizes

To isolate the impact of database-dependent computations, we fixed the input dataset to the 1.8 GB
CT26_xenograft sample and executed the full pipeline twice, varying only the size of the metabolite
reference. We used the distributed dataset loader 1oad_ds_parallel with 15 initial chunks and 8
m/z segments (parameters chosen to balance parallelism and per-task overhead). One run used a
minimal database of 500 adduct formulas and the other a larger database of 12000 formulas. By
holding all other factors constant, we can directly compare how these database-dependent stages
dynamically scale with database size.

When comparing the 500-formula and 12000-formula reference runs, the database-dependent
stages exhibit the most dramatic scaling behavior. In Fig. 39, calculate_peaks_chunk, get_segm_stats,
save_png_chunk and process_centr_segment each spin up only a few dozen Lambdas on the small
database but surge to hundreds of concurrent invocations with the larger one (peaking at aprox. 70,
270, 270 and 30 active calls, respectively). As shown in Fig. 40a, this increase corresponds to a match-
ing rise in total function calls, while non-database-dependent stages remain at constant invocation
counts.
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Figure 39: Concurrency of active AWS Lambda functions over time for the two database
sizes. The plot highlights the calculate_peaks_chunk, get_segm_stats, save_png_chunk and
process_centr_segment functions to illustrate how their level of parallelism increases with database

size.

Table 24: Setup of the two 1.8 GB pipeline runs with different reference database sizes

Dataset Size  Reference DB  # Chunks # Segments
CT26_xenograft 1.8GB 500 formulas 15 8
CT26_xenograft 1.8GB 12000 formulas 15 8

Figure 40b offers an insightful illustration of the serverless architecture’s contribution: due to
the elasticity of serverless components, resource-demanding stages (such as process_centr_segment
or get_segm_stats) maintain very similar execution times across different database sizes. This is
because cloud functions enable the immediate scaling of resources, meeting stage requirements with
very low latency. On the other hand, as expected, purely sequential steps such as _build_moldb
suffer the greatest slowdown under the larger databases.

For Figure 41, we filtered the data to include only the database-dependent stages—calculate_peaks_
chunk, get_segm_stats, process_centr_segment, and save_png_chunk. This focus allows us to illus-
trate how these stages maintain effective CPU and memory provisioning as the reference database
grows in size and complexity, reflecting stable utilization profiles under increased load.

Distributing the same total work across many more Lambdas when using the larger database
yields similar per-function CPU load (Figure 41a): We see the average utilization drop only slightly
from 10.3% to 8.1%, and the peak from 35.1% to 31.8%. This is because each invocation spends
proportionally more time waiting on I/O or synchronization.
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Figure 40: Comparison of function call numbers and stage latencies for two increasing database sizes.
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(b) Distribution of peak memory usage (MB) per
database size in selected stages.

Comparison of resource usage distributions across different database sizes in

database-dependent stages: calculate_peaks_chunk, get_segm_stats, process_centr_segment and
save_png_chunk: (a) average CPU utilization, (b) peak memory usage.

The memory footprint per Lambda remains essentially unchanged (Figure 41b). These observa-
tions consistently highlight the substantial scalability inherent in serverless architectures.

Together, the comparison demonstrates that our serverless 1ithops pipeline deployment effec-
tively leverages broad parallelism to contain latency growth and balance resource demands as database

complexity increases.
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7.9.2 Pipeline Execution with Different Dataset Sizes

We ran three large-scale experiments (all using the database of 12000 formulas used before), as shown
in table 25. We enabled the 1oad_ds_parallel loader in each run, tuning the number of initial chunks
(ds_n_chunks) and the number of m/z segments (ds_n_segnms).

Table 25: Summary of Executions

Dataset Size Description # Chunks # Segments
CT26_xenograft 1.8GB Xenograft tumor section 15 8
Mouse brain test434x902 3.9GB Mouse brain slice 56 28
X089-Mousebrain 7GB  Large mouse brain 100 50
1: merge_segment Concurrency of Active Lambdas by Dataset
2: upload_partitions|
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Figure 42: Concurrency of active AWS Lambda functions over time for three dataset sizes (1.8 GB,
3.9 GB, and 7.0 GB). The plot highlights the merge_segment, upload_partitions, and save_png_chunk
functions to illustrate how their level of parallelism increases with dataset size.

In Figure 42, we analyze the concurrency patterns of Lambda functions when scaling the dataset
size from 1.8 GB to 7 GB. As the dataset grows, we observe increases in total execution time and the
overall concurrency across the pipeline stages. Dataset-dependent stages- merge_segment, upload_
partitions- significantly scale their concurrency.

Examining Figure 43, the total number of Lambda invocations (subfigure 43a) notably rises
for dataset-dependent stages, which correlates directly with dataset size. While the lightweight
tasks in get_segm_stats see a significant increase in the number of calls, the heaviest compute
stages—especially process_centr_segment—demonstrate marked increases in average execution times
as datasets grow. This behavior is likely driven by amplified I/O traffic and data-fetch latency, as
reflected in Figure 44, whereas get_segm_bounds is the stage with the most significant average exe-
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Figure 43: Stacked comparison of function invocation volumes and execution latencies as dataset size
increases.

cution time and shows the largest runtime increase as dataset size grows-peaking at 152s in the 7GB
dataset-, since it runs once sequentially at the start of load_ds_parallel.

Data transfer volumes (Fig. 44) grow in tandem with dataset size, and reads consistently ex-
ceed writes. As in the database-size scaling in the previous experiment, the database-dependent
process_centr_segment stage’s write traffic also rises in proportion to dataset size. However, its
read volume does not increase linearly: the smallest dataset presents more inbound traffic than the
mid and large-size run.

Meanwhile, upload_partitions and merge_segment show a steady, proportional increase in both
received and sent data across both runs as they implement the core of load_ds_parallel. By com-
parison, lighter stages such as save_png_chunk and get_segm_stats also see higher network traffic
as the dataset grows, although their increase is much more modest.

Finally, Figure 45b shows that both CPU and memory usage significantly increase, especially
when executing the 7GB dataset. The average CPU usage per Lambda function grows from ap-
proximately 7% for the 1.8GB dataset to around 30% for the 7GB dataset. Similarly, peak memory
consumption rises considerably, from about 163MB to nearly 546MB. Ideally, a well-scalable system
should maintain relatively stable resource utilization even with increasing workloads. Therefore, this
upward trend indicates that some stages are not scaling as efficiently as intended, despite remaining
fully functional.

These results, particularly the notable increase in peak memory consumption (from a median of
185MB to approximately 550MB), suggest that further scaling optimizations are possible and should
be a focus for future work.

7.9.3 Optimizing Data Ingestion with DataCockpit

To determine a practical chunk size for distributed ingestion, we used DataCockpit on PyRun to-
gether with Dataplug. Dataplug provides lazy, cloud-aware partitioning of raw scientific data in
object stores by building lightweight indexes and issuing byte-range reads on demand, which is es-
pecially important in metabolomics where formats like imzML/ibd are heterogeneous and cannot
be split arbitrarily. In practice, we (1) refactored upload_partitions into a benchmarkable function,
(2) let DataCockpit slice the dataset at a series of target chunk sizes (e.g., 30-130 MB), and (3) had
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Data Transfer in MB by Top 5 Pipeline Stages across Datasets
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Figure 44: Data transfer volume (MB) for the five most I/O-heavy functions, showing both received
(positive) and sent (negative) bytes across three dataset sizes.

DataCockpit execute our function over each slice to measure elapsed time. We then cross-validated
the outcome by running the isolated stage inside the original pipeline to check that the average ex-
ecution times and chunk sizes results match. This workflow avoids rewriting data, enables rapid,

Distribution of CPU Average (%) by Dataset Size Distribution of Peak Memory (MB) by Dataset Size
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(a) Distribution of average CPU utilization (%) by (b) Distribution of peak memory usage (MB) by
dataset size. dataset size.

Figure 45: Comparison of resource usage distributions across different dataset sizes: (a) average CPU
utilization, (b) peak memory usage.
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reproducible sweeps over partition sizes, and yields an empirical choice of chunk size for the inges-
tion stage.

As we can observe in the results presented in Figure 47, across all three dataset sizes (1.8 GB,
3.9 GB, 7.0 GB), 50 MB consistently minimized the stage’s elapsed time in both the original pipeline
and the DataCockpit version (see the two “Stage Execution Time by Chunk Size” panels: the curves
attain their minima at 50 MB). Using 130 MB as the baseline (chosen to approximate prior practice
that commonly adopts 128 MB block/chunk sizes in cloud analytics [96]), the measured speedups at
50 MB were 1.21-1.22x for 1.8 GB (17.3-18.2% faster), 1.14-1.16x for 3.9 GB (12.6-13.4% faster), and
1.10-1.13x for 7.0 GB (9.1-11.7% faster). Importantly, the original and DataCockpit runs show the
same optimum (50 MB) and closely aligned effect sizes, confirming that the benchmarking pathway
reflects pipeline behavior and is suitable for parameter tuning. We also observe that the total execu-
tion time of upload_partitions does not increase sharply with dataset size when the chunk size is
well chosen (compare the per-dataset traces at 50 MB).

A 50 MB chunk size strikes a balance between cold-start/serialization overheads and function
scheduling costs (which favor larger chunks) and I/0O locality and per-Lambda memory (which fa-
vor smaller chunks). At 50 MB, tasks remain short and memory-moderate while reads/writes are
large enough to amortize per-invocation overheads; this yields higher effective throughput without
increasing peak memory per worker.

However, the speedup diminishes as dataset size grows. Moreover, ingestion contributes a smaller
fraction of the end-to-end wall time and other stages (including sequential steps) dominate. Conse-
quently, while ingestion tuning is worthwhile, the overall pipeline speedup is modest when mea-
sured end-to-end.
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Figure 46: Ingestion benchmarking of upload_partitions with DataCockpit and pipeline validation
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S Data Cockpit

Efficiently manage and explore your data

Benchmarking:
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Upload File 53 Explorer Public Datasets Metaspace

& s: Explorer

Bucket: B, Sroresn

Files: ~

Batch Size: 5

Ideal Batch Size: Not determined.

4 Process Data

Decoding:

Figure 47: DataCockpit interface (53 Explorer panel). This tool enables the user to manage and
explore datasets (upload/S3/public/METASPACE), choose bucket and files, process your data with
a selected batch size and, with benchmarking enabled, run a user function over a range of chunk
sizes to find the optimal one.

7.9.4 Improving Pipeline Usability and Productivity with PyRun

As noted in previous sections, we rely on Pyrun to host the Lithops-METASPACE pipeline. Pyrun is
a managed serverless Python platform that connects to the user’s AWS account and abstracts pack-
aging, provisioning, scaling, and monitoring. This “zero-setup” environment eliminates the need to
build custom runtimes or configure cloud resources: users select a runtime (via environment.yml or
a container), push code, and execute. All stages run as Lithops functions with object-storage 1/0,
while PyRun provides a single place to observe per-stage timelines, concurrency, and CPU/memo-
ry/disk/network metrics.

Moreover, PyRun lowers the barrier for non-expert users. Researchers with little to no back-
ground in programming or cloud operations can launch and monitor the full pipeline end-to-end.
They interact with a simple execution interface, while PyRun and Lithops handle dependency res-
olution, autoscaling, retries, and fault isolation. This combination demonstrably increases usability
and repeatability: complex, multi-stage cloud analytics become accessible, faster to iterate, and easier
to share within teams.

7.9.5 Increasing Security of Pipeline Execution of Metaspace with SCONE

Metaspace has been selected to be ported to confidential computing in the Metabolomics use case. To
do that, both Lithops and Metaspace (both developed in Python) had to be ported to SCONE. Lithops
(verison 3.0.1 and later 3.5.0) had already been ported to SCONE, running on Python 3.10 and sup-
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porting backends localhost and k8s. A new backend was introduced in Lithops 3.6.1: "Singularity";
it brings a new engine for working with "threads" instead of the traditional multiple OS processes
spawned with the "fork" system call. Its full potential is achieved with Python 3.13t, that imple-
ments improvements on parallelization of threads. This new backend uses RabbitMQ to synchronize
the division of work: 1) clients will submit tasks to a queue, i.e. "publish", and 2) Lithops will read
from there, i.e. "consume", while 3) clients will wait until finished. Metaspace uses Lithops as an en-
gine to distribute workload among backend nodes in the cloud, but it is exclusively compatible with
Python 3.8; and this poses a challenge to the new approach of Lithops Singularity. Hence, in order
to arrange the proper compatibility, URV forked Metaspace and managed to provide a compatible
version with Python 3.1310.

KIO Networks provided the appropriate hardware to perform the activities of research required
to port the system. There is a Kubernetes cluster consisting of 4 nodes, being one control-plane (16
CPUs and 65GB RAM) e 3 workers (32 CPUs and 65GB RAM each). This infrastructure, supported
the setup of 6 Lithops Singularity replicas, 1 MinlO server, and 1 RabbitMQ instance. Lithops Sin-
gularity + Metaspace and MinlO have been sconified, i.e., ported to SCONE. RabbitMQ has not been
ported yet; it is developed in the Erlang platform, which Scontain has only experimental support.
Other confidential computing protection mechanisms are used: attestation, via LAS (Local Attesta-
tion Service) and CAS (Configuration and Attestation Service); file shield, that encrypts data on disk;
and network shield, that enforces network communication over TLS between attested applications.

The pipeline was setup with the chosen dataset related to the brain of a Rattus norvegicus (rat)!!
and has 705MB - very small in comparison with other datasets. Firstly, the native Metaspace was
executed to learn the general behavior, to than proceed to the sconified in simulation, to later execute
in full confidential computing mode, using the TEE. The table [26] shows the durations of the native
and the sconified simulation and hardware modes executions in minutes. The values were calculated
based on the duration converging towards the center, with quartile 2 and 3 as lower bound and
upper bound respectively. The charts [48] show the duration of the selected executions done with the
dataset in the three modes, plus a comparison, sorted ascending by duration.

Version Maximum | Minimum | Mean | Quartile 2 | Quartile 3 | Orders of Magnitude
native 1.784 1.768 | 1.774 1.767 1.785 | 1x

sconified 10.132 9.982 | 10.046 9.978 10.135 | 5.662 x more
(simulation)

sconified 90.839 25.030 | 44.963 25.017 91.230 | 25.34 x more
(hardware)

Table 26: Metaspace pipeline — duration comparison between native and sconified versions (in min-
utes).

The baseline for the analysis is the native mode execution, with an average duration of 1.774
minutes for complete and successful executions. Adjusting the backend for Lithops Singularity on
sconified simulation mode, the duration mean value increased to 10.046 minutes for complete and
successful executions, representing ~ 5.662 orders of magnitude to native.

When moving to hardware, we observed very high slowness and consequent aborted executions.
Hence, many other adjustments had to be made on server side: increase the EPC (Enclave Page
Cache) from the initial 1GB to 16GB; increase RAM on each of the 3 worker nodes to 256GB, and later
increasing to 320GB RAM; reduce from 6 to 3 Lithops Singularity instances, in order to configure
them with nearly the total amount of memory in each node. However, no successful execution in
sconified hardware mode could be concluded. The increasing duration times observed in [48c] and
[48d] refer to actions troubleshooting to find the point of failure. It refers to the calling of the function
"merge_centr_df_segments ()", when there are 32 simultaneous activations.

1IOMETASPACE annotation pipeline adaptation to python 3.13 — https:/ / github.com/GEizaguirre /metaspace-py13/
1 AstraZeneca/ /Xenograft https:/ /metaspace2020.org /dataset/2016-09-21_16h06m53s
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Figure 48: Cloud-Edge Continuum Workshop 2024 posters session.

Every program executed in confidential computing builds up an "enclave", with the total amount
of RAM necessary reserved to it from the startup time, that summarizes the whole TCB (Trusted
Computing Base), and each enclave is an OS process. In the case of Metaspace using the Lithops
Singularity as engine, the RAM reserved at startup is 8GB of HEAP memory and it is the minimum
for having it running. When Metaspace divides the work and distributes the activities, it is not
using "threads" in the new Lithops Singularity backend adequately; it still uses the "fork ()" system
call mechanism, that will spawn an OS process on the server side. Moreover, despite dividing the
work among the worker nodes, each enclave forked had a second "fork ()" executed, and this would
eventually exhaust the RAM of the server and abort the whole pipeline execution; that is, there is
at least 16GB RAM per double-forked enclave, summed up to the amount of processes Metaspace
assessed to be possible to push, plus 8GB of the root process. Configuration modifications were made
in Metaspace parameters, like "worker_processes", "max_workers", "runtime_timeout"; and also in
the Kubernetes "resources » limits » cpu' settings of resources, but nothing changed Metaspace
behavior; this indicates that choosing memory and number of activities is related to inner business
logic.

It is not clear whether this double-forking behavior comes from the Python interpreter or is re-
lated to the "futures" nature of Lithops division and distribution of work; from the SCONE side, only
the translation of system calls issued by the programs are made and sent to the CPU. Regardless of
the reason for this, the main lesson is that Metaspace, as-is, does not benefit from the Lithops Singular-
ity that uses the "threads" mechanism. Encryption calculation, program contexts motion to-and-from
CPU and enclave add a very heavy layer of computation that affects the overall performance of an
application, i.e. there is a trade-off of performance for security; and in confidential computing, as
a rule, often more resources made available can get the good job done — please find other details in
deliverable "D4.2 Data Broker Reference Implementation". However, in the metabolomics use case,
more specifically, with Metaspace, a large amount of hardware has already been put at service of the
application when ported to SCONE, but the specificity of its internal mechanisms indicate that more
hardware will always be necessary to complete a pipeline. An "endless" hardware resources scenario
has a prohibitive cost; therefore, the way out here is to promote a better integration of Metaspace with
Lithops Singularity (threads mechanism) to adequately be supported by SCONE without the need to
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fork() enclaves — each copy of HEAP reserved to the enclave takes a significant time; whereas with
threads, this would not be necessary. Lithops Singularity, on the other hand, has been successfully
ported to SCONE and can benefit from the confidential computing protection mechanisms.

7.10 Use-case repositories

The following list specifies the source-code locations for the pipeline in this use case experiment:
¢ METASPACE main repository: https://github.com/metaspace2020
e METASPACE pipeline: https://github.com/metaspace2020/metaspace
¢ Lithops-METASPACE: https://github.com/metaspace2020/Lithops-METASPACE
¢ DataPlug: https://github.com/CLOUDLAB-URV/dataplug/tree/master
* DataCockpit: https://github.com/ubenabdelkrim/data-cockpit
e OffSample: https://github.com/metaspace2020/offsample
e METASPACE fork to python 3.13: https://github.com/GEizaguirre/metaspace-py13/
¢ Confidential Lithops and Metaspace: https://github.com/neardata-eu/scone-artifacts/

7.11 Discussion and final remarks

This use case shows that, since the stages differ substantially in their computational and I/O be-
havior, a fully serverless implementation is preferable to a fixed cluster for this pipeline. When we
vary the database size, the system scales up parallelism in database-dependent stages (e.g., centroid
matching/processing); per-invocation CPU and memory stay broadly stable, indicating that addi-
tional load is handled by more workers, not larger ones. When we vary the dataset size, higher paral-
lelism appears mainly in dataset-dependent stages (ingestion and segment merging). In both experi-
ments, a few sequential steps—notably get_segm_bounds and parts of database preparation—impose
a visible floor on total stage execution time, consistent with Amdahl’s law.

On the ETL side, moving from the single-Lambda load_ds to the distributed load_ds_ parallel
enables larger datasets and exposes configurable parameters (ds_n_chunks, ds_n_segms) to control
concurrency. Using DataCockpit and Dataplug to sweep chunk sizes and validating against the
isolated stage, we identified 50 MB as the optimal chunk size for upload_ partitions. The mea-
sured speedups over a 130 MB baseline were 1.21-1.22x (1.8 GB), 1.14-1.16x (3.9 GB), and 1.10-1.13x
(7.0 GB), and the optimal point is consistent between the benchmarking function provided to Data-
Cockpit and the pipeline. Importantly, the absolute time of upload_ partitions grows slowly with
dataset size, indicating that we are balancing cold starts/serialization with I/O locality and per-
Lambda memory.

On the other hand, there are some limitations we must take into account. As datasets grow, the
relative speedup of ingestion decreases. Besides, ingestion contributes a smaller share of the end-to-
end time while other stages—especially the sequential ones—dominate. At 7 GB, some stages show
higher average CPU and peak memory per invocation, which suggests that their resource usage
increases with input size.

Regarding usability, hosting Lithops-METASPACE on PyRun provides a managed entry point
(runtime packaging, basic provisioning, and monitoring). This reduced setup effort and helped us it-
erate on chunk sizes and collect per-stage telemetry without managing cluster infrastructure. PyRun
is an abstraction layer rather than a performance component; its value here was mainly to simplify
execution and measurement for both expert and non-expert users.

Finally, this experiment also demonstrates the importance of a federated Data Space: by unify-
ing access to heterogeneous metabolomics repositories and enabling on-the-fly partitioning through
DataCockpit and DataPlug, we were able to seamlessly connect large-scale data access with scalable
serverless execution. This integration highlights how standardized access and dynamic partitioning
are enablers for reproducible, high-performance metabolomics pipelines.
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7.12 Future work

Future work should focus on resource provisioning and on reducing the time dominated by single-
function stages. This is necessary because, at larger inputs, some stages show rising per-invocation
CPU and memory, indicating suboptimal sizing. Next steps include reviewing per-stage memo-
ry/CPU settings to limit this growth and keep resource use stable as datasets increase. These actions
are likely to deliver larger end-to-end improvements than further ingestion tuning alone.

Moreover, the heterogeneity and constraints of data providers must be addressed. Although our
dedicated connectors mitigate fragmentation by integrating Metaspace, AWS Open Registry, Metabo-
Lights, and Metabolomics Workbench into DataCockpit and DATOMA, these providers continue to
expose different protocols and often require API keys with usage policies that impose restrictions
such as rate limits, bandwidth caps, or selective access conditions. Future efforts should therefore
explore:

¢ Standardization of API contracts to simplify integration across repositories.

¢ Token and credential management mechanisms that allow pipelines to handle API key con-
straints transparently.

¢ Caching and replication strategies to reduce repeated API calls and alleviate rate-limit restric-
tions.

* Adaptive orchestration that can reconfigure pipelines dynamically based on provider-imposed
quotas or access rules.

Addressing these challenges will be essential for realizing the full potential of a federated, FAIR-
compliant Data Space that consistently supports large-scale, serverless metabolomics pipelines.
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8 Conclusions
8.1 Challenges addressed and achieved results

The use cases are the core of the NearData project, as they provide state-of-the-art, relevant examples
of current challenges in the life sciences. Each of the use cases was selected carefully in order to be
representative of such a complex background. This is the reason why the connectors developed in
each of them are publicly delivered so they can contribute to the community, and there is no need to
repeat this work, but simply to adapt the connectors to each specific constraint the community may
have. We provide in the following list the different challenges that have been resolved for each use
case.
Use case Genomics Epistasis

* Machine learning: current techniques were not adapted to the millions of features of the hu-
man genome and its millions of variants. Thus, a strategy was devised to be able to apply a
combinatorial strategy aligning such statistical constraints to state-of-the-art machine learning
techniques.

¢ Data ingestion: not only is the amount of variants extreme, but the volume of the data sets is
as well, and it poses a bottleneck for the use case. For this, a two-fold strategy was devised:
on one hand, parallelizing such ingestion on small partitions that are read at once, on the other
hand, shuffling the contents of such partitions among them to avoid internal structures of the
datasets.

* Orchestration: bringing the serverless paradigm to the HPC to make it user-friendly comes
with the challenge of deciding how many resources to allocate to it. The larger the number, the
longer the wait time to run, and hence degrades the time to service. In this use case, we have
devised an auto-scaling mechanism to make a better resource allocation strategy considering
current demands in the system.

* Analysis: finally, analysing the results of the machine learning model was not trivial and was
hugely impacted by the hyperparameter selection. Such selection is complex as there are many
parameters that, combined with the complexity of the data challenges, make it difficult to find
the most relevant and its best setting. In this work, we have worked on novel strategies for
hyperparameter selection that have led to a better identification of variants leading to disease.

Use case Computer-Assisted Video Surgery

* Flexible content-based video stream indexing: although the video stream is immutable, its
contents can be indexed in multiple ways. Those indices determine the models that can be
applied and their usage. Thus, we need to allow flexible re-indexing based on the end-user
target. StreamSense is a framework that has been built in the context of this project and allows
low-latency video indexing.

* Scalable semantic search: dealing with tiered video streams for long retention periods requires
managing large amounts of index data. In our use-cases this can turn into very large querying
costs in terms of memory and size. So indexing techniques must account for those trade-offs.
For this challenge, Vector DBs were integrated, which, combined with the StreamSense frame-
work, addressed the challenge.

¢ Programmatic search interface: semantic search algorithms enable user-friendliness in our use
case. However, training for extreme-data scenarios is not straightforward and requires explo-
ration of the best techniques.

¢ Secure Federated Learning with Flower and SCONE: In this use case, sensitive surgical video
data remains on-site at each hospital while federated learning, orchestrated by the Flower
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framework, enables collaborative AI model training. SCONE ensures that all computations
and model updates occur within Trusted Execution Environments (TEEs), guaranteeing the
confidentiality and integrity of both data and models, even against privileged attackers. Model
updates are encrypted and integrity-checked during transmission, preventing data leakage or
tampering throughout the collaborative process.

Use Case Transcriptomics

* Resource-intensive application: STAR aligner requires an indexed human genome to be loaded
into the worker node’s memory in order to perform alignment on a FASTQ file. By using the
newest release of the human genome from Ensembl [85], we were able to reduce the require-
ment from 80GB to 35GB, therefore saving resources, reducing costs, and improving processing
time significantly (12x faster). Moreover by using early stopping feature we skip processing of
FASTQ files that will end up with mapping rate below our threshold using intermediate re-
sults/metrics. With this optimizations we can increase the alignment throughput by 19.5%
(alignment is the most resource intensive step).

* Large-scale dataset of RNA-sequences: For the Transcriptomics Atlas use case, we need to
process about 130TB of FASTQ data. With the optimizations (Tab. 19) implemented, this is
very efficient both in term of time and cost. We reduced computation costs with spot instnaces,
faster/smaller STAR index, early stopping (and other optimizations) and this allows possible
extension of the Atlas with additional tissues which will make it more comprehensive and
useful.

Use Case Genomics

* Managing redundant and accessible genomic data across stream and object interfaces: the
genomics research community is exploring streaming data infrastructures to support both real-
time stream processing and long-term object storage. Enabling efficient dual-mode access -
where the same genomic data must be accessible both as a stream and as a compressed object
- introduces significant complexity. A key challenge is enabling such dual-access through a
unified API. The challenge was addressed via integrating stream-native data connectors and
serverless analytics frameworks, allowing dual-mode access, compression, and scalable pro-
cessing.

* Reducing complexity in deploying scalable genomic stream analytics: executing genomic an-
alytics requires deploying and managing complex data processing engines. Such engines come
with substantial operational overheads, becoming a barrier in scenarios where rapid deploy-
ment and elasticity are crucial. The challenge lies in finding scalable, low-footprint alterna-
tives that can deliver performance without the burden of managing heavyweight infrastruc-
ture. Through the implementation of the Nexus FASTQGzip streamlet, we offer such efficient
ingestion and analytics without compromising performance.

Use Case Metabolomics

¢ Serverless, on-demand execution: The metabolomics pipeline mixes CPU/memory-intensive
database stages with I/O-bound dataset stages and a few sequential steps. Because of the
heterogeneity of each stage, a fixed cluster would either sit idle in light stages or fall short
during bursts. We therefore used a serverless, stage-oriented design so concurrency is granted
only where needed, avoiding resource blocking and improving the balance between cost and
performance.

¢ Data ingestion bottleneck and scaling limits: We replaced the original load_ds stage, which
ran the whole imzML/ibd ingest in a single function and limited the dataset size, with a dis-
tributed sort-style loader that estimates m/z bounds, maps windowed reads, and reduced per-
segment outputs. This parallelizes ingestion and enables larger datasets without inflating per-
task memory.
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* Partitioning trade-offs in serverless ingestion: Choosing how many chunks to use when par-
titioning the dataset is a tuning problem in our distributed loader: smaller chunks cut per-task
memory and seek time but raise overheads, whereas larger chunks do the opposite. Using
DataCockpit (with Dataplug), we benchmarked the upload_partitions logic across chunk sizes
and selected 50 MB as the time-optimal setting versus a 130 MB baseline, a result that also held
when validating the stage in isolation.

¢ Data Space heterogeneity and provider constraints: Datasets arrive from multiple providers
with different APIs, protocols, and limits (bandwidth, access policies). We built connectors and
integrated them into DataCockpit/DATOMA to standardize access and support partitioned
reads across sources. This reduces fragmentation, though full interoperability and guaranteed
openness remain open issues.

¢ Secure pipeline computation with Metaspace + Lithops + SCONE: It has been observed a
great opportunity to tighten the integration between Metaspace and Lithops using this new
Singularity backend; with that put in place, Metaspace could benefit in full of the confidential
computing features SCONE has available.

8.2 Future work

In the genomics epistasis use case, the future steps are two-fold: on one hand, improving the Lithops-
HPC auto-scaling ecosystem with better resource management and parallelization techniques. On
the other hand, work on the analysis of the obtained data and results and biologically validating the
results with clinical trials, which, due to the nature of such trials, take several years to carry out.

For the surgery use case, one line goes towards exploring the enhancements of the Amazon AWS
service, now allowing for S3 vectors. Combined with the NEARDATA results, leveraging Vector DBs
might prove a powerful tool. On the other hand, Al is an essential element in the use case. As such,
examining how to implement federated learning within the German’s Surgical Al Hub is a promising
research line to be explored to translate the research advancements into clinical practice.

Next steps for the transcriptomic use case include expanding the Atlas dataset with additional
tissues. Following this extension, the data will be processed through the established pipeline and
collect its results, which will then be prepared, analyzed, and published on open-source data reposi-
tories such as Zenodo.

For the Genomics use case, after the integration of NEARDATA technologies into the pipeline
and seeing its potential, further research will be made on how to integrate such technologies into the
public health infrastructures. One direction of it is the deployment of real-time outbreak monitoring
systems leveraging stream-based ingestion and analytics to enable faster detection and response.

Regarding the metabolomics use case, the next steps will center on tuning resource provisioning
(per-stage memory/CPU and latency control) to keep resource usage stable as datasets scale, and
strengthening data-space integration by standardizing APIs, handling credentials and quotas trans-
parently, and adding caching/replication and adaptive orchestration. Together, these efforts aim to
deliver larger end-to-end gains than ingestion tuning alone while making the pipeline more robust
across diverse data providers.

8.3 List of data connectors

In the following list, we briefly summarize each of the connectors developed in the project:

¢ Data partitioning: this connector partitions the dataset into small chunks so the read can be
parallelized.

¢ Data shuffle: the connector merges with the partitioning one and not only partitions but shuf-
fles the content of each of the partitions to break inherent structures of VCF data.

* Auto-scaling connector: this connector interacts with HPC and Lithops-HPC to dynamically
adjust the resources assigned to the compute backend.
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8.4

ML accelerator connector: this connector is built inside Lithops-HPC to be able to manage
GPUs as well as CPUs currently. It can be expanded to other devices with minimal effort.

HPC connector: this connector facilitates the connection of Lithops with HPC systems, deliv-
ering what we call Lithops-HPC architecture.

Indexer controller connector: this connector deploys Al models developed by NCT to generate
embeddings from video frames and replies to semantic queries.

Indexed genome connector: this connector allows performing STAR alignments on each worker.
This is achieved through an NFS-based approach, as it performed better than alternatives using
object storage or embedding indexes into virtual machines.

Dataplug SRA format reader: this connector enables the Dataplug architecture to recognize
SRA to FASTQ formats. This connector allows seamless partitioning and distribution of chunks
of FASTQ file, while the data on the storage remains in SRA format.

Nexus FASTQGzip streamlet: this connector performs GZip data compression on subsets of
DNA sequences based on an input stream of data. Each of the partition start offsets is stored as
an object stage to perform parallel access efficiently.

FaaStream Streaming K-Pop job: this connector ingests a parallel stream of FASTQ data from
Pravega at the FASTQ record level. Then the records are read and compute hashes for every
subsequence of length k within each genomic sequence, allowing for shuffling and fast aggre-
gation of FASTQ-based data.

AWS Open Registry, Metaspace, MetaboLights, and Metabolomics Workbench connectors:
those connectors eliminate the need for users to work directly with heterogeneous APIs, of-
fering a unified access point to metabolomics data. Combined with Dataplug, they transform
diverse datasets into partitioned analysis-ready blocks suitable for parallel and reproducible
processing.

Summary of KPIs achieved

Table 27 summarizes the KPIs achieved by each of the use cases.

8.5

Available repositories

Table 28 contains the list of repositories where use cases or connectors are made available.
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] KPI \ Use Case \ Summary of results ‘

KPI-1 Epistasis(GWD) Lithops-HPC connector improves data ingestion in GWD pipeline by
36x.

KPI-1 Epistasis(GWD) Hyperparameter selection improves performance by 5x.

KPI-5 | Epistasis(GWD/MDR) | Cyclomatic-Complexity reveals 1.5x fewer execution paths.

KPI-5 | Epistasis(GWD/MDR) | Yaqin's metrics reveals 1.6x fewer branches, loops and nesting depth.

KPI-3 | Epistasis(GWD/MDR) | The auto-scaler improves execution time of MDR use-case by 1.5x.

KPI-2 Surgery StreamSense achieve low video frame indexing latency between 63ms
and 360ms.

KPI-2 Surgery Semantic video search latency is around 30ms for large collections of
surgical video.

KPI-1 Surgery Data transfer savings in Al loading. Integrating with PyTorch data
transfers are reduced between 83.79% and 99.83%.

KPI-4 Surgery Enhanced encryption of files with TEE, access control meachisnms. The
security of the system was rigorously validated through adversarial
testing and TEE attestation, confirming that both the confidentiality
and integrity of model updates and training data were consistently en-
forced.

KPI-1 Transcriptomics Early stopping technique have increased alignment throughput by
19.5%.

KPI-1 Transcriptomics Use of a newer release of human genome index has resulted in exe-
cution times improvements of up to 12x and smaller STAR index file
(from 85GB to 30GB).

KPI-1 Transcriptomics The usage of spot instances reduced, on average, 50% of the execution
cost.

KPI-1 Genomics The Nexus FASTQGzip streamlet provides a good compression vs
speed trade-off. It achieves 3.8x better compression ratio than plain
FASTQ and 13.2x faster data processing than using FASTQ Gzip files.

KPI-1 Genomics FaaStream is up to 65.14% cheaper than Flink running the genomics
Kpop job.

KPI-1 Metabolomics Depending on the size, we get a speed-up on processing time ranging
from 1.13x to 1.22x faster.

KPI-4 Metabolomics Achieved full confidential computing support (data at rest, in transit
and in use) on cloud storage service (MinlO) and FaaS Lithops Singu-
larity, aided by SCONE mechanisms and using the TEE; achieved par-
tial confidential computing support (data at rest and in transit) due to
limitations of the ported system (Metaspace is not fully compliant with
Lithops Singularity + SCONE).

Table 27: Summary of KPIs achieved on the use cases
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] Description \ URL
GWD Lithops-HPC https://gitlab.bsc.es/datacentric-computing/lithops-hpc-
genomics

MDR MPI

https://gitlab

.bsc.es/datacentric-computing/mpi-genomics-mdr

MDR Lithops-HPC

examples/mdr

https://github.

com/neardata-eu/lithops-hpc/tree/main/

Lithops-HPC

https://github.

com/neardata-eu/lithops-hpc

Lithops-HPC user guide

https://gitlab
examples

.bsc.es/datacentric-computing/lithops-hpc-

Data shuffle connector

https://github.

com/danielBCN/dataplug/tree/filesystem

Auto-scaling connector

https://gitlab

.bsc.es/datacentric-computing/lithops_

telemetry_forecasting

Surgery-FL training models

https://github

.com/KirchnerMax/FL-EndoViT

Surgery-FL use case

https://gitlab.

com/nct_tso_public/challenges/miccai2024/

FedSurg24
Surgery-FL tools https://gitlab.com/nct_tso_public/challenges/miccai2024/
snippet
Transcriptomics Atlas https://github.com/neardata-eu/transcriptomics-atlas-sano
Salmon pipeline https://github.com/Kamilbur/salmonless
Nexus https://github.com/neardata-eu/nexus
FaaStream https://github.com/neardata-eu/faastream
METASPACE https://github.com/metaspace2020
Lithops-METASPACE https://github.com/metaspace2020/Lithops-METASPACE
DataPlug https://github.com/CLOUDLAB-URV/dataplug/
DataCockpit https://github.com/ubenabdelkrim/data-cockpit
OffSample https://github.com/metaspace2020/offsample

Table 28: Repositories with data connectors, use cases, and related tools
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