= Funded by

NEARDATA Foy o the European Union

HORIZON EUROPE FRAMEWORK PROGRAMME

NEARDATA

(grant agreement No 101092644)

Extreme Near-Data Processing Platform

D5.1 First release of KPI benchmarks in all use cases and data
connector libraries

Due date of deliverable: 30-04-2024
Actual submission date: 30-04-2024

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 76

WP/Task related to this document | WP5 / T5.2,T5.3,T5.4,15.5,T5.6
WP/Task responsible BSC-CNS

Leader Aaron Call (BSC)

Technical Manager Xavier Roca (URV)

Quality Manager

Radtl Gracia (DELL)

Author(s)

Aaron Call (BSC), Lorena Alonso (BSC), Gonzalo Gémez
(BSC), Xavier Roca (URV), Raul Gracia (DELL), Sean
Ahearne (DELL), Ger Hallissey (DELL), Sebastian Boden-
stedt (NCT), Max Kirchner (NCT), Paolo Ribeca (UKHS),
Andre Miguel (SCO), Maciej Malawski (Sano), Piotr Kica
(Sano), Jan Przybyszewski (Sano), Sabina Lichotai (Sano),
Kamil Burkiewicz (Sano), Theodore Alexandrov (EMBL)

Partner(s) Contributing

BSC, URV, DELL, UKHS, EMBL, SCO, NCT

Document ID

NEARDATA_D5.1_Public.pdf

Abstract This deliverable will describe the first validation bench-
marks in the five use cases. First release of open data con-
nectors.

Keywords Use cases, Data connectors, Data throughput, Genomics,

Metabolomics, Transcriptomics, Lithops, Pravega, SCONE

History of changes

Version

Date

Author

Summary of
changes

0.1

11-03-2023

Aaron Call (BSC), Sebastian Bodenstedt (NCT), Max
Kirchner (NCT)

Initial structure
in place.

0.2

25-03-2023

Aaron Call (BSC), Lorena Alonso (BSC), Gonzalo
Goémez (BSC), Xavier Roca (URV), Raul Gracia
(DELL), Sean Ahearne (DELL), Ger Hallissey (DELL),
Sebastian Bodenstedt (NCT), Max Kirchner (NCT),
Reuben Docea (NCT), Paolo Ribeca (UKHS), Andre
Miguel (SCO), Maciej Malawski (Sano), Piotr Kica
(Sano), Jan Przybyszewski (Sano), Sabina Lichofai
(Sano), Kamil Burkiewicz (Sano), Theodore Alexan-
drov (EMBL)

First Draft.

1.0

30-04-2024

Aaron Call (BSC)

Final version.

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Table of Contents

1 Executive summary 3
2 Introduction 4
3 Variants-Interactions Use-case 5
3.1 Why is the use case extremedata? 5
3.2 Assessed Datasets 5
3.3 Descriptionoftheuse-case L L oo 6
34 DataConnectors o o i i i e e e 7
3.4.1 Multi Dimensionality Reduction(MDR) 8

3.42 Genome-Wide discovery (GWD) 9

3.5 What are the benchmarks/KPI? 10
3.5.1 Experiment 1: Multi Dimensionality Reduction (MDR) 11

3.5.2 Experiment 2: Genome-Wide Discovery (GWD) 16

3.6 Integration with the architecture components of NEARDATA 17

4 Use Case Surgery 21
41 Why istheusecaseextremedata? 21
42 Assessed Datasets e e e e e 21
43 Descriptionoftheuse-case 21
44 DataConnectors. i e e e e e e e e 22
441 FederatedLearning, 22

442 GStreamerandPravega o L. 22

45 What are the benchmarks/KPI? 23
451 FederatedLearning 23

452 Pravegaand GStreamer 27

4.6 Integrations with the architecture components of NEARDATA 34

5 Transcriptomics Use Case 36
51 Why is the use case extremedata? 36
51.1 TranscriptomicAtlas L L L o 36

5.1.2 Federated Learning for Human Genome Variation Analysis 36

52 Assessed Datasets 37
52.1 TranscriptomicAtlas L L L 37

522 Federated Learning for Human Genome Variation Analysis 37

53 Descriptionoftheuse-case L o oo 38
53.1 TranscriptomicAtlas L o 38

5.3.2 Federated Learning for Human Genome Variation Analysis 39

54 DataConnectors o i i i e 40
54.1 TranscriptomicAtlas L L L 40

54.2 Federated Learning for Human Genome Variation Analysis 41

5.5 What are the benchmarks/KPI? 41
5.5.1 Experiment 1: Transcriptomic Atlas 41

5.5.2 Experiment 2: Federated Learning for Human Genome Variation Analysis. . . 45

6 Genomics Use-case 48
6.1 Why is the use case extremedata? 48
6.2 Assessed Datasets 48
6.3 Descriptionoftheuse-case o L. 48

6.4 DataConnectors. e 50

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
6.5 What are the benchmarks/KPI? 54
7 Metabolomics Use-case 59
7.1 Why is the use case extremedata? 59
72 AssessedDatasets L 59
7.3 DescriptionoftheUse-Case 61
74 DataConnectors. 61
7.5 What are the benchmarks/KPI? e 63
7.5.1 Experiment 1 - Mining historic METASPACE datasets with the recently devel-
oped ML model to address the “dark matter” problem in spatial metabolomics. 63
7.5.2 Experiment 2 - Confidential computing for safe offloading of ML-based anno-

tation of “dark matter” for private datasets. o 0L 67

8 Conclusions 69

ii

HORIZON - 101092644

30/04/2024

List of Abbreviations and Acronyms

API
CC
CSsv
cv
DOI
ETL
GWD
HPC
KPI
MDR
MN4
MN5
MPI
T2D
AUC
CGS
Ccv
DoA
DSAD
EKS
ENA
ExAC
FaaS
FL
FLOPS
Gnom AD
GPFS
HPC
INSDC
LD
ML

Application Programming Interface
Creative Commons
Comma-separated values
Cross-Validation

Digital Object Identifier

Extract Transform Load
Genome-Wide Discovery
High-Performance Computing

Key Performance Indicator

Multi Dimensionality Reduction
MareNostrum 4 Supercomputer
MareNostrum 5 Supercomputer
Message Passing Interface

Type 2 Diabetes

Area Under the Receiver Operating Characteristic Curve
Computer-guided Surgery
Cross-Validation

Description of the Action

Dresden Surgical Anatomy Dataset
Elastic Kubernetes Service

European Nucleotide Archive

Exome Aggregation Consortion
Function as a Service

Federated Learning

Floating Point Operations per Second
Genome Aggregation Database
General Parallel File System

High Performance Computing
International Nucleotide Sequence Database Collaboration
Linkage Disequilibrium

Machine Learning

Page 1 of 76

NEARDATA
RIA

HORIZON - 101092644

30/04/2024

NVMe
PRACE
RES
ROC
TCGA

Non-Volatile Memory Express

Partnership for Advanced Computing in Europe
Red Espafiola de Supercomputaciéon

Receiver Operating Characteristic

The Cancer Genome Atlas

Page 2 of 76

NEARDATA

RIA

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

1 Executive summary

Deliverable 5.1 comprises the first release of KPI benchmarks on all use cases and data connector
libraries. This deliverable covers the work performed during the first 14 months of the project.

In this deliverable, we introduce extreme data use cases and the data connectors implemented
towards making them more efficient in terms of the KPIs defined in the Description of the Action
(DoA). To do so we present a set of experiments designed to evaluate the targeted KPIs and the
results obtained so far. All of the use cases have already met some of the targeted objectives (in
terms of KPI) while others are in progress. Moreover, we describe how some connectors allow to
integration of NEARDATA architecture elements such as Lithops, SCONE, or Pravega and allow for
the use cases to be more efficient in terms of data throughput and/or transfer, as well as to reduce
data latency and allow secure data transfers in the cloud continuum.

For each of the use cases we describe:

* The reasons why the use cases utilized are extreme data with quantitative metrics.
* The datasets that will be used to benchmark the use cases” performance.
¢ The set of data connectors developed and integrated.

¢ The benchmarks used to evaluate the use cases as well as the KPIs achieved on each benchmark.
We particularly evaluate how our data connectors improve efficiency in terms of data transfer
reductions as well as improved data merging and sorting when applicable.

* For those use cases that have been integrated with NEARDATA architecture components, we
describe how the integration has been made and its benefits.

Finally, this document presents an overview of the evaluation conclusions of each of the bench-
marks as well as a list of data connectors. We also provide a set of GitHub URLs where the use cases
source codes are made available as well as the necessary architecture frameworks.

Page 3 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

2 Introduction

The NEARDATA project is rooted in the near-data processing paradigm, which can be defined as the
strategy of moving computational resources close to the data, instead of transferring the data to the
processor. NEARDATA aims to establish a robust near-data infrastructure that acts as a mediator for
data flows between object storage and data analytics platforms throughout the compute continuum.

The movement of resources close to the data is mainly achieved by what we call data connectors.
A data connector is defined as an element capable of communicating computational resources with a
variety of data. This data can be structured or unstructured, which brings a heterogeneity challenge
commonly found in the omics sciences. The connections are made in such a way that maximizes the
efficiency of each use case on an ad-hoc basis according to the needs.

The data connectors help achieve NEARDATA'’s goals and will be demonstrated by our five omics
use cases. Such use cases play a key role in the project. The selected use cases show an extreme data
problem, making them a good fit to be improved using data connectors.

In this deliverable, we explain the use cases we have selected to demonstrate the achievements
of the NEARDATA'’s goals as well as the data connectors developed to achieve such goals. Those
achievements are evaluated in terms of the following Key-Performance Indicators (KPIs) as defined
in the Description of the Action (DoA):

e KPI-1 - Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data
volumes (genomics, metabolomics).

¢ KPI-2 - Significant data speed improvements (throughput, latency) in real-time video analytics
validated using stream data connectors.

¢ KPI-3 - Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows.

» KPI-4 - High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

¢ KPI-5 - Demonstrated simplicity and productivity of the software platform validated with real
user communities in International Health Data Spaces.

Page 4 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

3 Variants-Interactions Use-case

Current state of the art devoted their efforts to determining how single genome variants could be
associated with complex diseases. However recent studies have shown that while a specific couple
of variants may not be associated with the disease, the combination of both of them within a sin-
gle genome may be. Thus, it is necessary to devote our efforts to studying the impact of variant
interactions with such diseases. In this section, we present a use case for the identification of such
interactions with two different but complimentary methodologies, which we define as separate use
cases and experiments.

3.1 Why is the use case extreme data?

The discovery of variant groups associated with the disease involves the analysis of over 15 million
variants. Studying all the possible combinations of pairs of variants represents more than 6x10'
tests. Using the Mare Nostrum 4 (MN4) architecture (165,888 CPU - 1.880 GB/core and 208 GPU -
16GB/each), this process is estimated to take approximately 9 days. This exemplifies how this use
case represents an extreme data problem. On the other hand, the combinatorial analysis based on
machine learning approaches requires the execution of over 112 million tests, which represents 3
days of continuous analysis using the whole MN4[1] architecture. Moreover, this calculus is done by
computing only pairs of variants. However, the ideal scenario would be computing all the combi-
nations possible with the 23 chromosomes. Thus, sets of 23 rather than just pairs. Consequently, the
problem would take months of computations using the whole supercomputer.

3.2 Assessed Datasets

We work with three main datasets, two of them mostly utilized for the GWD use-case, and a third
generated a synthetic datasheet to work on the MDR use-case.

e 70K dataset (Bonas-Guarch et al., 2018)

To address the variant interaction problem and assess the reliability of the models we used a
pilot dataset, the 70KforT2D, a dataset that contains the genomic information for 70,127 indi-
viduals (12,931 diabetic, 57,196 non-diabetic) in 15,131,345 variants. Particularly, we evaluated
the viability of MDR in a subset of this dataset which consists of 1,128 individuals, 601 non-
diabetic and 527 diabetic, and the summary information of 1,883,192 genomic pairs. The pilot
GWD model was assessed using a subset that consists of 105,896 variants and 22,802 individu-
als (11,401 diabetic and 11,401 non-diabetic).

e UKBioBank (Sudlow et al., 2015)
To ensure the quality of the GWD model, its scalability, and the robustness of the predictor,
we will use the UK Biobank, a genetic biobank that contains the genomic, clinical and en-
vironmental information for 422,000 European ancestry individuals (31,344 diabetic, 233,285
non-diabetic). Importantly, we have the genetic information for these individuals in 15,586,493
variants. This dataset will be used to accomplish two tasks: 1) validate the model trained in the
70KforT2D and 2) train the final model.

¢ Synthetic dataset
To ensure the scalability of the MDR model, we will use a synthetic dataset that replicates
the features of the aforementioned datasets. This dataset allows us to work on development
environments so we can experiment with different improvements on the use case, as well as
to analyze the behavior of the use case for different dataset sizes. This wouldn’t be possible
with a real dataset due to confidentiality constraints. Those constraints imply we can only
access the dataset in the MareNostrum IV supercomputer, which is security-constrained due to
being a production environment. On the other hand, only a few selected people are allowed
access to the dataset itself. Thus, not all researchers and engineers may access it despite being
granted access to the supercomputer. Moreover, the manipulation of those datasets is complex
as we could easily invalidate the contained data. Consequently, a synthetic dataset becomes

Page 5 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

optimal. This dataset is generated by replicating the features of the aforementioned, however,
instead of being provided with real data, this data is fake. Although fake, the random data is
generated taking into consideration that it could be found in a patient. With this, we can apply
the workload over this dataset and extrapolate the results into the ones with data coming from
true patients.

3.3 Description of the use-case

Complex diseases, such as Type 2 Diabetes (T2D), are caused by the simultaneous effect of multiple
genomic variants and other environmental factors. During the last decades, the genomic study of
T2D has been broadly approached with diverse methods. However, although hundreds of genomic
variants are expected to contribute to disease development, the study of the relation between variants
and T2D has been only analyzed in a single independent manner. There are different reasons to
avoid this type of analysis. Among them, the analysis of variant interactions and their contribution
to developing the disease is an extreme computational problem. Indeed, here we present two use
cases where we tackle this type of analysis with different methods:

¢ Genome-Wide discovery (GWD): use machine learning methods to find groups of variants that,
simultaneously, are associated with T2D.

¢ Multi Dimensionality Reduction (MDR): use statistical methods to discover pairs of variants
which, synergically, contribute to the development of T2D.

GWD use case is depicted in figure 1 where it shows how the dataset containing the variations
to be analysed. This dataset is utilized to train a machine learning model based on XGBoost. The
optimal hyparameter adjustment estimation for the learning rate, split and number of trees, is utilized
to 1) divide each partition in a training and test set, 2) train a model and generate a genomics predictor
using the training set, and 3) test the output model in the test set. The results obtained will be used,
in a combinational manner, as an input to the model recursively until finding a stable solution.

Complex diseases 15,131,345
variants
additive
epistatic
Manolio A. et al., 2008.
Machine Learning 105.896
’
variants
Discovery 5-fold cross validation &) o)
dataset training Multiple variant interactions
— associated with disease
— —
—— Train
-_—

> } Prediction

Test

Figure 1: Genome-Wide discovery (GWD) use case overview

MDR use case is depicted in figure 2. The steps depicted are as follows:

Page 6 of 76

HORIZON - 101092644
30/04/2024

NEARDATA
RIA

The first step consists of a k-fold cross-validation and is performed to avoid potential over-
fitting. The dataset is subdivided into k parts where k-1 data parts are used for training and one
part is used for testing. Since we generate k different distributions of the dataset, the following
steps are going to be performed k times, one for each distribution.

In the second step, for each variant pair we cross-tabulate genotypes for cases and controls,
only using the individuals from the training dataset. This generates a 2 factors table (variant-
variant), each one with 3 classes corresponding to the variant genotypes (AA, Aa, aa), ending
with a 9-cell table with two dimensions: the number of cases and the number of controls.

In step three, each of the tables is going to be transformed into a 1-dimension space using the
case-control ratio from the training distribu- tion set as a threshold, T. The cells where the ratio
of cases to controls is greater than T are going to be classified as ‘high risk” and, otherwise, as
‘low risk’. As a result of this step, we reduce the dimension of the problem from 2 classes to 1.

In step four, each of the variant-variant tables is used to classify the individuals of the training
set. The classification is done as follows: for each individual, we extract the variant-variant
genotypes and check to which class of the multifactor table belongs. Then, if the class corre-
sponds to a high-risk cell, we classify the individual as a case. Otherwise, we classify it as a
control. After classifying every individual, we compare the predicted classes with the original
labels, obtaining the miss-classification error of the variant-variant table.

In step five, the model with the best miss-classification error is selected and the prediction
power of the model is estimated using the indepen- dent test data as the percentage of patients
correctly classified. After these steps are repeated for each of the possible cross-validation sets,
the best and most consistent variant-variant combinations are selected. This means picking the
ones that appear most times in the cross-validation sets as a top predictor pair.

REDUCE DIMENSION & BUILD CLASSIFIER
if 222 > th, HIGH RISK SNP 1
STEP 1 STEP 2 if ase < th, LOW RISK AL Aa aa
CROSS VALIDATION CREATE TABLES L BBl H |H | L STEP 5
M/SNP 1 > SORT TOP PAIRS
ey o s L L CVICV2CV3 CV4CY5
SNP2 BB J 2| . JE}
SNP3 i = bl H | L|H
e — 3 Rl | Wv8v7 vav7 vave VAVE vavs
SNP5 5 . . 2| vavs |VIV3 v2v3 vav7 ViV3
NN bo ||, Gl W AVE V2V7 V69 V2V3 V5V9
g2 STEP 4 V3Vv7 V34 MAVSI v3ve Viva
S g TEST CLASSIFIERS FactOfS ‘ EI‘I‘OT
SNP3-5 | 40,23
PREDICT SNP 1-3 | 42,30
=S TSNP 2-4 | 43,40
AR SNP 3-4 | 44,54

Figure 2: Multi Dimensionality Reduction (MDR) use case overview

3.4 Data Connectors

For these use-cases, we first needed to carry out an extended exploration of the computational prob-
lems to define best which were the real challenges we should target in the context of the project. Once
this exploration was done we determined that:

Page 7 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

1. Ingestion of data is the main challenge of the GWD use-case since it applies machine learning.
The straightforward approach is to read all the data at once to train and produce a highly accu-
rate model. However, due to the magnitude of our data (41B), we can’t handle it. Consequently,
partition strategies must be applied. Applying machine learning to a partitioned dataset, how-
ever, is a complex task. The learning technique is comprised of a first training stage, using a big
portion of the dataset, followed by validation with a section of the dataset not seen during the
training stage. This validation stage compares how good the training is. As bigger the training
dataset is, the better the accuracy. However one must be careful not to take a too big chunk
of the dataset, so we can perform as well the validation stage with a significant portion of it.
Moreover, we finally need a testing dataset not seen by any of the other stages, which needs to
be big enough as well to obtain the final accuracy. This process is already complex on a single
node, when do we need to partition the data and generate models on each of the partitions, this
task gets more challenging as we need to decide which portions to apply on which node, which
at the same time will need to decide the partition sizes for the training, validation, and test
datasets. Thus, the more partitions we make, the more challenging deciding such appropriate
sizes is. Finally, we need to merge all the models into one applying a final training, validation,
and testing datasets. One must notice the dataset used all the time is a single one, so the initial
dataset size and variety decide the amount of partitions one can make, and thus the ability to
split the computation process across nodes while preserving accuracy.

2. Computational power: in the case of the MDR the main problem is not data rather than pro-
cessing statistically all the pairs as fast as possible. Even with a small number of cases (500MB)
the computational power may already require 1 hour to process due to the factorial growth of
the pairs combinations.

3. Selection of the appropriate top pairs for MDR: this was a critical decision. This use-case is
based on the statistics on which variants cause the diseases. Therefore a proper and deep ex-
ploration of the variants causing it was necessary before being able to apply such statistical
reductions to the problem and we devoted most of the effort there.

Based on those conclusions we were able to tackle the challenge of how to optimize the use cases
to expand its scalability in terms of data-throughput as well as computational time. Based on this we
started the development of the following data connectors:

3.4.1 Multi Dimensionality Reduction (MDR)

As described earlier this use case is based on statistical methods to discover pairs of variants that
contribute to the development of T2D. This use-case does not have a problem reading data but rather
a computational problem, as per each variation pair the amount of processing required increases fac-
torially. This use-case first loads the data in CSV format with the different patient features. This CSV
as explained earlier comes from a synthetic dataset simulating the same structure as a real dataset.
Thus the first connector developed was a CSV data loader for genomics data. Once this was done,
we had the computational problem of computing all the possible pair variants as fast as possible. For
this, we have developed an HPC data connector allowing us to optimize the usage of supercomput-
ers. Initial tests show a speed-up of around 7x compared to a previous version implemented using
Apache Spark. This connector directly communicates with the data predictor to determine if the se-
lected pair combination is or not a potential case of T2D carrier. Summarizing the data connectors
for MDR use-case are:

e HPC Data Connector: by using MPI libraries we can speed-up the computational process of
the pipeline. We are seeking to request a large number of supercomputing resources and run
real-sized experiments with larger synthetic datasets.

* Data Selector: selects which data (variants) will be used to analyze the pairwise combinations.

Page 8 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

¢ Data Preparation: data connector that loads the data in CSV format with the patient features
and its genome variants, and prepares it to perform the association between variants.

o Test of association: associates the different variants with clinic and control cases.

¢ Data functional interpretation: this connector gets as an input the amount of variants identified
on the training sets and based on the known pairs causing the disease predicts whether or not
the patient must be classified as a potential carrier of the disease. In this case T2D.

This connectors are summarized in figure 3. Figure 4 depicts moreover the two data association
connectors developed for HPC (MPI) and Spark (traditional Big Data implementation).

DATA DATA TEST OF FUNCTIONAL

SELECTION PREPARATION ASSOCIATION INTERPRET.

Figure 3: Data connectors used in MDR

SPARK

Association

° Dataset
e Nodes
® Function

Multiple variant

—— ——Jp interactions associated

with disease

Association

Analysis

MPI

Figure 4: Association analysis with MPI and Spark connectors

This use-case is being optimized mainly using the HPC data connector which leverages MPI to
speed up computation. Preliminary results show a speed-up of about 7x times concerning the initial
implementation using Apache Spark. Further analysis of the gains is explained in the next section.

3.42 Genome-Wide discovery (GWD)

The Machine Learning Use Case consists of three steps: read, train, and test, which will be repeated in
a combinatorial way over 112 million times. Notably, under the scope of the NearData project, these
iterative tasks can be divided into the following connectors: Partitioner, Selector, Merger, Learner,
and Predictor. Among the different approaches that can be applied to improve the performance
of the models behind these connectors, during the first year of the NearData project we have been
working with the Partitioner and the Learner. Despite the implementation of these connectors is still
premature and under discussion, we expect its application to affect KP1 and KP3, thus involving
significant performance improvements in data ingestion and scalability. More specifically, in the
first tests performed with the implementation of the Partitioner, where the Lithops framework has
replaced a sequential data ingestion process, we have increased the speed of the model in x1.88.
Additionally, the update of the Learner connector to enable the use of GPUs by the Machine Learning

Page 9 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

model has enhanced the use of all the available computational resources from MN4, thus increasing
the speed by x1.06.

The connectors for this use-case are similar to the one of MDR but with significant differences
among them. They are described as follows and depicted in figure 5:

¢ Data Partitioner: this component splits large data into small pieces that can be ingested at once.
Through the integration of the Lithops framework, a sequential data ingestion process has been
replaced by a flexible and scalable ingestion. This process splits the data into small partitions
that allow to access each of the partitions quickly. To achieve this performance each of the
partitions is given a identifier (using a hash function). With this partitioning, each of the nodes
can quickly access and compute its partitions which will later be merged with the rest of the
partitions. This partitioner has been developed to read data structured under VCF format.

¢ Data Selection: similar to MDR, select which data (variants) will be used to analyze the pairwise
combinations. This process is done by each partition on each separate computational node.

¢ Data Merger: this connector merges the data retrieved from each of the partitions to compose a
final model to feed the data predictor.

¢ Data Predictor: this component gets a model as input as well as data. Out of this data, the
inference using the model. This component has been also sped up through the usage of GPUs,
which allow a speed-up of x1.06 using MareNostrumIV accelerated partition. It is expected
to improve this even further with more improvements allowing for multi-GPU utilization and
new accelerated partitions.

Discovery Data Data Data Data Multiple variant
dataset P3 one electio erge oredicto interactions associated
with disease

Data partitioned to
several compute nodes

Generation of single ML
model
[

Figure 5: GWD use-case data connectors

This use-case is getting integrated with Lithops. Preliminary results show potential performance
gains which are described in the next section.

3.5 What are the benchmarks/KPI?

In this section, we present the KPIs which evaluate the performance of both use cases. To do so we
carry out a set of experiments utilizing the supercomputer infrastructure we have available at BSC,
and when applicable we compare it as well with traditional cloud providers.

Currently, the benchmarks have been performed on a rather small amount of resources. This
is because accessing a broader amount of resources available in the supercomputer special access
requests must be made through the grant of a RES [2] or even a PRACE [3] proposal. The difference
among them resides in the number of resources that can be granted. The PRACE grants the most,
however, typically such large grants are made by splitting granted resources across supercomputers

Page 10 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

of the network, instead of having them all in a single one. This, requiring to adapt the workload
to run in different environments and then combine the results. An application for an RES has been
already made and awaiting acceptance to carry on with large-scale experiments. Depending on the
outcome of this initial large-scale experiments we may apply for a PRACE to expand the testbed even
further.

3.5.1 Experiment 1: Multi Dimensionality Reduction (MDR)

The first step to being able to successfully run experiments on this use case was to produce a synthetic
dataset out of the NuGENE cohort data. This was done by applying a Chi-Square test to all the pair
combinations of the dataset, obtaining a significant value per pair. We use this value for filtering the
non-significative pairs and reducing the dataset. This is depicted in figure 6

STEP 1 - CHI-SQUARE STEP 2 - MDR
Singularity Container
Chi-Square Test — e 4 N\ — @
L — HPC Enviroment
Data subset L
NUGENE data Multifactor S'QBgi'I?snt
Dimensionality
Reduction
> Z

Figure 6: Chi-Square test dataset reduction for MDR

The MDR use case is implemented in singularity containers. This feature allowed us to run not
only on our virtualized cluster but as well on supercomputing environments, allowing us to mas-
sively parallelize our workload. For this purpose, an initial version was developed using Apache
Spark, HDFS, and Zookeeper, as depicted in figure 7.

Singularity instance

N

Singularity instance (X X J Singularity instance

m m
m ZOOKEEPER m ZOOKEEPER

Figure 7: MDR containerized architecture

With this implementation, we have been able to process a million pair combinations in a dis-
tributed environment, for now experimenting with the scalability on up to 3 worker nodes (pro-
cessing nodes). This infrastructure thus also contains a fourth node used by the Spark master to
synchronize. Figure 8 depicts the computational time spent according to the number of workers
nodes.

Following these results, which seemingly show linear scalability per number of nodes, we re-
peated the experiment utilizing larger datasets. We have increased the number of variants computed

Page 11 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4000

3764,58

3000

2000

Computation time (seconds)

1000

1 node 2nodes 3nodes

Figure 8: MDR scalability per nodes using pairs. Y-axes represent computation time and x-axes
number of workers nodes used.

per million, from 1 million to 6 million. We have observed there is a perfect linear scalability per
node. Each pair is processed independently and thereafter these results were expected. However,
despite this scalability processing the total 15 million variants and the 6 x 10'*> combinations would
take almost 100 days to complete in a supercomputer such as MareNostrum4 (MN4).

This is just one step of the process, though. The next step is to decide the top predictor variants
that will be used to apply our method over the 5 cross-validation sets we are using. Moreover, ideally,
we would like to use 10 cross-validation sets, but once again we are dealing with an extreme-data
problem, and using 10 sets would be too computationally expensive. To reduce the input dataset
we have applied the Chi-Square test as described above. Although this test is computationally less
expensive than the MDR, we still have to deal with a huge volume of pairwise combinations. Using
MN4 and the Greasy software[4] to distribute more than 2000 parallel tasks across 16 working nodes
(48 cores and 96 GB of RAM) we have tested the association of 11.297.253 variants in less than 4
days. For MDR we have kept the pairs with a relevant association with the diseases. The selected
associations are those with a p-value < 1% 107°, corresponding to 1.883.192 pairs. Figure 9 shows
the distribution of the Chi-Square pairwise interaction p-values depending on the MDR consistency
value, which corresponds to the number of times a pair appears at the top pairs of the CV dataset.
Consistently, the total number of pairs decreases after each step of the CV, ending with only a few
pairs that are detected to be relevant and independent of the dataset partition.

Page 12 of 76

NEARDATA

HORIZON - 101092644

30/04/2024

RIA

anjen-d g1bo1-

L

1T o1 8 L 9 1T ol 6 8 £ 9 II O 6 8 L 9 II OL 6 8
0 vZ 0Z ¢S T 1€ SOV 72i% gpge 9 <Lz S00C LZ 91€ Viev
EV6YT
Z1SY6
S e £ mm 7 mEm 1.

Jied doj se pa3o3|9s SawWli}l Jo JSqUWINN

T

01

6 8

L 9

617699

€CLOEE

S

L8Y ge1/

850¢€6

989/SS

‘Josejep
AD ¢ a3 woij sited doy se pajoatas usaq aaey A3y} sowmy ay) Aq padnoird ‘sired parpnis) 10§ 9[eds dIWILILZO] Ul UOnNqLIsIp anjea-J 6 I3

ST

siled jo Jaquuinn

Page 13 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Finally, we have made the final selection by setting a hard filter for keeping only the pairs that
appear in all 5 CV datasets as the top 20% predictor pairs. From the 1883192 pairs analyzed, we
have obtained a set of 104 pairs. These results suggest that the discovery of the interacting pairwise
will depend on the calculated effect size that the variants will have with the disease, independently
of how much lower the p-value is. Regarding the significance level of the top 104 pairs, we have
measured the prediction power of the top pairs from the MDR using the average precision (see Figure
10) of the 5 CV sets. As expected, the group with the best average precision (60,17%) corresponds to
the group of top pairs common across all the CV sets. However, some pairs have a higher average
precision in other groups. This can be explained by over-fitting in that set, meaning that its relation
with the disease is completely related to the data analyzed.

62
o
- s i ? —
860 A g —
S [—
@ S
g 581
i~ 8
@
[o)]
E 56- <!>
o
>
©
o
= 544
o
o
[m)]
= 52
o
a g
50 8
1 2 3 4 5

Times selected as top predictor pair

Figure 10: Box plot of the average prediction power (precision) for the studied pairs and their con-
sistency value. To be selected as a top predictor in each CV set, a pair must be inside the 20% top
predictor pairs of the set.

According to the state of the art on T2D, we found that the selected top pairs are known to be
associated with the disease and hence proved the biological value of our method.

MareNostrum 4 supercomputer infrastructure
As explained earlier, this use case is mostly focused on computational power. Consequently, this use
case is the most suitable to enhance it leveraging an HPC data connector. In NEARDATA we have
used MareNostrum 4 supercomputer to demonstrate such a connector. Despite this supercomputer
brings great computer power, it has its limitations when it comes to usage. A significant limitation
is the fact that being a production environment, and a shared one implies security constraints such
as not using docker containers because they inherit from the init process. Consequently, they are
subject to potential security leaks. Similar software is also faced with such limitations. Importantly,
all software pretended to be installed must be done so either at a user-level or ask for the operators
to do so. In the latter case, the software will be carefully examined and any feature not allowed will
be stripped and not installed. This process, on the other hand, is a long and tedious process that may
require weeks to install.

When it comes to the hardware itself, MIN4 contains 3456 nodes with 48 cores each (2 CPUs of 24
cores). Each of the CPUs is a Xeon Platinum 8160 operating at 2.1GHz. The main memory is of 96
GB per node, with 32 KB and 1 MB of private L1 and L2 caches, respectively. And a shared 33 MB L3

Page 14 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

cache. The software environment works on top of a SuSE Linux Enterprise 12.2 operating system.

KPI-1: Significant performance improvements (data throughput, data transfer reduction) in

Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data vol-
umes (genomics, metabolomics).
We have observed that our method scales linearly by the number of computational resources avail-
able. We can safely say it is a computational problem rather than a data ingestion problem. That is,
we do not necessarily need to have a fast ingest of the data since just reading a minimal amount of
data requires a processing time over passing the time required to read the next block from disk. With
this idea in mind, our method was re-implemented using MPI to maximize the computational power
a supercomputer such as MareNostrum can provide.

We made a comparison running Spark on MareNostrum as well as our implemented MPI method
using the HPC Data Connector. We observed how the new HPC version overpasses the capabilities
of Spark and observed a significant speed-up of 5x. This is depicted in figure 11.

140 secs
SYNTH DATA
=--_]
400 variants [-]
Z’; oo
28 secs

nodes =
-]
]

Figure 11: Execution time comparison of MDR implementations with Apache Spark versus HPC in
MareNostrum 4 utilizing 48 cores.

Following this initial evaluation, we run this version of the use-case with different amounts of
cores per node, nodes, and combinations to compute. The goal was to determine the best ratio of
combinations to compute per core and second. The challenge towards this goal was that MareNos-
trum has a vast amount of cores and nodes available, making it non-trivial to find the best combi-
nation of pairs to process per core and second. Thus, we started studying the best configuration
possible and the results are shown in figure 12. The size of the dataset determines the amount of
pairwise combinations to be processed. Out of it, we split the dataset into several batch sizes per
each core to process. Each of the nodes has 48 cores available. The x axes show this batch size to
process per core, while the ya axes show the combinations processed per second and core. The bars
legend indicates the number of combinations to process per file (s50 stands for 50x50 combinations
per file while s200 is 200x200 combinations per file). The number indicated the aggregated amount of
cores used (which is a multiple of 48 as it is the amount of cores available per node). We have tested
on up to 8 different nodes.

Conclusions: for this experiment our efforts have gone in one hand into determining which are
the most relevant pairs to analyze. This selection is especially relevant as it defines how well our
heuristic can perform. On the other hand, we have devoted many efforts into the creation of a new
HPC data connectors that allows moving complex computational processing into HPC framework
such as MPI. While this connector shows potential we faced the new problem of deciding which was
the best amount of combionation of variants to process per core and per node. This decision was

Page 15 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

ms50 x 192
ms50 x 384
Ds100 x 192
=100 x 384
ms200 x 192
ms200 x 384

COMBS/SEC/CORE

32 64 128 256 512

BATCH x Core

Figure 12: Chart showing the best set-up of combinations to process per core and per node.

essential in order to effiicently compute in a large number of nodes. Now that all this work is carried
out, through the grant of a RES [2] we expect to be able to carry out large-scale experiments by M18
of the project.

3.5.2 Experiment 2: Genome-Wide Discovery (GWD)

This use-case poses the challenge of ingesting a large amount of data to train and validate a machine-
learning algorithm. Currently, as earlier explained, we are targeting only pair-wise combinations.
However, in an ideal world, we would like to compute all the combinations in sets of 23 (considering
all the chromosomes). Ingesting all the data in a single node is not possible, not even in a supercom-
puter. The main challenge we are facing is to ingest, partition, and distribute data as fast as possible.
Consequently, we employ a distributed learning method to cope with vast memory requirements
and to reduce training time.

KPI-1: Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data vol-
umes (genomics, metabolomics).

Regarding this use-case, we are exploring the different research challenges to improve the data
throughput (ingestion of data) of the pipeline:

* ML cross-validation: The use and application of Machine Learning (ML) models require the
employment of diverse protocols to ensure the robustness of the predictors and their reliability.
To confirm the applicability of the methodology developed under the GWD use case to solve
the variants interaction problem, we have expanded the analysis and replicated the results in a
completely independent cohort. To that extent, we have conducted 2 steps: 1) training and test
in the 70KforT2D dataset followed by a prediction in the UK Biobank, and 2) training and test
in the UK Biobank followed by a prediction in the 70KforT2D.

¢ Lithops ingestion: ML models are usually encoded with 3 steps in a sequential manner. These
steps involve 1) a data ingestion process, 2) training, and 3) testing. Particularly, this sequence

Page 16 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

is expected to be applied once, which means that one dataset will be only ingested, trained, and
analyzed only one time. However, in this particular case, the diverse computational limitations
that encompass the analysis of variants interaction, justify a combinatorial analysis of the data,
which involves multiple analyses of thousands of fractions of the initial dataset and, therefore,
multiple ingestions, trains, and tests from the same dataset. To enhance the ingestion of the
data and ensure the best performance, we adapted this process to use Lithops, a framework
for big data analytics that facilitates the fraction and ingestion of the input dataset in a parallel
manner. The use of this tool improves the performance in 2 directions: 1) It ensures a unique
ingestion of the initial file, thus avoiding the time consumption of multiple reads of the data,
and 2) Its parallel architecture enhances the ingestion time.

¢ GPU + CPU: Supercomputer architectures focus on performing fast operations and, therefore,
are usually based on CPUs and GPUs. The preparation of the multiple functions of the ML
model to be applied in both CPUs and GPUs ensures the ability of the methodology to be
applied in any architecture. The creation of connectors that facilitate the use of CPU and GPU
promotes the better use of the available resources, and the auto-scaling to diverse computer
architectures. Current tests have shown an speed-up of 3.1x times respect CPU-only, tested on
the accelerated partition of MareNostrum IV utilizing a single NVIDIA Volta V100 GPU. Thus
showing great potential considering there are up to 4 GPUs available in such nodes.

KPI-3: Demonstrated resource auto-scaling for batch and stream data processing, validated

thanks to data-driven orchestration of massive workflows.
Moreover, this use case also targets to improve KPI-3 via enabling autoscaling of the application with
the integration of Lithops data connector. The advances in genomics during the last decades have
promoted the possibility of the analysis of more samples and, therefore, the creation of bigger co-
horts with hundreds of thousands of individuals, and even millions. This new era has enhanced the
discovery and the progress towards a better comprehension of the genetics behind complex disor-
ders, but the big computational demands to analyze this huge amount of information still represent a
challenge that involves, among others, the use of auto-scaling methodologies. Here, to provide a ro-
bust data ingestion connector that ensures the auto-scalability of the problem, we have implemented
Lithops. Particularly, Lithops ensures the parallelization process of the data ingestion process, se-
curing the ability of the connector to be applied in large datasets with more individuals and more
features.

To be able to perform real experiments we needed to have the integration with Lithops completed
in order to run the use case on MareNostrum. This integration is described in the next section as
well as some baseline evaluation of the integration performance. Taking advantage of the same RES
already requested, large-scale experiments will start. We do target to complete them in the next
reporting period.

Conclusions: we have devoted most of our efforts in being able to ingest much more data that
we can now. This is an essential aspect of this experiment, as the larger the data utilized the better
the trained machine learning model will be. In order to do so we targeted the integration with the
Lithops framework, as one of its main goals it is precisely to efficiently distribute data across a large
number of nodes. This integration task is described in detailed in the following section. On the other
hand we have also made an effort on enabling GPU usage for our implementation so we can expand
our HPC data connector to utilize GPUs and move complex vector computations to such specialized
devices. In the following period we expect to be able to complete this work and carry out large-scale
experiments through the grant of a RES [2].

3.6 Integration with the architecture components of NEARDATA

Lithops framework is being integrated into the GWD pipeline to improve scalability. GWD pipeline
has a data ingestion problem, as it requires reading a vast amount of data which will be used to
apply a machine learning model. Due to the quantity of data, a distributed learning model is uti-
lized. Thanks to Lithops we can scale this distribution phase and be able to ingest more data than

Page 17 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

before. One of the main challenges was that due to confidentiality reasons the data is only avail-
able on MareNostrum supercomputing, hosted by BSC. As explained earlier, the supercomputer is a
production environment with security restrictions, such as not being able to run docker containers.
The Lithops framework backends were currently making use of docker containers, either directly
or through platforms such as Kubernetes. Neither of those platforms can work in this production
environment.

Consequently, during the integration phase, we have initiated the development of a new Litohps
backend utilizing RabbitMQ and POSIX filesystems as storage. The fact that we are now supporting
a POSIX filesystem means we can also take advantage of the MareNostrum storage system, GPFS,
which allows for a greater storage bandwidth compared to traditional storage. This backend allows
to run Lithops on the supercomputer, as our RabbitMQ setup does not require privileges to run. On
the other hand, reading from the filesystem allows us to make use of the GPFS storage in place on
the supercomputer.

Figure 13 shows the above changes for Lithops to use singularity containers to address the secu-
rity issues presented by the MN. Each machine in our cluster contains a Singularity container, which
allows the execution and management of all the necessary Lithops code to launch the N necessary
functions, taking into account these security restrictions. These functions are distributed equitably
among all the machines in the cluster by receiving different packets through RabbitMQ.

Machine 1 8

Singularity container

V1 /
(> N, SN P fha -—

() (() ()
LITHOPS ~ LITHOPS LITHOPS LITHOPS

Machine 2

Singularity container GPFS Storage

SS=S

LiTHOPS &

Lithops client < N

C) C) ()
UTHOPS LITHOPS LITHOPS LITHOPS

Machine N &5

Singularity container

V1) ¢
— % i N $ha AT T¥D. -

())) C)
UTHOPS ~ LITHOPS LITHOPS LITHOPS

Figure 13: Architecture of novel Lithops compute backend using singularity containers.

These packets contain the functions to be executed, so each container, upon receiving a packet,
checks if there are available resources and if there are, it launches as many functions as possible. In
this way, the nodes themselves manage the resources through the Rabbit work queue, ensuring that
all available resources are always used, avoiding wasting CPUs.

This work queue system allows for much faster and smoother communication between the client
and the workers. Furthermore, it allows for customization of these packets so that the available
resources can be managed as efficiently as possible.

Once this new compute backend was designed, the same was done for a new storage backend.
In this case, a storage backend was designed to work on the system’s file system. This was necessary
since until then, there was no way to work with GPFS. This new backend allowed for read and write
speeds as high as the disk used would allow.

This integration grants elasticity and flexibility in HPC environments which are typically not.
And at the same time we get the full power of computational nodes designed to maximize compute

Page 18 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

power. Lithops is designed to run in the cloud and especifically in FaaS environments, providing
great elasticity and flexibility at the expense of less computational power. Thus, we compare what
we achieve by running it on the supercomputer versus in typical FaaS environments using Lithops
FLOSP benchmarks. The results show how MareNostrum improved the performance with respect to
the current FaaS benchmarks tested in both execution time and average FLOPS as depicted in figures
14 and 15 respectively.

100 1,{ — —ha
ZZ] —— Alibaba
— AWS
85 —— Azure
80 —— Google
7 IBM
70+
65
= 60
O 554
c
2 50
g 457
2 404 I
35 I
30+
254
201
151
101
2 Il
0 L

T T T T T T T
0 36 72 108 144 180 216 252 288
Execution Time (sec)

Figure 14: Performance in terms of execution time running the FLOPS lithops benchmark on top of
MN4 compared to commodity FaaS providers.

2500

£ 2000 -

(e}

T

5 1500

X

© 1000

o

500 /_/\‘\'\’_/J\/‘k
0 ; ; ; ; ;
0 50 100 150 200 250

Execution Time (sec)

MN4
2000 1 Alibaba
AWS
1500 A
Azure
1000 - Google
IBM
500
/—F—'N
50

0 T T T T
0 100 150 200 250
Execution Time (sec)

Effective GFLOPS

Figure 15: Performance in terms of GFLOPS running the FLOPS lithops benchmark on top of MN4
compared to commodity FaaS providers.

Figure 16 shows the performance of the storage backend. This picture compares the aggregate
read and write bandwidth per function on the different cloud providers versus MN4 (blue). This
presents rather poor write results because the use of GPFS in MareNostrum is shared among all
machines and several users are running concurrently. It is not possible in such an environment to re-

Page 19 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

quest sole use of the entire supercomputer as it is a public infrastructure intended to advance science
in many aspects. So it is of utmost importance to share it as much as possible while considering the
performance trade-off. Future next steps include examining how can we deadl with this situation to
improve storage performance.

Write Read
T T
50 I MN4 il
I Alibaba
B AWS
I Azure
40 .
I Google
1 IBM
(%]
5 30
©
C
2
I
20 111
10 1 T
0“\ = m
0 100 200 300 0 100 200 300
MB/sec

Figure 16: Lithops Storage benchmark with MareNostrum.

After this integration we are now able to launch and execute Lithops efficiently and quickly on
HPC systems, in this case, on Marenostrum. This allows resource management, such as CPU and
memory, to be fully managed by this tool, enabling developers to save efforts in such tasks. This im-
plementation represents a significant innovation for Lithops and these massive computing systems.

Page 20 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4 Use Case Surgery
4.1 Why is the use case extreme data?

Recent advancements in surgical technology have yielded vast amounts of valuable data, holding
immense promise for improving patient care. Yet, the diverse range of data sources presents a sig-
nificant challenge for surgeons, particularly within the operating room. In surgical scenarios, the
concept of data-driven computer-guided surgery (CGS) emerges as a solution to aid surgeons during
procedures. Specifically, in laparoscopic and robotic surgeries where challenges like depth perception
and hand-eye coordination arise, CGS provides assistance functions such as tumor localization and
predicting surgical complications by analyzing the surgical workflow through endoscopic camera
video streams.

However, CGS systems encounter various challenges due to the large volume of data they handle.
A robust CGS framework must effectively manage:

¢ Large volumes of real-time video data.
e High-resolution data streams.

* Temporal information (real-time analytics) crucial for meaningful guidance during surgery.

Moreover, owing to the inherently sensitive nature of patient data, stringent regulatory compli-
ance and confidentiality requirements come into play. Thus, the utilization of confidential and secure
computing technologies becomes imperative to ensure a safe, protected, and trustworthy execution
environment.

4.2 Assessed Datasets

Throughout this project, our primary focus will be on utilizing in-house data to thoroughly test and
fine-tune the developed systems.
Below are some datasets currently available for our use:

* Dresden Surgical Anatomy Dataset (DSAD) (University Hospital Dresden and NCT/DKFZ) [5].
* HeiChole (University Hospital Heidelberg and NCT/DKFZ) [6].

* Cholec80 (University of Strasbourg) [7].

¢ Synthetic video data (NCT/DKFZ) [7].

Moreover, given our close ties to the surgical facilities located on the university hospital campus,
we aim to expand our dataset collection to encompass a broader spectrum of surgical workflows.

4.3 Description of the use-case

Our use-case in surgery encompasses two distinct focal points. Firstly, we address the challenges
inherent in Federated Learning, with a primary objective of improving its security protections. To
achieve this, we leverage the Flower framework, enclosing its functionalities within a Docker con-
tainer for streamlined deployment and management. Additionally, we integrate Scone to ensure
security, ensuring the preservation of privacy throughout the Federated Learning processes.

Secondly, we embark on the development of a surgical video streaming application to handle
multiple inference jobs. Our current testbed on Dell’s Cork lab can be found in Figure 17. Our strat-
egy revolves around the integration of Pravega and GStreamer into our existing pipelines. This inte-
gration empowers us to harness the advanced processing capabilities offered by GStreamer plugins,
including our developed segmentation, phase detection, and tool detection plugins. Furthermore, by
integrating both GStreamer and Pravega into our infrastructure, we establish a robust ecosystem that
contributes to efficient data collection, processing, and storage within the context of surgical video
streaming.

Page 21 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

RTSP Camera

Simulator
5>

RTSP Camera
Recorder

Controller

Pravega Video Server

I

-2
Pravegale-

(NCT Inference)

Inference Job

Real video
Jobs Segment Store Qutput
NVIDIA >
oos () pyTorch Inference Job 3
_,) NCT = '(,.,,/‘ Output Pravegate

=)
) ?
kubernetes il:::l:E i@} {MQ:E i@}- -

vmware

Kubernetes Nodes

= Video data Physical Servers

Figure 17: Deployment of Pravega and NCT video stream analytics in Dell’s Cork lab.

4.4 Data Connectors
4.4.1 Federated Learning

We constructed a Docker container to leverage Flower as a Federated Learning framework for our
experiment. This setup streamlines the establishment of distributed training for the models we aim
to train. Docker enables us to efficiently integrate Scone’s capabilities to enhance security measures,
ensuring the protection of personal information within Federated Learning processes.

4.4.2 GStreamer and Pravega

Our developed data connectors for Pravega and GStreamer are implemented as GStreamer Plugins,
integrating seamlessly into the system. Pravega, serving as the streaming storage solution, efficiently
manages the storage and retrieval of video streams. Concurrently, GStreamer processes and analyzes
incoming streams in real-time using data connectors. Our Plugins incorporate machine learning
models. The plugin is responsible for extracting current images from the Pravega video stream and
forwarding them to the model for analysis. Furthermore, the results of this analysis are then overlaid
onto the incoming video stream and published into another stream. Depending on the task at hand,
different models are utilized to ensure optimal performance.
The following methods have been developed and integrated into plugins:

* Semantic Segmentation of the liver:

— Assigns a class value to each pixel of an image, indicating whether the pixel is part of the
liver or not.

¢ Phase Detection of Cholecystectomy:

- Classifies the current frame into the corresponding step of the gallbladder removal proce-
dure.

¢ Surgical Tool Detection:

Page 22 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
abkdn abkdn
:Inl: :Inl:
Hospital A Hospital B

Further Clients
[..]

Private
Data

Private

Local Model Local Model

SCONE Layer SCONE Layer SCONE Layer

.~

e

Federated Server
with Global Model

SCONE Layer

Figure 18: Secure Federated Learning Pipeline leveraging SCONE

— Determines the presence of a surgical tool in the current frame and identifies its type.

4.5 What are the benchmarks/KPI?

4.5.1 Federated Learning

KPI-3: Demonstrated resource auto-scaling for batch and stream data processing, validated thanks
to data-driven orchestration of massive workflows.

Machine learning algorithms are often trained in a centralized manner, where all necessary data
is collected from various sources and stored on a single server for local training. However, in the
medical field, strict data regulations prohibit direct data transfer without approval from the ethical
committee.

Decentralized training strategies, such as Federated Learning, offer an alternative approach. In
Federated Learning, data remains distributed among partners, and each partner trains their model
locally. These trained models are then shared with a central server, which aggregates them into a
single global model. At the end of each iteration, the global model is sent back to the partners. This
approach allows for a well generalized high performance across all available datasets.

Federated Learning demonstrates the ability to process more data compared to centralized learn-
ing when data sharing is permitted due to the fact that the model instead of the data is shared. More-

Page 23 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Phase.PREPER

(a) Semantic Liver Segmentation (b) Phase Detection of Cholecystec- (c) Surgical Tool Detection
tomy

Figure 19: Surgical Image Analysis: This figure showcases three images representing different as-
pects of surgical image analysis. The first image demonstrates semantic liver segmentation with a
green overlay. The second image focuses on phase detection in cholecystectomy, and the third image
highlights tool detection. Both visualizing the output as text overlay. All of these techniques offer
valuable insights and aid in medical decision-making.

over, the Federated Learning framework, Flower, streamlines the addition of more partners into the
training process without requiring additional effort. This enables auto-scaling of the training process.
Additionally, Federated Learning can lead to improved model performance compared to individual
models trained on separate datasets.

To sum up, we want to combine the federated learning platform, Flower, with Scone to train
multiple clients with extreme data to achieve a high performance with a good generalization ability.

KPI-4: High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

In addition to facilitating collaborative training, Federated Learning also ensures the confidentiality
and security of the training procedure. This is achieved through the incorporation of our added
SCONE environment.

SCONE will protect the execution, via the TEE in the server; i.e. the CPU and memory read-
ing/writing. The assertion of the SCONE’s efficacy is done by inspecting the memory. Linux han-
dles memory as a representation in the filesystem in the form of files. For example, assuming the
process running federated learning has a process id (PID) 1310177. We will, in turn, read two files
that the operating system uses to handle memory: the mem and maps. So, for this running process, the
files that will be read are /proc/1310177/mem and /proc/1310177/maps; while at the same time their
contents will be dumped to a third file created and owned by the adversary making the inspection.

The second phase of the assertion requires that we, systems administrators — in the role of the
adversaries —, know some secret that resides persistent for as long as the process 1310177 is up or
any particular piece of data processed during the time of dumping. With a simple grep or grep
-o on the dump we can verify if that piece of confidential data is exposed. For example, we know
that "SURGERY" ought to be in the dump of a non-confidential execution, hence grep -o SURGERY
memdump-confidential.log should not bring anything.

Experiment 1: Execute the federated learning demo inside the SGX enclaves using SCONE’s
network shield, configured through the Data Broker’s CAS(Configuration and Attestation Service)
component.

Goal:

* Investigate how confidential federated learning application, leveraging Trusted Execution En-
vironments (TEEs), address inherent challenges within the Federated Learning paradigm. These
challenges include scenarios where attackers with privileged /root access could potentially ac-
cess training models, instances where numerous malicious clients might collude to reveal local
data and models of other clients, and situations where malicious clients could manipulate their

Page 24 of 76

HORIZON - 101092644
30/04/2024

NEARDATA
RIA

local training data or parameter updates forwarded to the central training system, thereby com-
promising the integrity of the global model.

* Evaluate the performance of the confidential federated learning application by examining how
SCONE’s network shield, configured through the Data Broker’s CAS component, impacts exe-
cution time compared to both the Vanilla (Intel/Non-SGX) environment and the SCONE (Intel
SGX/hardware mode) setup, with a specific emphasis on FL execution time.

* Evaluate the effects of optimizations on the startup latency of functions within the FL applica-

tion architecture.

Observations:

Experimental Setup Experiment Setup We executed the performance evaluation experiments on a
system with an Intel Xeon® CPU Silver 4314, 2.40 GHz processor, 128 GiB of main memory, and a
500 GB SATA-based SSD. All experiments are conducted inside Docker containers (version 20.10.19)

using Ubuntu 20.04.
Scenarios
Scenario Description
Vanilla (Intelno SGX) The FL application executing on Intel CPUs without SGX support.

Scone (Intel SGX/hardware
mode)

The FL application executing on Intel CPUs with SGX support,
benefiting from all hardware-backed security guarantees provided by
Intel SGX and SCONE.

Scone (Intel SGX/hardware
mode) with Data Broker’s
CAS component

The FL application executing on SCONE integrated with CAS
(Configuration and Attestation Service), several crucial security features
are employed to ensure the integrity and confidentiality of the process.

Network Shielding: SCONE’s Network Shielding feature is instrumental
in protecting network connections between the client and server
components of the federated learning application.

File Shielding: In federated learning, training data privacy is paramount
SCONE’s File Shielding capability encrypts the input training data using
the file system shield, ensuring that it remains protected

from unauthorized access.

Table 1: Scenarios

Page 25 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

FL(federeted learning) Application Execution time
120,000
100,000

80,000

Scone (intel
SGX/hardware mode)
mTime(s) 49.429 103,7156 1034688

Vanilla (non-SGX) Scone with CAS

Figure 20: FL Execution time

The results Figure 20 illustrated that the overhead in execution time observed for Scone scenarios
compared to Vanilla(nonsgx) corresponds to the enclave startup process. This process takes a fixed
amount of time given an enclave size. Therefore, for applications that are more complex and take
longer to complete, this overhead should correspond to a small fraction of the overall execution time.

Furthermore, SCONE uses two shields to ensure the security of data and network connections.
The network shield is configured through the Data Broker’s CAS component and protects network
connections between clients and servers while controlling data access. The file system shield mecha-
nism encrypts the input training data using SCONE's file system shield and decrypts it for processing
inside SGX enclaves.

Function Startup Optimization

Function startup optimizations to evaluate the impact of our SGX-based optimizations on the
function startup time. To explain these results, we conducted an additional experiment (Table 2),
where we measured application startup time while varying heap sizes. SCONE_HEAP: size of the
heap allocated for the program during the startup of the enclave.

Heap Size Startup time
6GB 220.6911s
8GB 210.1497s
10GB 209.1326s
12GB 193.6606s

Table 2: Startup time of a no-op enclave depending on the dedicated heap size for SGXv1

In this table 2 the results showed that enclave startup time depends linearly on the heap size in
the SGXv1 case. With larger heap sizes initialization time can reach 193 seconds (for 12GB heap), and
it dominates the total application runtime.

Conclusion: The solution encrypts input training data and code, such as Python code, and per-
forms all training computations, including local training and global training, inside TEE enclaves.
This secure federated learning allows for all gradient updates via Transport Layer Security (TLS)
connections between the enclave of clients and the enclaves of the central training computation. As
a result, attackers with privileged access cannot violate the integrity and confidentiality of the input
training data, code, and models. The Data Broker component that is integrated with CAS (Configu-
ration and Attestation Service), based on the remote attestation mechanism supported by TEEs. This

Page 26 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

component ensures the integrity of input data and training code. In other words, it ensures that train-
ing computations are running with the correct code, correct input data and have not been modified
by anyone, such as an attacker or malicious client. The preliminary evaluation shows that we can
ensure the confidentiality and integrity of federated learning computations while maintaining the
same utility /accuracy of the training computations.

KPI-5: Demonstrated simplicity and productivity of the software platform, validated with real
user communities in International Health Data Spaces.

In ensuring the productivity and user-friendliness of our project, several key questions must be ad-
dressed:

e Handling Multiple Large Datasets in Training:

— Strategies for efficiently managing and processing multiple large datasets during training
need to be explored. This may involve implementing data batching techniques, optimiz-
ing data pipelines, and leveraging distributed computing frameworks.

¢ Impact of Sconification on Execution Time:

— Assessing whether the Sconification process significantly increases execution time is cru-
cial. To mitigate any potential slowdowns, optimizations such as streamlining the Sconi-
fication process, optimizing code for better performance within the Scone environment,
and leveraging parallel computing techniques can be considered.

* Incorporating GPU into the Scone Process:

- Integrating GPU acceleration into the Scone environment can enhance computational per-
formance which is important for machine learning. This may involve exploring techniques
such as GPU passthrough or containerization to enable GPU utilization within the Scone
environment. Additionally, optimizing algorithms and frameworks to leverage GPU re-
sources effectively is essential for accelerating the training process.

4.5.2 Pravega and GStreamer

Next, we focus on analyzing the IO performance of Pravega for the NCT computer-assisted surgery
edge video analytics use-case. In particular, our goals are:

¢ To analyze the IO performance of Pravega depending on multiple aspects such as writer /reader
parallelism, video bitrates, network location, and underlying hardware performance (KPI-2).

¢ Evaluate auto-scaling mechanisms we built in Pravega for our computer-assisted surgery use-
case (KPI-3).

e Estimate the simplicity and productivity improvements for NCT from using containers with
Pravega GStreamer plugins installed and Pravega as a mechanism to automatically move video
data to a long-term storage tier (KPI-5).

KPI-2: Significant data speed improvements (throughput, latency) in storage & access, and
real-time analysis of, videos and sensor data.

First, we focus on evaluating performance improvements from using Pravega in the NCT computer-
assisted surgery use-case. To this end, we have developed a performance evaluation framework for
measuring IO performance of video streams in Pravega based on key metrics that impact user ex-
perience (i.e., end-to-end latency, historical throughput). We performed a battery of video analytics
experiments with Pravega in Dell’s Cluster in Cork Lab (see Fig. 17). The cluster used for testing

Page 27 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

was using Dell PowerEdge R750 servers with Intel Xeon CPU’s using VMWare Virtual Machines.
Each VM was given 8 vCPU cores, 16GB of RAM, and 250GB of local server NVMe SSD storage. A
100TB NAS server was also used to provide NFS remote storage for performance evaluation. A set
of 4 VM’s were connected using Kubernetes, with Pravega deployed within the cluster. To exercise
our benchmarks on an alternative infrastructure, we have deployed our experiments on AWS Elastic
Kubernetes Service (EKS). The cluster is formed by 3 EC2 i3en.2xlarge instances (acting as Kuber-
netes nodes) with 2 local NVMe drives each. We used the Rancher Local Volume provisioner [8]
plus some scripts to provision local volumes for Bookies, which are the component in charge of the
write-ahead log for Pravega. In both cases, we deploy Pravega as follows: 1 Zookeeper instance, 1
Pravega Controller instance, 1 Pravega Segment Store instance, and 3 Bookkeeper instances. In the
Cork on-premises cluster Bookkeeper writes data to both network storage volumes and local drives.
Pravega is configured to use 1 data replica in Bookkeeper per event stored, which we is good enough
for video analytics use cases. We use for comparison the latency of the Al inference jobs in Fig. 19.

We focus on performance metrics that have a direct impact on the customer experience when
deploying video analytics applications:

* End-to-end latency: This metric, measured in milliseconds, accounts for the time taken for a
writer to durably write a video frame in Pravega plus the time taken for a reader to read that
video frame back. Note that each video frame (or event) stored in the system is durably stored
in persistent media before acknowledging the writer, as data durability is one critical guarantee
that the system provides. The time calculation is done by time-stamping video frames at the
writer side and calculating the delta with the time seen by the reader when reading the video
frame (using time synchronization within the cluster, like NTP).

* Historical read throughput: This metric, measured in MBps, accounts for the throughput that a
reader (or multiple readers) can achieve when reading video streams that are not cached in
Pravega. As Pravega automatically moves data to a long-term storage tier, this metric illustrate
the historical read performance that we can achieve when fetching video data from long-term
storage. This is relevant if we consider applications using historical video streams for Al train-
ing purposes.

Experiment 1: Performance impact of bitrate.

Goal: Understand the impact of video bitrate on the IO performance of Pravega.

Observations: For the simplest scenario of 1 writer/1 reader in a video stream (see Fig. 21), the
impact of bitrate for typical values (6SMbps-20Mbps) is limited. For instance, at the p50 (median), the
end-to-end latency for a video stream with bitrate= 5Mbps is < 1ms lower than for a video stream
with a bitrate= 20Mbps. For higher percentiles, the difference seems to be even smaller and all of
them show long distribution tails, typical of streaming systems.

Conclusion: NCT can efficiently use Pravega to ingest and serve video streams for a wide range
of bitrate values. This is important to be able to address heterogeneous video analytics use cases.

Experiment 2: IO Performance based on the number of writers

Goal: Assess the impact on end-to-end latency of multiple parallel readers on a video stream.

Observations: As visible in Fig. 22, Pravega can handle multiple parallel video readers for a given
stream. For instance, for a bitrate= 5Mbps, the p95 end-to-end latency is around 2.5ms higher when
8 readers are consuming data from a stream compared to the case of 1 reader. In our understanding,
the increase of latency as we add readers is not only related to Pravega, but also to the limited re-
sources we have for deploying parallel pods perform video IO. Recall that, in general, we only use
2 Kubernetes nodes to deploy benchmark pods in order avoid co-locating writers/readers with the
Pravega Segment Store, as this would hide the impact of network latency in our experiments. Note
that this is a “tail read” scenario in which video readers consume video frames as soon as they arrive.
In Pravega, video frames (or, more generally, events) are written to durable storage and then cached
in memory for serving tail reads with low latency. These experiments show that the Pravega cache

Page 28 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

GStreamer end-to-end frame latency via Pravega (FPS=30)

CDF

=1 writer/1 reader per stream (bitrate=5Mbps)

—— 1 writer/1 reader per stream (bitrate=10Mbps)

1 writer/1 reader per stream (bitrate=20Mbps)
I I

5 10 15 20 25 30 35 40 4550

End-to-end latency (ms)

Figure 21: Impact of video bitrate on end-to-end latency.

works well for video streams and can handle multiple parallel (tail) video readers, for the bitrate
values used.

Conclusion: The Pravega in-memory cache deals well with multiple parallel readers on the same
video stream. This is important for NCT as there may have multiple edge analytics jobs doing per-
forming inference from the same video stream.

GStreamer end-to-end frame latency via Pravega (FP5=30)

FaeaTLEASU SR e o

CDF

—— 1 writer/1 reader per stream (bitrate=5Mbps)

= = =1 writer/1 reader per stream (bitrate=20Mbps)
—— 1 writer/2 readers per stream (bitrate=5Mbps)
= = =1 writer/2 readers per stream (bitrate=20Mbps)

1 writer/4 readers per stream (bitrate=5Mbps) ||
1 writer/4 readers per stream (bitrate=20Mbps)
——1 writer/8 readers per stream (bitrate=5Mbps)
= = =1 writer/8 readers per stream (bitrate=20Mbps)
L L 1 L L

15 20 25 30 35 40 4550
End-to-end latency (ms)

Figure 22: Impact of multiple parallel readers on end-to-end latency..

Experiment 3: IO Performance based on the number of writers.

Goal: Evaluate the impact on end-to-end latency of multiple video stream writers.

Observations: Fig. 23 (left) shows how this Pravega deployment can handle up to 4 parallel video
writers (with their respective video readers) with a p95 end-to-end latency < 15ms. This is good
enough for serving real-time video analytics pipelines. However, we observe that from 8 parallel
writers (and readers), latency becomes too high to support real time video analytics. In this sense,
we notice that the main bottleneck is not related to Pravega itself, but with the remaining resources
in 2 Kubernetes nodes to run all the benchmark writers and readers. To confirm that, in Fig. 23 (right)
we executed the same experiment (2 writers, 8 writers) allowing Kubernetes to use the remaining 2
Kubernetes nodes to place benchmark pods, thus having 4 nodes in total. If we inspect the results,
the end-to-end latency is similar for 2 writers as there is no CPU resource issues, whereas becomes
much better for 8 writers, especially for the tail of the latency distribution. This means that video
analytics performance at the Edge may be severely impacted by resource availability (CPU, memory,
networking) and end-to-end latency may be impacted as a side effect.

Conclusion: Even in a small deployment, NCT could exploit Pravega to efficiently handle multi-

Page 29 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

ple parallel video writers (e.g., up to 4 writers/readers with a bitrate=5Mbps the end-to-end latency
at p95 is < 10ms). However, in addition to IO resources, having multiple parallel processes writing
and reading from Pravega also requires from other resources (e.g., CPU, memory), which may be
scarce in an Edge deployment and could severely impact end-to-end latency.

GStreamer end-to-end frame latency via Pravega (FPS=30) %Streamer end-to-end frame latency via Pravega (FPS=30, bitrate=5Mbps)

0.8 0.8

0.6 0.6 -

CDF
CDF

3 1 writer/1 reader per stream (bitrate=5Mbps) X
“" |- ==1writer/1 reader per stream (bitrate=20Mbps)] 0.4 r K
— 2 writers/1 reader per stream (bitrate=5Mbps)

0.4r

A K = = =2 writers/1 reader per stream (bitrate=20Mbps) .
02t ," "- 4 Wr]ters/l reader per stream (b]trateiSMbDS) L 0.2+ o —— 2 writers/1 reader per stream (2 k8s nodes)|_|
5 4 writers/1 reader per stream (bitrate=20Mbps) v ——8 writers/1 reader per stream (2 k8s nodes)

b 8 writers/1 reader per stream (bitrate=5Mbps) 5 - - -2 writers/1 reader per stream (4 k8s nodes)
et - = -8 writers/1 reader per stream (bitrate=20Mbps) » 3 = = =8 writers/1 reader per stream (4 k8s nodes)
I 1 I I FI—

L L L L L L L L 0 1 L
5 10 15 20 25 30 35 40 4550 5 10 15 20 25 30 35 40 4550
End-to-end latency (ms) End-to-end latency (ms)

Figure 23: Impact of multiple parallel writers on end-to-end latency (left). Impact of compute re-
sources on end-to-end latency with multiple writers (right).

Experiment 4: Impact of infrastructure on IO performance.

Goal: Evaluate the impact of networking and storage configurations on the IO performance of
Pravega for video streams.

Observations: In Fig. 24, we show the impact of various storage configurations and deployment
layouts on IO performance for Pravega video streams. First, the use of local drives provides an im-
portant performance advantage (2x end-to-end latency improvement) compared to remote volumes.
That is, local drives provide the best possible performance to durably store data in a write-ahead log
manner (each write needs to be fsynced for durability). In this sense, we compared the local volumes
in our Cork on-premises cluster versus a similar deployment on AWS Elastic Kubernetes Service
(EKS) where nodes are provisioned with local NVMe drives. We used such NVMe drives to provi-
sion storage volumes for Bookkeeper, which is the main storage component of Pravega. In this sense,
we notice a small end-to-end latency improvement of AWS EKS compared to our on-premises Cork
cluster using local drives, which is probably due to the type of drives used. Besides, we wanted to
inspect the impact of networking on video frames end-to-end latency. In this sense, using remote
storage in our Cork cluster, we evaluated the impact on latency of having the video readers and writ-
ers in the same node as the Pravega Segment Store. As visible in Fig. 24, IO end-to-end latency is
reduced in 2 — 3ms by co-locating pods within the same node and avoiding the use of virtualized
networking.

Conclusion: Using local drives provides significant improvements on IO end-to-end latency,
which is critical for video analytics applications like computer-assisted surgery. Minimizing the use
of virtualized networking in video analytics applications may also provide latency improvements.

Experiment 5: Historical video read throughput.

Goal: Inspect the read throughput of readers catching up with historical video streams.

Observations: Fig. 25 shows an experiment in which a writer is writing to Pravega a video stream
of 5Mbps for 30 minutes. The reader is not started until 25 minutes seconds after the writer has
started. Once the reader is started, it reads as fast as possible to catch up with the writer. As visible,
once the reader is started it reads up to +90MBps, thus catching up with the available video data in
few seconds. Note that at least part of the data requested by the reader is not anymore in the Segment
Store cache and should be fetched from long-term storage. The excellent storage tiering capabilities
of Pravega provides high performance also in historical reads.

Conclusion: Pravega can properly serve historical video reads with high throughput. This is very
valuable, as there are use cases like NCT in which historical video needs to be reprocessed in batch
for different purposes, such as training Al algorithms.

Experiment 6: 1O latency vs Al inference latency.

Page 30 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
(13Streamer end-to-end frame latency via Pravega (FPS=30, bitrate=5Mbps)
T — T T
f,....m- i
H]
5]
0.8 H] i
§ :
F' L]
H r
0.6 .]
L H 1
8 = = =1 writer/1 reader per stream (on-premise cluster, remote volume, no co-located pods)
0 4t = 1 writer/1 reader per stream (AWS EKS, local drives, no co-located pods)
. ——1 writer/1 reader per stream (on-premises cluster, local drives, no co-located pods)
- 1 writer/1 reader per stream (on-premise cluster, remote volume, co-located pods)
ri L
i)
0.2¢ 7 ! 1
;’ x
.‘-/ i
’
0 ! LR I I L L I I I
5 10 15 20 25 30 35 404550

End-to-end latency (ms)

Figure 24: End-to-end latency of video frames when using local volumes, remote volumes, and
benchmark pods co-located with Segment Store pod.

+ Read Bytes

Figure 25: Historical throughput for a single video reader (bitrate= 5Mbps).

Goal: Understand the relative impact of Pravega IO latency on a video inference pipeline.

Observations: In Fig. 26, we show one of the Al inference jobs (see Fig. 19) used to evaluate the
inference latency compared to the IO end-to-end latency. Concretely, we use two inference jobs in
this experiment: i) a liver segmentation job, and ii) and surgery instrument identification job. The
video inference jobs are deployed on a separate Kubernetes node with access to a GPU. In Fig. 26, we
can compare the latency values related to IO and video inference. Visibly, while the distribution of
inference latency is not heavy tailed (i.e., GPU has a more stable behavior than network/drive), most
video inference latency values are significantly higher than IO latency. For instance, at p90, inference
latency is around 2x higher than IO end-to-end latency for local drives (AWS EKS, on-premises clus-
ter). This means that ingesting video data via Pravega is affordable, given all the data durability and
management benefits it provides. Interestingly, we observe that running a video inference job with-
out a GPU is virtually impractical, due to the high latency that may result from running inference on
a regular vCPU. This is an interesting hardware aspect to be considered when deploying Pravega at
the Edge, if a customer needs multiple video inferencing jobs to be running in parallel.

Conclusion: With a proper storage layout, the video frame end-to-end IO latency represents only
a fraction of than the actual inference latency in the NCT models tested (e.g., end-to-end 1O latency
is 45% lower than inference latency at p95). Also, it is key to have GPU hardware available (and/or
sharable) for Al inference pipelines, as otherwise the inference latency becomes impractical.

Page 31 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
GStreamer end-to-end frame latency vs Al inference latency (FPS=30)
S ————— - T T T T T T

l'-
1
0.8F1 ' .
1
1
r
0.6F ,' Instrument detection job latency (GPU) E
[T 1 Segmentation job latency (No GPU)
=) r — 1 writer/1 reader per stream (bitrate=5Mbps, on-premises cluster)
O : = = =1 writer/1 reader per stream (bitrate=20Mbps, on-premises cluster)
0.4} Fl —— 1 writer/1 reader per stream (bitrate=5Mbps, AWS EKS local drives) |
.
1
02| 1
1
.
0 Pl | | L 1 1 1 |
5 10 20 30 4050 100 200 300 400500

Latency (ms)

Figure 26: Latency comparison of video frame IO vs inference latency.

Scaling policies
Metrics Metrics
v «

Scaling decisions

Stream parallelism

%:7 Flink instances
[
>
w
I m) =
- - - :
" - w
' [
Elastic data 2
Pravega stream Flink
instances instances Time

Figure 27: Orchestrator component and its interactions with user-defined scaling policies, Pravega,
and Flink. Moreover, we show an example of exploiting the information about the parallelism of a

Pravega stream for right-sizing a Flink job.

KPI-3: Demonstrated resource auto-scaling for batch and stream data processing, validated
thanks to data-driven orchestration of massive workflows.

There are multiple angles in which resource auto-scaling can be exploited to the benefit of use-
cases like computer-assisted surgery. During the first part of the project, we explored the auto-scaling
of the stream abstraction itself. While a full description of this piece of research work is described in
D3.1, we briefly overview the main outcomes in this deliverable and the main benefits for NCT.

Stream processing pipelines need to handle workload fluctuations (e.g., daily patterns, popular-
ity spikes) by scaling up/down the resources contributed to running jobs. This is likely the case in
NEARDATA use cases; e.g., surgery rooms occupancy (NCT for computer-assisted surgery) or even
genomic data generation (UKHSA for genomics data storage and analytics) may show strong daily
patterns due to standard work shifts. While there have been efforts proposing auto-scaling mech-
anisms for stream processing engines, prior work has overlooked the role of the storage system in
ingesting and serving stream data. The absence of effective scaling for data streams is problematic
given that the number of parallel partitions of a data stream limits both streaming data ingestion
throughput and read parallelism for downstream streaming jobs.

In NEARDATA, we propose to augment the auto-scaling notion of stream processing engines
with information about the source data stream. The key novelty of our approach lies in exploiting
elastic data streams to ingest data, which is a unique feature of Pravega: a storage system for data

streams part of the Dell’s Streaming Data Platform. Pravega streams can dynamically change their
parallelism based on the ingestion workload, and such information can in turn be exploited for auto-
scaling the streaming job downstream. To this end, we have developed an Apache Flink connector
for Pravega, as well as an auto-scaling orchestrator that feeds on data stream metrics (see Fig. 27).
The orchestrator is in charge of consuming monitoring information from both storage and processing

Page 32 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
16k Streaming Pipeline Processing
e} T T T T T T
S 13& | Pravega ingested stream events — Flink job processed events ||
8 10k :
o oK .
£ 6k .
o 4k]
Lﬁ 2'6 L L 1 Il L
10:00 11:00 12:00 13:00 14:00 15:00
16 Auto-scaling Process
1% ‘ \ Pravega stream segments ——Flink task managers\ ‘ 8
€10 i
38 .
(G ‘61]
2 4
0

10:00 11:00 12:00 13:00 14:00 15:00
Time

Figure 28: Data ingestion and processing overview of the streaming pipeline with our storage-
compute auto-scaling mechanism.

engines. This information is the foundation for making auto-scaling decisions. Second, the orches-
trator accepts user-defined scaling policies based on monitoring metrics. It continuously evaluates
the metrics related to the existing policies for reacting and scaling up or down a specific service
accordingly.

Experiment 1: Stream and compute coordinated parallelism auto-scaling.

Goal: We aim to evaluate the behavior of our storage-compute auto-scaling mechanism for stream-
ing processing pipelines.

Observations: Fig. 28 shows a 6-hour experiment in which a fluctuating ingestion workload
influences both the Pravega stream parallelism and the number of Flink task managers. Visibly,
Fig. 28 shows how the number of stream segments changes dynamically according to the workload
intensity. The scaling policy for the stream is set to 0.8K events/second. Note that during stream
scaling, the Pravega control plane still guarantees event ordering per routing key as it changes the
segment configuration of the stream. On the reader side, we also observe that the number of Flink
task managers auto-scales according to the number of segments in the stream. The job scales because
we have set a one-to-one relationship between task managers and segments in the orchestrator policy.
As expected, the auto-scaling process for the Flink job has a direct effect on its processing throughput.
Furthermore, despite the dynamic changes in stream parallelism, our connector and the underlying
reader group semantics guarantee that all events are read only once.

Conclusion: The orchestrator component allows us to auto-scaling streaming analytics jobs auto-
matically based on elastic Pravega stream parallelism. This may be important in use cases like NCT,
in which, in addition to video cameras, there could be multiple medical devices publishing events
that require streaming storage and processing.

KPI-5: Demonstrated simplicity and productivity of the software platform, validated with real
user communities in International Health Data Spaces.

Reduction in developer hours/cycles required for data management tasks related to surgery videos,
comparing the use of Pravega and GStreamer to current methods. It is expected that the storage
and accessing of surgical data is significantly simplified by using Pravega and GStreamer. Our re-
search will evaluate the simplicity and productivity of the software platform by engaging real user
communities within International Health Data Spaces.

A prominent application where Pravega and GStreamer can push the usability forward is data
acquisition in the surgical domain. Currently, each department utilizes individual PCs to save la-
paroscopic videos, followed by various data processing steps to extract essential information. Post-
acquisition, data consolidation involves either laborious copying and pasting across multiple com-

Page 33 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

puters via remote access or onto physical hard drives, both inefficient methods. Leveraging the
Pravega streaming storage system significantly reduces administrative overhead. Pravega employs
a tiered storage system, streamlining the data flow process.

Experiment: Comparison of time-demands between ROS and Pravega-Gstreamer

Goal: We aim to evaluate how much time may be saved by employing the Pravega-Gstreamer
solution in our workflows

Observations: The full workflow of utilising such systems can be considered to have three ele-
ments: Prototyping, Deployment, Data storage and access. To compare the amount of time used in
developing prototypes consisting of surgical assistance methods of interest, it is necessary to measure
the typical amount of time required for these three workflow phases. ROS provides the baseline for
the amount of time, as it is the currently utilised implementation means. While the exact time needed
will vary for different use cases, we expect that the reduction in developer hours will be considerable,
especially for Deployment and Data administration tasks. A visualization can be found in Figure 29.

Prototyping: Approximately four hours was required to create a ROS node implementation of an
instrument detection method. Due to the similar modularity and abstraction of the two infrastruc-
tures, we estimate that a similar amount of developer hours/cycles is required for implementing
such methods in Pravega.

Deployment: When it comes to running prototyped and developed systems on other workstations,
since we rely on containerisation with Pravega-Gstreamer (and not for ROS), we estimate that the
time for deployment will be considerably less in the former. This is because the environment must
be specifically set up to support ROSI (the first version of ROS), while deployment to docker with
Pravega is trivial. We expect that deployment in the case of ROS could consume around one hour,
while deployment with Pravega-Gstreamer should not take much longer than the time to download
the relevant container image (e.g., roughly 30 minutes).

Data Storage and Accessing: At present, there is no established means of storing data generated
in the process of surgeries at the NCT. This means that it is necessary to locate data on a surgery
by surgery basis by sifting through a filesystem. In contrast, the way data is accessed with Pravega
simplifies this process significantly by making the data searchable with dates and events. We estimate
that finding one video of interest could take up to 30 minutes with our current means, while this time
could be negligible using the Pravega look-up system.

4.6 Integrations with the architecture components of NEARDATA

The surgery use case is integrating into NEARDATA’s architecture with two different components.

GStreamer and Pravega serves as cloud and edge connectors which are facilitating the connection
between nodes. That is serving as the backbone of distributed systems. GStreamer and Pravega
enable seamless communication and data transfer between nodes, particularly in streaming data
scenarios.

Scone as a local connector facilitate connections between stages of data processing within a single
node. Scone serves as a secure gateway for exchanging, processing, and managing data within the
local environment, ensuring confidentiality and integrity in our pipeline.

Page 34 of 76

HORIZON - 101092644
30/04/2024

Time (Hours)

.

Prototyping
Deployment
Data Management

ROS P&G

O ‘

NEARDATA
RIA

Figure 29: Pravega and GStreamer are reducing developer hours and cycles, in particular adminis-
trative workload is reduced. The graph illustrates the time required to establish a basic ROS environ-
ment for the surgical use case compared to integrating Pravega and GStreamer functionalities.

Page 35 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5 Transcriptomics Use Case

This use case is divided into two main experiments, which can be seen as different use cases given
each present different problems and uses different datasets. Such experiments are:

* Transcriptomics Atlas
* Federated Learning for Human Genome Variation Analaysis

In the following sections we will discuss the different items separately by each scenario.
5.1 Why is the use case extreme data?
5.1.1 Transcriptomic Atlas

To build the Transcriptomics Atlas for a given cell or tissue type, the prerequisite is to obtain a set of
identifiers of the input files (usually hundreds of files are needed per cell/tissue type) from the the
NCBI database [9]. The input data for pipelines are SRA files which contain RNA sequencing data.
The total size of possible subset of available SRA files that need to be processed for the atlas consist of
e.g. 20 human tissues is around 10.8 TiB for 8300 files. However this is the compressed format which
is not ready for processing. Those SRA files are converted into FASTQ format and increase the space
requirement 7-fold. In our case the input dataset will be converted to 79.8 TiB of FASTQ data. The
distribution of the respective SRA and FASTQ datasets are presented in Fig. 30. With the possibility
of increasing the number of tissues we can easily reach order of hundreds of terabytes that requires
efficient processing of such data volume.

SRA file size distribution FASTQ file size distribution
06 0.08
05 0.07
0.06
> 0.4 >
g 2 0.05
g g
g 0.3 5 0.04
- v 0.03
0.2 ’
0.02
0.1
0.01
0.0 0.00
00 25 50 75 100 125 150 175 20.0 0 20 40 60 80 100 120 140
SRA size [GiB] FASTQ size [GiB]

Figure 30: Distributions of SRA and FASTQ file sizes from input dataset.

5.1.2 Federated Learning for Human Genome Variation Analysis

There are several factors that make the analysis of human genome variation datasets an extreme data
use case, as shown in the following sections.

Massive volume

Existing human genome variation datasets already consist of hundreds of thousands of samples,
totalling at petabytes of data. This volume is still growing and will grow ever faster with the advent
of new, high-throughput data collection methods. For reference, here are just a few examples of
existing vast variation databases:

Page 36 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

* Genome Aggregation Database (GnomAD): An aggregation of exome and genome sequenc-
ing data based on several large-scale sequencing projects. GnomAD currently consists of data
collected from 807162 individuals, which gives a total of 897 terabytes (IB) of data [10, 11].

¢ 1000 Genomes project: a comprehensive repository of human genetic variation data. Data from
2500 individuals (26 populations) contributed in the project [12].

¢ Exome Aggregation Consortium (ExAC): the consortium collected exome sequencing data from
60000 individuals [13].

¢ The Cancer Genome Atlas (TCGA): a database of over 30000 tumor samples across various
cancer types. The database consists of various data sources: whole genome sequencing, RNA
sequencing, methylation data. The stored data volume is estimated at over 2.5 PB [14].

This is not a complete list, and new databases, that contribute to the extreme volume of human
variation data are still emerging and will emerge in the future. The expanding data volume will
require extreme-scale storing, retrieval and analysis solutions.

High complexity

Human genome variation data is not uniform. It usually consists of a set of several modalities, such
as clinical information, DNA sequences, annotations and even spatial data (spatial transcriptomics).
Moreover, having multidimensional relationships between the modalities vastly increases the com-
plexity and presents new challenges for data analysis algorithms.

Geographic distribution

Globally collected samples are inherently distributed geographically, which presents non-trivial chal-
lenges. Transferring massive datasets to centralized location could prove difficult not only in light of
the network limitations. Sensitive information encapsuled by genomic variation datasets are subject
of region-specific restrictive privacy protection regulations, such as GDPR [15] and HIPAA [16]. Ad-
hering to these regulations could prove impossible for traditional centralized data analysis solutions,
which might direct data analysis solution architects to turn to near-data processing methods.

5.2 Assessed Datasets
5.2.1 Transcriptomic Atlas

Data obtained from the NCBI Sequence Reads Archive repository [17] will be used to build the Tran-
scriptomics Atlas. We select nucleotide sequence data generated by human samples sequencing,
based on tissue/cell, disease or lack thereof, and appropriate technical parameters of sequencing.
The available dataset size exceeds 30 petabytes of sequence data [18] [19]. An possible alternative
archive that also provides sequencing data is European Nucleotide Archive (ENA) and the volume
exceeds 50 petabytes [20] [21] ENA is a repository managed by the European Bioinformatics Institute
(EMBL-EB]I) in the United Kingdom. Similar to NCBI SRA, ENA stores large amounts of nucleotide
sequence data collected from various sequencing projects worldwide. Both organizations are part
of a larger structure, the International Nucleotide Sequence Database Collaboration (INSDC), and
most nucleotide data is synchronized between them. However, ENA not only contains nucleotide
sequence data but also protein sequence data and genome sequence-related data.

5.2.2 Federated Learning for Human Genome Variation Analysis

In our FL experiments, we will experiment with simulated and public datasets to evaluate Feder-
ated Learning (FL) on human variation data. We will generate a substantial dataset based on the
sim1000G tool [22]. It is an R package [23], specifically designed to generate human genetic varia-
tion. The software is based on the aforementioned 1000 Genomes Project database. Sim1000G takes
into account several phenomena when generating datasets, including:

Page 37 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

¢ Allele Frequency Diversity: the natural variation in allele frequencies observed in real human
populations. Alleles are alternative versions of a gene, and their frequencies within a popula-
tion influence traits and disease risk.

¢ Linkage Disequilibrium (LD): A phenomenon where adjacent genes in a chromosome have a
tendency to be inherited together.

* Subtle population differences: Naturally occuring subtle variations in LD and allele frequency
enhance the realism of generated data.

Using this tool, we can generate a realistic cohort of virtual patients and experiment with the FL
workflow. In addition, we will validate the trained federation using publicly available datasets. This
dual approach will give our experiments several advantages. The experiment can first be executed
using a controlled dataset generated with sim1000G. We can experiment with different data charac-
teristics to quickly assess the robustness and efficiency of the FL workflow and iterate faster. On the
other hand, the public datasets, offering real-world data, give our solution a real-world relevance. By
incorporating it into our experiments, we can ensure that the solution is generalizable and applicable
beyond simulations. As the data we intend to use is either artificially generated or publicly available,
we don’t compromise privacy of the underlying patient.

5.3 Description of the use-case
5.3.1 Transcriptomic Atlas

Original pipeline was created for HPC execution by a domain specialist. It consists of four steps
listed below:

1. Downloading .sra file using prefetch tool.

2. Converting into .fastq files using fasterg-dump tool.

3. Alignement and quantification of reads using Salmon [24] or STAR [25] [26].
4. Count normalization using DESeq2 [27].

Both prefetch and fasterq-dump are provided by SRA-Toolkit [28]. The general pipeline is presented
in Fig. 31 with alignment (STAR) and pseudoalignement (Salmon) paths respectively.
SRA

Ali t STAR DESeq2 i
w» fastq fles ——— > .bam files —q’ .csv files Tran;(;:;[;tlome
database
data
Salmon DESeq2 i
‘——— > fastqfiles —— > .txtfiles —q> .csv files Transcriptome
Pseudoalignment model

Figure 31: Transcriptomics Atlas pipeline.

In order to create a high-throughput solution in the cloud we designed and implemented archi-
tecture presented at Fig. 32. The AutoScalingGroup is responsible for sufficient number launching
EC2 instances which are the workers running Transcriptomics Atlas pipeline. The selected SRA_ids
are sent to the SQS queue which all the workers poll from. If there are no more tasks in the queue the
instances are terminated and the desired number of instances in the Group is decreased. The results
of the pipeline are sent to S3 bucket for storage along with logs. The metadata of the execution such
as timestamps, file sizes, instances type etc. is sent to DynamoDB table for future analysis.

Page 38 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
Metadata
query system Transcriptomics
SRA IDs results
53
NCEBl-owned
public SRA files

SRA IDs Metadata

Externallist | | Simple Queue Service

of SRAIDs EC2 instances

Autoscaling group Dynamodb

Figure 32: Cloud architecture for Transcriptomics Atlas pipeline

5.3.2 Federated Learning for Human Genome Variation Analysis

The aspects that make human genome variation data extreme-scale increase the difficulty of process-
ing of such data with machine learning algorithms on many levels. From the scalability perspec-
tive, the traditional Centralized Learning (CL) approaches, where one model is trained based on the
whole data collected in the space, is not suitable for extreme-scale environments, and some kind of
parallelization is usually required to make the problem computationally feasible to solve. From the
bandwidth efficiency perspective, massive data transfer to a centralized location only increases the
complexity of model training, as robust, high-throghput infrastructure has to be maintained to exe-
cute it. As the genome variation data is distributed geographically and contains in its nature sensitive
information related to specific patients, the applicability of CL in this context is low. Many concerns
can be raised when it comes to compliance with data protection laws, such as the General Data Pro-
tection Regulation (GDPR) [29]. All of these aspects can be addressed, with Federated Learning (FL).
In the spirit of the NEARDATA project, FL paradigm moves the computational resources to the data
holders, instead of transferring the data to a central location. It consists of a federation of participants
(institutions), where each member is an owner of his own local dataset. The standard FL workflow
consists of local training rounds, where the members train their local models on the respective local
datasets. After finishing the local training, the parameters of each local model are sent, to a central or-
chestrator, and aggregated, e.g. by averaging [30]. This aggregated, global model, is then broadcasted
to all members. This process allows for model improvement based on all the data collected within the
federation, with no actual training samples transfer (Fig. 33). This holds several advantages over the
CL approach. As the data processing (in this case model training) is distributed, it is scalable and can
handle extreme-scale datasets with the right number of members. The bandwidth required is much
lower than in the CL approach, as the only data transferred within this paradigm are model param-
eters, which are inherently smaller in size and less complex than training data. Last, but not least is
the increased privacy of the system: as there is no actual data samples transfer, the risk of leaking
private, sensitive information is much lower compared to CL, which prevents non-compliance with
legal regulations. To show the features of FL in the context of human genome variation data analy-
sis, we implemented an FL framework, based on Flower [31]. The framework is written in Python,
which makes it suitable for fast prototyping and can use several execution environments. We imple-
mented Docker, SLURM and Kubernetes integration, which makes it suitable both for execution in
both local clusters, HPC and Cloud environments. The data ingestion for the existing experiments
is implemented using Pytorch datasets [32]. When it comes to machine learning models, the frame-
work in general is model agnostic, which means that the FL optimization algorithm and parameters
we use are invariant to model and dataset changes. This allows the framework to be used also for
other experiments, beyond human variation analysis. Currently, we validated both the learning al-
gorithm and the integration of the framework with different execution environments using standard
machine learning benchmark datasets, such as MNIST [33] and CIFAR [34]. The ultimate goal is to
use it to conduct human genome variation analysis on extreme-scale datasets referenced in the ??2.
As the workflow is containerized using Docker and can be deployed with Kubernetes, a natural step

Page 39 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Central server

'£l> Sending model updates

2 Sending gradients

/

Training on local data

@ Local model @ Local model @ Local model

Local data Local data Local data
§ % \
Institution 1 Institution 2 Institution 3

Figure 33: Diagram of the FL workflow.

to extend its security is by executing it in a Trusted Execution Environment (TEE). We plan to work
closely with our technical partner SCONE [35] in that aspect.

5.4 Data Connectors
5.4.1 Transcriptomic Atlas

As less resource demanding than the other, the pseudoalignment (Salmon) pipeline has a potential
to be run on a serverless architecture. Its big use of memory and storage space is caused mainly by
the size of input files and resource demanding decompression mechanism. In this specific step of our
pipeline, we can leverage two Data Connectors from the proejct architecture:

¢ DataPlug - for accessing fastq.gx files,

¢ Lithops - for distributing the pseudoalignment processing on AWS Cloud.

Page 40 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Lithops

Salmon

DataPlug

fastq
file

Figure 34: Parallelization of Salmon processing step using serverless processing with Lithops and
DataPlug connector

Using fastq.gz format for input files and partitioning the input makes a serverless functions a
viable solution. Realizing this, we provide a prototype of such pipeline with Salmon software us-
ing Lithops framework for distributing computation between lambdas. The clear choice for a data
connector in this case is the DataPlug software. Gzipped fastq files need to be present on an AWS
S3. The files are then logically partitioned by the DataPlug and the chunks obtained this way can be
easily accesses by workers via Lithops. The scheme of a pipeline is shown in the Figure 34.

5.4.2 Federated Learning for Human Genome Variation Analysis

Federated Learning’s performance, just like for any other machine learning workflow, depends heav-
ily on the performance of data ingestion. We see the applicability of Lithops to handle parallel data
processing jobs when preparing the training samples for each client over the course of the FL work-
flow in our experiments. Our use case is suitable for testing Lithops capabilities, as we need a data
connector that can be integrated into many execution environments (HPC, cloud), and also one that
can handle massive scale.

5.5 What are the benchmarks/KPI?
5.5.1 Experiment 1: Transcriptomic Atlas

KPI-1: Significant performance improvements (data throughput, data transfer reduction) in Extract-
Transform (ETL) phases validated with near-data connectors over extreme data vol- umes (ge-
nomics, metabolomics).

Execution time reduction due to usage of newer release of human genome. STAR alignment step
requires and index to be loaded into memory. Such index is generated on human genome available
on e.g. Ensembl [36]. Index generation is a one-time task and then it can be distributed to workers in
the initialization phase. By using newer release (with smaller number of patches) of the genome we
generate much smaller STAR index: 28.5GiB instead of 90GiB. This allows to reduce data transfer cost
and time during initialization phase of each worker. Since each worker loads this index to RAM we

Page 41 of 76

HORIZON - 101092644

30/04/2024

NEARDATA
RIA

can use smaller instances to run the pipeline. On top of the memory optimizations we also get signif-
icant performance improvement by using smaller index - over 12 times faster on average (weighted
by FASTQ size). We performed A/B test for 49 SRA files and run the pipeline with different index
releases. The exact speedup values are presented on Fig. 35 and execution times are on Fig. 36. This
is applicable almost exclusively to the STAR pipeline.

Speedup: Release 111 vs 108

) []
40 .
35 —
o
30 o —~
g. [] []
B 25 °
2 ° °
1]
X 20
£
(7]
15 U
° e ° °
[Y] ¢
10 (N 0g 0, °
LI & °
o ° O
5 o o
s.
0 20 40 60 80

Fastq filesize [GiB]

Figure 35: Acquired speedup by using index generated on Ensembl release 111 instead of release 108.

STAR execution time with index generated on different genome releases.

10000 A

8000 -

6000 -

Time [s]

4000 A

2000 A

e release_108 o ® 100009 e release_108 . .
release_111 release_111
8000 -
L] L]
. .
. 6000 - o
. ° ° L]
‘ Ld Ll "
L] L]
e 4000 - o °
o 0 o o ®
L] -
Y ad ®e o o ®
.
< 20004 % of
L] L]
° :
ot e
‘Q °
2 r 4
0 -

40 60 80

Fastq filesize [GiB]

40 60 80 100
Number of spots [mIn]

Figure 36: STAR alignment execution time using index generated on Ensembl release 111 and on

release 108.

Page 42 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Early stopping. STAR aligner produces Log.progress.out file which "reports job progress statistics,
such as the number of processed reads, percent of mapped reads etc. and it is updated in 1 minute
intervals" [37]. Our goal is to create a comprehensive dataset of processed files for which STAR
aligner returns acceptable mapping rate (above 30%). By analyzing 1000 of Log.progress.out files we
identified that processing at least 10% of the total number of reads is enough to decide whether the
alignment should be continued or it should be aborted due to insufficient mapping rate. The analysis
showed that with such approach we can safely terminate early 28 (out of 1000) alignments. This
would result in about 19% reduction in total STAR execution time - as shown on Fig. 37. The inputs
identified for termination turned out to be single cell sequencing data, which seems to be a sub-
optimal option for our task due to the lack of complete mRNA coverage within the library. Therefore,
an additional filtering step was introduced to exclude this type of data early in the pipeline. This is
applicable only to the STAR pipeline.

Time savings by using early stopping (for inputs that result in low mapping rate).

EEN Early stopping ON
Early stopping OFF

100001

8000 {

6000

Time [s]

4000

20001

,\”)6\@%Q)‘o,L\/Q’L@‘bg\,b‘b,,)%,\’b,\b%b,,}q,\‘o%’v’L%’LQ”L%%Q,\%%B,\’LQ’LQ‘O{)
""V““”"’»”ﬁ”’»’»ﬂ?’@@é’)“6\@«“"\”«“’«”«""\”%qq\p"’QQ
Fastq file size in [GiB]

Figure 37: Possible to acquire time savings due to early stopping feature.

Serverless functions performance improvements Massive parallelism of serverless functions al-
lows us to fully utilize potential of Salmon transcriptomics pipeline. Since the Salmon builds a sta-
tistical model from .fastq file, which consists of independent reads of biological sequences and their
metadata, it easily can be broken into many independent tasks. Therefore, performing computation
in distributed, asynchronous way we obtain an instant performance improvement with respect to
typical use in computational biology, which is a big single machine scenario.

KPI-3: Demonstrated resource auto-scaling for batch and stream data processing validated thanks
to data-driven orchestration of massive workflows.

Scalability The cloud offers wide range of services that are easily scalable and fit our use case. Such
services include but are not limited to AWS Lambda, ECS running on Fargate, EC2 virtual machines.
By using, for example, AutoScalingGroup service on AWS we can define scaling policies for the
processing of the workload. Our solution presents efficient utilization of the resources with good
scalability. On HPC a possible approach for this use case would leverage array-job functionality
to run multiple instances of the same job. However HPC may have limits to number of available
nodes/cores, fair-share policies, queue system etc. which is not the case in the cloud. By using
cloud services and its large compute/storage resources we can instantly launch multiple instances of
workers therefore easily parallelize the workload without any queue waiting time (as seen in Fig. 38).
Moreover, by optimizing cloud solution first we can create an optimized HPC alternative more easily.
Genomics pipelines may not always be run efficiently and optimized for HPC as this often requires
advanced knowledge of the system. Nonetheless the benchmark should compare optimized solution

Page 43 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

in the cloud and in the HPC environment.

Index distribution to worker nodes The current cloud solution for STAR pipeline leverages Net-
work File System (NFS) server in the Virtual Private Cloud (VPC) with EC2 worker nodes in the
same region. As stated before, each worker needs to load the precomputed index into memory be-
fore running STAR alignment. Therefore as a part of the initialization phase each worker mounts an
NFS endpoint to access the index. In our test, a single c6in.large instance was sufficient to provide
the index to 50 EC2 instances in about 15 minutes but possible alternatives are still explored in order
to improve scalability and reduce initialization time. An index distribution solution in HPC environ-
ment is part of the future work. Index distribution is much less concern for Salmon pipeline as such
index is of 680MiB in size. In this case there is almost no downside/bottleneck to distribute it by e.g.
saving the index in the virtual machine image (AMI on AWS) the workers are launched from.

Spot instances Using spot instances in AWS can reduce the compute cost by up to 90%, but in our
case it is usually about 50-65%. This however comes with a downside of possible interruption in
contrary to on-demand model. Each running spot instance can be terminated with a 2 minute notice.
Our initial analysis suggest meaningful cost reduction using this execution model. Such analysis
takes into account cost of restarting the worker, starting the computation once again if necessary and
block storage (EBS) costs. This is applicable for both Salmon and STAR pipelines.

With good configuration (e.g. using instance type with low interruption rate) and in optimal
scenario using spot instances should result in relatively stable computations as shown in Fig. 38.
Here we present results of processing 1000 SRA files on r7a.2xlarge instances with STAR pipeline.
During the experiment only five interruptions occurred and resulted in wasting less than 1% of the
total running time among all instances.

B et it ok o e I

40
30

20

Number of instances/inputs

Number of inputs currently processed in parallel
(successfully til the end) |

0 Number of currently running EC2 instances 1

0 2000 4000 6000 8000 10000 12000
Time since start [s]

Figure 38: Spot instances usage experiment. Timeline for instances and successfully computed files.

Cost-efficient instance type for STAR There are many available instances types on EC2. It is im-
portant to choose a type that fulfills all the requirements and is cost-efficient. Loading STAR index
into shared memory results in over 29.5GiB of allocated memory. Since STAR is memory intensive
program we decide to focus on instances with higher memory-per-CPU factor (mainly "r" family)
with at least 64GiB of RAM. It is possible to use other types with lower factor and more cores, how-
ever this may require faster block storage and increased under-utilization during other, much less

Page 44 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

CPU-intensive steps (e.g. prefetch step). Selected current generation instance types that fulfill those
requirements are compared in Table 3. This table also presents total cost and time of performing
STAR alignment on 50 random FASTQ files. We consider only STAR processing time - other pipeline
steps make up for 24-31% of total execution time. The results indicate r7a.2xlarge as the fastest and
cheapest (on-demand) type. Although when using spot instances one should also take into consid-
eration spot availability of a given type. On top of that we validate scalability of STAR. With an
increasing number of threads we get faster results with good efficiency.

Table 3: Cost-efficiency analysis of selected instance types.

Instance vCPU | Cores | RAM [GiB] On—cllemand Totfil S"IjAR Total
type price [h] execution time [h] | cost
r6a.2xlarge 8 4 64 $0.4536 8.00 3.63 %
r6i.2xlarge 8 4 64 $0.5040 8.04 4.05 $
r7a.2xlarge 8 8 64 $0.6086 5.48 3.33%
r7i.2xlarge 8 4 64 $0.5292 7.66 405 %

5.5.2 Experiment 2: Federated Learning for Human Genome Variation Analysis

KPI-1: Significant performance improvements (data throughput, data transfer reduction) in Extract-
Transform (ETL) phases validated with near-data connectors over extreme data vol- umes (ge-
nomics, metabolomics).

The benchmark for evaluating if the Federated Learning framework proposed yields significant per-
formance improvements for the ETL phases of our machine learning workflow consists of two exper-
iments. The baseline setup consists of a single worker processing the whole training dataset, realising
as a result the Centralized Learning approach. This is compared with a setup of N workers forming
a federation, which together trains a joint model based on distributed local datasets. We expect to
observe significant improvement when it comes to data throughput during training samples process-
ing into machine learning model inputs. Moreover, we expect a significant disparity in data transfer
between the two training paradigms. To this end, we performed initial experiments with a machine
equiped with an eight core Intel® Core™ i7-10510U CPU and 32 Gigabytes of RAM. We compared
wall-clock model input processing times (loading the data and transforming it into a Pytorch dataset)
for a 4-member federation with a CL approach using benchmark CIFAR [34] dataset. The initial re-
sults suggest, that the federation of clients can perform the ETL phase of the workflow faster by
0.9375s in terms of a wall-clock time (75%), compared to a single worker realising the CL approach
on the CIFAR dataset. As for the training phase, the theoretical data transfer reduction brought in by
the FL paradigm can be calculated based on the model and training dataset size. Taking into account
model parameters transfer, carried out during the federated workflow, the total over the course of
the training (150 rounds, model size 0.237 MB) is 35.55 MB, whereas for the CL approach the total
transfered data size (carried out during the setup step, before being ingested into the model) is 175.8
MB. This yields a data transfer reduction of 140.25 MB, by 80%. As the next step, we will focus on ex-
tending this benchmark, focusing on several key areas. First, we need to perform the benchmark on
extreme human genome variation data volumes to see if the observations are also true in this context.
Second, the abovementioned improvement in ETL phase wall-clock time stems from the distributed
nature of FL. It is a perfect place to incorporate Lithops to optimize this phase even further, showcas-
ing the true advantage of near-data processing. Third, we need to add data transfer monitoring tools,
so that we don’t rely on mathematical modelling for data transfer reduction calculation. Fourth, the
benchmark should be performed for all execution environments compatible with our framework, to
establish, how it influences the observed improvements.

Page 45 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Accuracy: Federation vs solitary training

061 A A

0.5 A

=]
IS
f

Accuracy

o
w

0.2 A

—— Solitary training
0.1 A Federation

0 20 40 60 80 100 120 140
Step Number

Figure 39: The accuracy improvement for a federation compared to solitary training for the CIFAR
benchmark dataset.

KPI-4: High levels of data security and confidential computing validated using TEEs and feder-
ated learning in adversarial security experiments.

Building on top of the already containerized framework, we would like to incorporate secure con-
tainers from our technical partner, SCONE [35] in the workflow. As part of the future work, we will
design a set of adversarial security experiments to investigate if the composition of data transfer re-
duction provided by the FL paradigm and strong security guarantees of TEEs provides a full data
security.

KPI-5: Demonstrated simplicity and productivity of the software platform, validated with real
user communities in International Health Data Spaces.

In our initial experiments, when comparing a federation of 4 members (described under KPI1 s ec-
tion) that train a joint model, with a solitary member training a model on his own using local data
only, we can observe a significant improvement in terms of the model performance. Classification
accuracy comparison for the CIFAR models [34] trained during our initial experiments is showcased
on Fig. 39 and shows a an improvement (5 pp accuracy difference, 8% improvement of the original
result) of the joint model trained by a federation. It is worth noting that this result is an initial result
obtained without any tunning of the parameters of the federated optimization algorithm, therefore
the actual difference is expected to be even more extensive. As it is clear that the FL workflow has
advantage in terms of machine learning performance compared to a solitary training, we need to
evaluate other aspects of the system that could help us assess the practicality of the framework in
real-life applications. These aspects include:

e How the orchestration of the FL workflow should be conducted? What incentive mechanisms
could we use to make joining the federation attractive to the users?

¢ How to solve the problem with heterogeneous compute capabilities for different institutions
that might join?

e How to assert sufficient data quality for each member without raising privacy concerns?

Page 46 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

We intend to answer these questions by close cooperation with real user communities from the health
data space to evaluate the productivity of the proposed software framework.

Page 47 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

6 Genomics Use-case
6.1 Why is the use case extreme data?

Genome sequence analysis is a compute- and data-intensive task. Current sequencing techniques
generate an overwhelming volume of data, with repositories accumulating several petabytes each
year[38]. Consequently, institutions struggle to meet the ever-growing demands for genomics work-
loads. Although High-Performance Computing (HPC) installations are commonplace in biology de-
partments, they may fall short in providing sufficient capacity to handle peak demands, reanalyze
extensive public datasets generated by large consortia, or minimize the run time needed for specific
analyses. To cope with this solution, institutions opt for Cloud services that meet the needs and ex-
ceptional demands for analyzing extreme genomic data. However, traditional cluster-oriented Cloud
deployments are challenging due to the complexities associated with evaluating, configuring, and
deploying resources and services across a multitude of heterogeneous Cloud providers. Function-as-
a-Service (FaaS) offers a compelling alternative for highly parallel data-intensive applications[39][40],
with minimal configuration requirements and the ability to instantly scale up and down to zero, mak-
ing it an ideal choice for less experienced Cloud users.

We present a use case for genomic sequence analysis. Our use case is based on variant calling to
identify variants from reference genome sequences. We discuss that this type of data is extreme due
to the extreme volume of data and extensive pipelines that require large computational resources to
cope with the demands needed to process and analyze this data. The objective of this use case is to
port a genomics Variant calling workflow from our HPC implementation to a serverless architecture
that allows processing and analyzing extreme genomic data at large scales.

6.2 Assessed Datasets

The data used to implement the serverless architecture will be the same as those used for the HPC
version. Our inputs are based on two genomic data formats, the FASTA format to represent nu-
cleotide sequences used as reference genome and the FASTQ format to represent nucleotide se-
quences and their corresponding quality scores that will be compared to the reference genome. We
present different sizes of open data to evaluate our variant calling pipeline:

* Small size: Trypanosome: Reference genome: TriTrypDB-67_TbruceiTREU927' (35MB) and Se-
quence Reads: SRR6052133% (668MB).

¢ Medium size: Human: Reference genome: hg193 (905MB) and Sequence Reads: SRR15068323*
(1.2GB) and ERR9856489° (12.1 GB).

* Large size: Bos taurus: Reference genome: bos_taurus® (781MB) and Sequence Reads: SRR934415”
(16.5GB).

6.3 Description of the use-case

Variant calling in genomics involves “alignment” (i.e., a string similarity search) of sequencing reads,
stored as FASTQ files, to a reference genome, stored as a FASTA file. Alignment mismatches are
filtered and form the basis for establishing (“calling”) any mutations (“variants”) in the samples
analyzed. Alignment requires loading large data structures (“indices”) into memory allowing for
fast similarity searches in the reference genome. With indices ranging up to 50 GB for large datasets,
loading a full index in a lambda function is not feasible due to resource constraints. Alternatively,
the reference genome can be split into smaller chunks and align reads to all of them. Consequently,

Ihttps://tritrypdb.org/tritrypdb/app/downloads/Current_Release/TbruceiTREU927/fasta/data/
2https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR6052133&display=download
Shttps://hgdownload.cse.ucsc.edu/goldenpath/hgl9/bigZips/
4https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc:SRRl5068323&disp1ay=data—access
Shttps://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=ERR9856489&display=data-access
®https://www.ensembl.org/Bos_taurus/Info/Index
"https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR934415&display=data-access

Page 48 of 76

https://tritrypdb.org/tritrypdb/app/downloads/Current_Release/TbruceiTREU927/fasta/data/
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR6052133&display=download
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR15068323&display=data-access
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=ERR9856489&display=data-access
https://www.ensembl.org/Bos_taurus/Info/Index
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR934415&display=data-access

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

a reduce step is required to collect and score all alignments for each read later on. FASTQ reads can
also be chunked to trivially increase parallelism, as each sequencing read is aligned to the genome
independently.

The original HPC implementation involved bash scripts and CLI tools that utilized the local file
system and pipe commands to pass data between processes. To transition this pipeline into a server-
less architecture, we employed Python code to wrap the genomic CLI tools and introduce new logic
for data partitioning and load distribution across fine-grained serverless tasks.

Porting this pipeline to a serverless architecture for scalability poses several technical challenges,
including the need for effective and efficient FASTA and FASTQ file partitioning with appropriate
partition sizes, dealing with blocking code due to data dependencies, and managing stateful data
shuffling.

NEARDATA’s serverless data analytics platform Lithops provides facilities for massively invok-
ing functions across different cloud providers. Also, the existence of parallelization in the HPC im-
plementation allows Lithops to fit perfectly to port this implementation to a serverless architecture.

cartesian product of FA x Align. map sets, add to each tuple
the corrected index for the corresponding FASTA chunk for each FA chunk

— — e | s
group Alignment Index foreach | T/ ‘H‘E’E‘_Eg? H W

Chunk Chunk | %y eacnrasta chunk (Corindex, | ; 1H MPILEUP / i

H v ndex "

artesfan product of for each . A tuple . H E E H "

for each (FA, FQ) aaﬂft FAXFQchunksets | - ---- W FA chunk ; : 1 "%
FASTA FASTQ T i|% | REDUCE MPILEUPS
/ Chunk // Chunk / : : SHUFFLE ||+
3 ¥ aE :

INDEXES | {1} v
ALIGNMENT i e] | | MP:EUP i !
| 1| CORRECTION | i | GENERATE ik | E Yoo g
i v Il MPILEUP e 4|1 |CONCATENATE MPILEUPS | !

Ahgnment Ahgnme"] ‘L AND TRANSFORM
| Index Map e |
N e N Corrected /||

E Index AN

FORMAT
R Al
Legend

[Dmpu:/OurpurDara E:::Fare}re{plaase [JProcess @Dara:fwme]

.
group MPILEUP indexes by +
FA chunk, distribute the
MPILEUP indices into
multiple parallel reducers

Figure 40: Big picture of the serverless Variant Calling workflow.

The serverless variant calling pipeline architecture can be seen in Figure 40. It is based on the
traditional Map-Reduce model.

Pre-processing phase. This phase prepares the data so that it can be consumed in a parallel and
distributed manner. Our HPC data preprocessing method is based on static partitioning. Here we
encounter our first problem, the data is duplicated because the data partitions to be consumed are
stored again. Also, the computational cost of partitioning is very expensive, making it difficult to
study the best partition size. To solve this problem, the Dataplug Serverless Data Connector pre-
sented in NEARDATA perfectly meets the requirements of our preprocessing phase.

Map phase. This phase consists of aligning the sampled read to the reference genome. Having
partitioned both, this results in a cartesian product between the FASTA and FASTQ partition sets.
All FASTAx FASTQ chunk combinations are aligned using GEM3 mapper[41]. The indexed FASTA
chunk is used as the reference for alignment of a given FASTQ chunk, generating an alignment file in
.map format. Because any given alignment arises from a partial scan of the genome (a given FASTA
chunk), we must add an extra step (index correction) to discard suboptimal alignments arising from
the mapping of any given read to multiple genome chunks. Alignments are converted to the mpileup
format, which collects information from every read to provide a snapshot of the cumulative align-
ment results for each chromosome position, providing the number of reads supporting each base call
detected across all overlapping alignments.

Page 49 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Reduce Phase. This phase involves a shuffle of all alignment results for variant calling. To dis-
tribute the load, the map output is distributed over multiple parallel reduce functions. Data pro-
cessing involves merging mpileup data across sets of functions that share the same reference FASTA
chunk, i.e. those files that share the same chromosome positions. The merged mpileups are used
as input for the SiNPle variant caller[42]. The partial output from each reduce function is then con-
catenated to produce the final output file. This can be used for any subsequent nucleotide mutation
analysis workflow.

6.4 Data Connectors

As mentioned above, our serverless variant calling pipeline is divided into three different phases:
Pre-processing, Map phase and Reduce phase. To facilitate the discovery and partitioning of data in
the first phase and the consumption of these partitions and intermediate files generated in the other
phases, we present up to four data connectors. As they are presented we will observe how each one
fits into our architecture.

Data Partitioner. This connector is responsible for preprocessing the data to establish partitions
that will be consumed by the processing phases. To do this, we will use the Dataplug component
presented in NEARDATA. This component will allow us to avoid the problem of static partitioning
and will benefit us for the evaluation of better partition sizes thanks to its dynamic partitioning based
on indexes.

Pre-processsing Phase Map Phase

Function 1
FASTQ dat ! Q i
FASTQ file dices et -
- Distributed among (— '
the lambda functions i D i Function 2
DATAPLUG
FASTAdata | |,
FASTA file lices i @ L Cunction N

Figure 41: Architecture of the preprocessing phase using the data partitioner Dataplug.

Figure 41 shows the integration of the Dataplug serverless data connector. In this case, the com-
bination of the two architectures fit together perfectly because we removed our previous partitioning
to embed the new component. Next, instead of providing the key that referenced the static partition
to the lambda function, we will pass as a parameter the data slice generated with Dataplug to be
evaluated later.

Data Loader. This connector allows access to the object storage to load the generated intermediate
data and to download this intermediate data for further processing in the next function phase. It
should be noted that this connector will be used for the map phase. To store the objects, we will use
the object storage offered by AWS known as AWS S3. In this case, we will use Lithops to access the
storage backend thanks to the built-in storage API.

The Figure 42 shows how the Data Loader connector works in our architecture using the Lithops
Storage API. Within the map phase, we find up to three phases of functions. The first phase Align-
ment, evaluates the data slices generated in the preprocessing phase, once processed the Alignment
Index and Alignment Map files are generated and stored in S3. To access them, the function returns
the keys with which they have been stored. In this way the Index Correction phase can access the S3
to download the Alignment Index. This same process is repeated for the following phases, i.e. each

Page 50 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Map Phase

Index, Alignment Map
and FASTA data
slices

GENERATE MPILEUP /\

Index

Lithops amazon
Storage S3
API - x
Upload output Download Alignment Upload Corrected/ Download Corrected Upload Mpileup
Index

ALIGNMENT INDEX CORRECTION
,,,,,,,,,,, . Alignment
| i output Index e :

MPILEUP

Alignment
Intermediate Intermediate
file keys file keys) Mpileup keys Reduce Phase
— A

Figure 42: Map phase architecture using the Storage API and the AWS S3 service.

phase accesses the S3 to download the necessary data and finally stores the processed data again.

Data Shuffling. This data connector allows to shuffle the mpileup generated in the map phase to
be distributed in the reduce phase. The complexity of the shuffling resides in the nature of the format
mpileup format, which is composed of reads from the different genome positions found in FASTQ
that have been with the reference FASTA. This process requires clustering the genome positions (in-
dices) into several mpileup files belonging to the same FASTA reference fragment. However, not all
indexes may exist in all files, and their number may vary. The shuffling algorithm establishes a set of
index ranges that will form the partitions.

Reduce Phase

amazon ,—72 / -
MPILEUP
* 53 / Perform

queries

Perform |
queries S3 Select
‘ S3 Select ‘ Get mpileup content
- = from ranges

SiNPle \

output

Get all index columns
from all mpileups

L .sinple

. Indexes ranges
Mpileup keys
\‘ SHUFFLE INDEXES F

Figure 43: Architecture of the reduce phase using AWS S3 Select data shuffling.

We leverage AWS S3 SELECT for the shuffling process, as it allows to perform SQL queries over
the contents of the structured text format of the mpileup files. First, we query each mpileup set to
extract the column of indexes of each one of the files to be able to compute lines and to establish in a
simple way the ranges of indexes for each one of the partitions. Second, each reduce function queries
the file to extract directly the lines that are within the range of indexes established in the previous

Page 51 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

phase. Figure 43 shows the integration of our serverless variant calling with the aforementioned
AWS S3 Select service.

New Near-Data Shuffling. One of the biggest challenges in porting from an HPC implementation
of this use case to a serverless architecture is data transfer. As we have introduced, the Data Loader
and Data Shuffling connectors rely on the traditional approach of using S3 object storage to carry
the data between serverless functions, consequently, this process is slow and costly, as it involves
constant movement of data back and forth. Although specialized ephemeral storage solutions have
been developed to address this issue, they fail to tackle the fundamental challenge of minimizing
data movements.

In this use case, we present the use of the Glider® ephemeral storage system incorporating near-
data computation to reduce the volume of data transferred for our serverless architecture. Glider
aims to improve communication between serverless computing stages, allowing data to "glide" smoothly
through the processing pipeline rather than bouncing between different services. Glider achieves
this by leveraging near-data-state execution of complex data-bound operations and an efficient I/O
streaming interface.

To address the problems described above, Glider defines storage actions to encapsulate com-
putation with three key properties: (i) they are integrated as addressable storage elements in the
namespace; (ii) they are defined as arbitrary objects with stateful logic; and (iii) they offer a common
streaming I/O interface.

Near-data computation. Glider organizes the ephemeral storage with namespaces, a logical struc-
ture of storage elements (e.g., files or directories). Storage actions are integrated as a type of storage
element. In particular, actions have a name or identifier, and applications use it to directly read or
write on an action, or to organize them in the namespace. Actions are automatically managed and
distributed by the system in the same way as other elements. This simplifies its usage, interaction,
and management.

Arbitrary stateful code. Actions trigger a computation whenever they are accessed. This computa-
tion is defined by arbitrary, userprovided code that processes the data in and out. Thanks to being
part of the storage namespace, actions are stateful and may be directly addressed multiple times. In
consequence, an operation on an action may depend on the results of a previous one, which makes
them great for aggregating or caching data, among many other uses. Like any other element in
Glider, actions are ephemeral, as they represent intermediate data connections.

I/O streams. Consuming and producing data in small chunks is key to process large data in small-
sized workers like serverless functions. Glider defines a stream-based I/0O interface for all storage
elements, including actions, that workers can handle with a small memory footprint. For actions, this
adds extra benefits. A worker-action stream allows parallel processing at both ends in a simple and
straightforward way to improve the overall performance and storage utilization (e.g., with filters or
aggregations) °.

System architecture. Glider is an extension of a multi-tiered, high-performance ephemeral storage
architecture: the NodeKernel [45]. NodeKernel is a state-of-the-art storage architecture specialized
on temporary data in data processing workloads. NodeKernel manages data in a set of metadata and
storage servers. The metadata servers'’ administer the hierarchical namespace and the fleet of blocks.
The storage servers allocate storage blocks and register them on a metadata server. The metadata
servers maintain a list of free and used blocks (and their mapping to storage servers) and assign
them to nodes as needed. This way, data is distributed across the cluster. To perform data operations,
clients first contact a metadata server, and it replies with the location of the storage block(s) affected
by the operation. The client then uses this information to perform the operation on the appropriate
storage server(s). Structure operations are directly executed at the metadata server. Glider adds

8https://github.com/neardata-eu/glider-store
9The cloud has adopted this idea recently with a similar objective [43] [44]
10Metadata servers may distribute their work by partitioning the namespaces, allowing to scale the system if needed

Page 52 of 76

https://github.com/neardata-eu/glider-store

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

storage actions to NodeKernel to achieve ephemeral near-data computation. A storage action is
a new storage element that encapsulates a user-provided stateful computation with a stream I/0
interface.

Disaggregated Glider

I -

| —]

O =
|

[—]

-_—

I —

L

RR
(m“'z, 410

I
Compute | _Storage | | Compute | _ _ Storage _ _|

Figure 44: Architectural approaches to data-shipping.

Figure 44 shows the data lifecycle comparison of a fully serverless architecture where functions
communicate through object storage with an architecture with Glider as ephemeral storage. Thanks
to the storage actions offered by Glider, we can add computation close to the data. This feature
tits perfectly with the Data Shuffling connector. As mentioned before, this connector is based on two
phases, the first one launches an initial stage of functions to calculate the index ranges of the mpileups
that will be distributed towards the next phase of functions where the contents of the mpileups will
be extracted from those ranges. This procedure involves the use of the S3 Select service to connect to
the object storage twice, so it involves data movements that can be reduced.

Baseline Glider
«= [FASTQ g [FASTQ 1] = =x [FASTQ qf

[FAsTQ 1

| S3 | tmp _i-1

tmp_i-q | :

.

F— | -

Reduce

Y T

r
---[ﬁnalfirrl : | S3 |ﬁn317171| |ﬁnal s rl |
|

r
| 53 | final i-1
|

Figure 45: Diagram of the variant calling pipeline for a single FASTA chunk with serverless functions
and Glider.

To address this problem, we present a new solution from Glider that can be seen in Figure 45.
Instead of writing temporary files to S3 and requiring S3 SELECT to read them multiple times for
shuffling, mappers directly write their output to Glider actions (Sampler Action). This first set of
actions sample the data as they receive it and store it on ephemeral files. When the mapper functions
finish, these actions quickly interact with a manager action that computes the number of reducers
and their data ranges. Reduce functions connect with another set of actions (Reader Action). These
exploit near-data computation to solve shuffling and provide reducers a single stream with the ranges
of data they need from the multiple temporary files.

With this approach, similar to S3 SELECT before, reducers only ingest their range of data. How-
ever, it also adds the following benefits: (1) intermediate data is sent to a specialized ephemeral store,

Page 53 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

faster than object storage; (2) intermediate files and actions are in the same system for improved data
access; (3) a single storage request is enough to access multiple temporary files; (4) stateful computa-
tion enables more flexible data processing than S3 SELECT (limited to simple SQL SELECT queries
on specific data formats); and (5) computations are streamlined with data transfers thanks to I/O
streams, allowing parallelism between mappers and data sampling and reducers and data shuffling.

Data Merger. The reduction phase results in the invocation of N number of lambda functions
to apply the mpileup reduction through the SiNPle program. Likewise, we find a result for each
function invoked. Thanks to the correct distribution of the mpileups, we can determine the order of
the results. Finally, from the established order, we take advantage of the AWS S3 Multipart upload
service to perform an ordered merge of all the results obtained. Multipart upload allows you to
upload a single object as a set of parts where each part will be a .sinple result.

Reduce Phase

/ \
Each function uploads its (\
_sinple result to be merged * amazon
S3

AWS 83 Multipart upload

SiNPle

output
.sinple

_sinple
merged

\ /

. /

Figure 46: Architecture of the last step of serverless variant calling from the AWS S3 Multipart upload
data merger.

Figure 46 shows the use of AWS S3 Multipart upload to merge the final results of all invocations
of the reduce phase.

6.5 What are the benchmarks/KPI?

Next, we present the Key-Performance Indicators (KPIs) with which we validate our serverless vari-
ant calling pipeline with the incorporation of different benchmarks to evaluate the different data
connectors (Glider) and integrations with the NEARDATA platform components (Lithops and Data-

plug).

KPI-1 - Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data vol-
umes (genomics).

Dealing with extreme genomic data presents a major challenge in the ETL phases. The data par-
titioner is the key to deal with this problem. Our initial partitioner was extended from the HPC
implementation to the serverless version. Also, dragging the problem of static partitioning which
leads to high computation times and data duplication. The Dataplug component of the NEARDATA
platform is a perfect fit as a data partitioner. The serverless variant calling pipeline takes advantage
of on-the-fly dynamic partitioning to ensure efficient preprocessing and greater flexibility in parti-
tioning.

To evaluate the Dataplug component we present an initial benchmark for the preprocessing of the
FASTA file. This bencmhark consists of analyzing the computation time of the FASTA preprocessing
task. For this purpose, the implementation of the old static partitioning is compared with the solution
offered by the Dataplug component.

Experiment setup. We will use the FASTA hg19 file presented above which has a total uncom-
pressed size of 3GB. Thanks to the nature of the FASTA format, Dataplug allows us to partition it

Page 54 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

in parallel. Also, we will set different sizes to split this file [150MB, 300MB, 450MB, 600MB] so that
Dataplug can preprocess it in parallel through Lambda functions. It is worth mentioning that we
will use Lithops as a computate backend, since Dataplug offers a native integration with this NEAR-
DATA component. We will evaluate this component independently later on. Finally, we allocate a
2GB memory for the lambda functions.

lipataplus
looid static partitioner

100

10 1

Bl

401 -

Execution time (s)

20} |

LHimim N

IS0MB 300MB 450MB 600MB
IMEB of FASTA file preprocessed for each function

Figure 47: Dataplug performance vs Old static partitioner.

The figure 47 shows the comparison of the execution times between the old static partitioning ver-
sus the Dataplug component. As can be seen, Dataplug offers up to a 4x improvement in execution
time. This type of experiments allows us to analyze the best size of the FASTA file to partition. The
larger the fasta size the less functions are needed to preprocess the file. With the observed results,
the execution time is similar in all cases, while the resources used are different. Consequently, using
a larger size to invoke fewer lambda functions would present better results in terms of cost. This is
not always the case, as the cost also depends on the memory used by the function.

For the evaluation of the FASTQ file we redirect the reader to the deliverable D3.1 XtremeHub first
release and documentation where an extended experiment on this format is presented.

As we have been able to demonstrate, the integration of Dataplug in our variant calling pipeline
guarantees improvements in the execution time in the extreme data preprocessing phase, and thanks
to the new on-the-fly dynamic data partitioning, data transfers and data duplication are reduced,
since it avoids uploading again the partitions to the object storage.

As we have been able to demonstrate, the integration of Dataplug into our variant call pipeline
guarantees runtime improvements in the extreme data preprocessing phase, and thanks to the new
dynamic data partitioning on the fly, data transfers are reduced by up to approximately 200% and
data duplication is avoided, since the file is no longer completely downloaded, partitioned and up-
loaded again to the object storage.

KPI-3 - Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows.

Lithops as a compute backend. Lithops is the basis of our serverless architecture. The integration
of this NEARDATA component provides us with the necessary tools to deploy our implementation
of serverless variant call pipeline on the AWS cloud provider thus ensuring the orchestration of our
massive workflow. From the previous sections, we have been able to observe the different phases of
our serverless architecture based on the Map-Reduce model. Our solution presents more complex
phases that require us to differentiate different stages of functions in each of the map and reduce
phases. From the computate API, we can make groups of function invocations capable of executing
the different function stages. Likewise, the storage API is used as a Data Loader to transfer the
processed data between these stages through the use of the S3 object storage.

Page 55 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

To validate our serverless architecture with Lithops integration, we will now evaluate evaluate
two key aspects: (i) Performance evaluation where we will compare its execution time to the single-
node HPC version, and (ii) Scalability evaluation where we will use a larger dataset to assess the
architecture’s scalability.

Experiments setup: The HPC configuration consists of a Dell PowerEdge R440 node equipped with
two Intel Xeon Gold 5118 CPUs @ 2.30GHz, with a total of 24 cores (48 threads) and 32GB of memory.
For the serverless AWS Lambda execution, we utilized a Docker function runtime configured with
8192 MB of memory (which provides 4 vCPUs) and an ephemeral disk size of 10240 MB.

Performance. As a first benchmark, we used the Trypanosome genome and sequence reads SRR60521335
from NCBI for the execution of the complete pipeline with single-node HPC version and Serverless
version.

Table 4: Comparison of execution times between HPC and Serverless for the Variang Calling Stages

Stage HPC Serverless
Genome Indexing 0 min 14.20s 0min9.81s
Alignment Omin 14.20s 0 min48.10s
Index correction - 0Omin 7.63 s

Generate mpileup 51 min15.79s 1 min 6.55s

Index shuffle - 0O min 10.73 s
Variant Calling 54 min5.04ss 0O min27.82s
Total 106 min 8.21s 2 min 50.64 s

Table 4 presents execution times for the stages detailed above. The HPC version efficiently lever-
ages multithreading for genome indexing and alignment processes but experiences performance bot-
tlenecks in the mpileup and variant calling phases as they predominantly consist of sequential code.
Conversely, the serverless setup optimally distributes workloads, resulting in a significant reduction
in overall execution time even for sequential code. Thus, the serverless version is x37.46 times faster
than the HPC version.

Scalability. Next, we wanted to assess the scalability of our architecture by using a larger input
dataset such as the hg19 FASTA reference genome with 20 partitions and the SRR15068323 FASTQ
read set with 60 partitions from the NCBI archive. This represents a realistic benchmark of variant
calling in the field of human genomics. The files have an uncompressed size of 3.0 GB and 5.4 GB,
respectively.

Figure 48 illustrates the pipeline’s tasks execution time and concurrency over time, using 1200
tasks for the alignment stage and 112 for the reduce stage. Our asynchronous code redesign allows
us to comfortably surpass AWS Lambda’s 1000 concurrency limit, ensuring scalability. The FaaS
platform adapts to the flexible parallelism throughout the pipeline for optimal cost-effectiveness,
leaving no idle resources underutilized. The serverless architecture allowed us to scale this workload,
and achieve an execution time of 7 minutes and 16.57 seconds. For reference, the same workload ran
for 14 hours on the HPC setup. The total execution cost was 10.68 USD for AWS Lambda GB-sec
billing, with an additional 0.0644 USD for 32.2GB data scanned in S3 SELECT.

As we have been able to demonstrate, Lithops allows us to orchestrate our massive workflow
from its simple interface. This guarantees significant performance improvements over the HPC ver-
sion. Additionally, the elasticity and flexibility of cloud services favor the massive parallelization of
our genomics pipeline adapting perfectly to the scalability of resources needed to deal with extreme
data.

Glider as ephimeral storage for near-data shuffling. In the first part, we have evaluated the
serverless variant calling pipeline from the first Serverless solution that includes as Data Shuffling
the AWS S3 Select service. As a new contribution at NEARDATA, the novel ephemeral storage Glider

Page 56 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA

1200 - x Genome Index
. 1000 - — Alignment
c I 1 % Index Correction
£ 800+ - | % Gen. mpileup
< :] x Index Shuffle
“0'1 600 1 . ' % Variant Calling
-
= 1 1
S 400 : :
o »
& 1 \

200 1 1 ~==,
! \ ‘\ Tm—a
0 - ':--\JI \-._“' \.__.._-\‘-L ..-._"-—._.

0 100 200 300 400
Execution Time (sec)

Figure 48: Taks run time and concurrency - Scalability experiment with Lithops.

was presented. In this section we will show the performance comparison between the version with
S3 Select and the version with Glider. For this experiment we will focus only on the reduce phase of
our pipeline.

Experiment setup.We run this comparison with the Human Genome FASTA file (3 GiB) and the
SRR15068323 FASTQ file (5.25 GiB). These are split into 4 = 20 and g = 35 chunks. Hence, the full
experiment runs m = 700 mappers. The intermediate files (about 32 GiB) are shuffled to r =2 or 3
reducers per FASTA chunk (total of 47). We run partial executions with a subset of the chunks to
evaluate scale. Map and reduce Lambda functions are configured with 2 GiB and 8 GiB respectively.
Glider is deployed with one metadata server (t3.xlarge), up to 4 data servers (réi.large), and up to 20
active servers (c5.12xlarge). Data and actions are uniformly distributed across nodes in their tiers.

Bl B Map I B Ranges B Reduce
Bl G Map G Ranges G Reduce

300 -

1x5,1 2x10,1 3x20,2 5x20,2 20x35,2-3
250 MiB 1GiB 225GiB 45GiB 32 GiB

Figure 49: Serverless genomics variant calling. Execution time with Glider (G) against the baseline
(B). Labels are axq, r showing the number of chunks and reducers per FASTA chunk with an approx-
imate size of the temporary files.

Figure 49 draws the results. Compared with the baseline, Glider allows to avoid a full read of
the intermediate data to perform sampling. This minimizes storage accesses and eliminates 1/3 of
the intermediate data transfer. The baseline transfers the intermediate data 3 times (mappers write,
samplers read, and reducers read), while Glider only twice (mappers and reducers). Consequently,
our solution with actions is always faster than the baseline. The plot shows how this behavior is kept
with scale. In particular, Glider reduces execution time by 36% with the full data. The map stage is

Page 57 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

slower with Glider since it includes data sampling at the actions. However, this allows a much faster
range distribution. Finally, the reduce is also faster due to the benefits above, including lower data
ingestion to workers, a richer data processing on actions, and streaming data transfer.

The incorporation of Glider as Near-Data shuffling demonstrates a reduction of the data transfer
while ensuring the workflow orchestration from the distribution of the actions and the storage de-
scribed in the namespace. Thanks to its modularized design, it allows the user to add data or action
storage nodes according to the user’s needs, thus guaranteeing the scalability of the system.

Page 58 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

7 Metabolomics Use-case

In this use case, we contribute to improving METASPACE, a cloud platform for spatial metabolomics 1.

Spatial metabolomics is a bioanalytical technology for spatially-resolved detection of metabolites,
lipids, drugs and other molecules in tissue sections used in biology, medicine, and pharmacology.
Spatial metabolomics generates large datasets because for each pixel it produces a mass spectrum
containing in the order of 10* dimensions representing abundances of different molecules. A key
problem in spatial metabolomics is the metabolite identification or associating the spectral dimen-
sions with specific metabolites they can represent. The individual spatial metabolomics datasets
have large sizes, ranging from 1 to 100 GB per tissue section.

7.1 Why is the use case extreme data?

METASPACE represents a use-case of an extreme data in the health field because of the following
parameters:

Volume: The METASPACE hosts over 45 TB of data. Importantly, we observed a similarity to the
Moore’s law with a half of this data amount submitted in the last year. This was due the fact that
the latest imaging mass spectrometers are able to collect larger dataset with more pixels and more
molecular dimensions. We expect this trend to continue, anticipating having over 100 TB of data by
the end of this project (December 2025).

Variety: Figure 51 illustrates the variety of the datasets coming into METASPACE. Briefly, the data
is being submitted by a large number of users collecting data from various samples. Moreover, the
data comes from different technologies which affects the datasets size (the number of both pixels and
molecular dimensions), the properties of data (noise, spatial structures), as well as the properties of
the results (numbers and types of metabolites identified in data).

Veracity: Due to a wide range of users and their experiences with the spatial metabolomics tech-
nology, as well as the conscious lack of filters or QC criteria on the incoming datasets, the datasets
vary highly in their quality with some datasets. The mathematical foundation of our engine 2 al-
lows to control the False Discovery Rate in the results thus overall control the quality of the output.
However, these differences in the veracity lead to varying sizes of the results thus putting a strong
requirements on the scalability of the architecture handling the results.

Velocity: The numbers of datasets submitted in a day to METASPACE ranges from a few to over a
hundred that requires a highly scalable computing infrastructure and the implementation. Moreover,
the ranging sizes of the datasets and the selected molecular databases (sets of molecules to search for)
change the volumes of data that need to be processed every day.

International Data Space: As discussed in the previous section and see from the Figure 50 high-
lighting the world-wide map of the users, METASPACE represents the International Data Space in
the field of spatial metabolomics. This poses a number of challenges in terms of computing and offers
opportunities in terms of increasing the value of this data. In this project, we are increasing the inter-
operability of this data (URV with EMBL) as well as molecular content of this data (in Experiment 1,
to be presented later).

7.2 Assessed Datasets

In this experiment, we used two sets of datasets.

First, for the scientific evaluation and stress testing of the ML-based version of the engine, we used
1.710 datasets from 159 researchers from 47 labs encompassing both animal and plant-based datasets
with a balanced representation of various spatial metabolomics contexts (the list and breakdown are
available in the pilot study preprint '3).

http:/ /metaspace2020.eu
2https: / /www.nature.com/articles /nmeth.4072
Bhttps: / /www.biorxiv.org/content/10.1101/2023.05.29.542736v2.supplementary-material

Page 59 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA

COUNTRY USERS
United States 3.2K
China 843
(;‘lany 549
Eted Kingdom 318
;ance 248

N ;etherlands 176
;\ustralia 144

Figure 50: The map of the METASPACE users from the top-visiting countries in the last 12 months,
according to the Google analytics.

Second, for the software KPIs to be presented later in this deliverable, we used 5 representative
datasets of different sizes 14 processed against 4 different databases (sets of metabolites to be searched
in the datasets).

Table 5: Metabolomics use case datasets used for KPIs.

Dataset| Dataset Submitter Submitter Volume, | Country
ID organization in MB
dsl Brain02_Bregmal42_02 | Régis Lavigne University of 75 France
Rennes 1
ds2 AZ_Rat_Brains Nicole AstraZeneca 754 UK
Strittmatter
ds3 CT26_xenograft Nicole AstraZeneca 1828 UK
Strittmatter
ds4 Mouse brain Dhaka Bhandari | Justus-Liebig- 4450 Germany
test434x902 University
Giessen
ds5 X089- Dhaka Bhandari | Justus-Liebig- 7748 Germany
Mousebrain_842x603 University
Giessen

All software KPIs were calculated for all 5 datasets when annotating them against each of four
molecular databases: PamDB, CoreMetabolome, LipidMaps, and HMDB, which among the most
commonly used in METASPACE .

4https:/ / github.com /metaspace2020/ Lithops-METASPACE?tab=readme-ov-file#texample-datasets
5https:/ /metaspace2020.eu/help

Page 60 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

7.3 Description of the Use-Case

METASPACE was developed in the EU Horizon2020 project METASPACE in 2015-2018 (grant ID
634402). Furthermore, in the EU Horizon 2020 project CloudButton 2019-2022 (grant ID 825184),
we have developed a novel version of METASPACE underlying metabolite identification engine by
employing the serverless framework Lithops . The serverless version of METASPACE helped pro-
viding better service to the users and was recognized as a notable Deep Tech innovation by the EU
Innovation Radar '7.

METASPACE became a leading software in the emerging field of spatial metabolomics; see Fig-
ure 51). It can be used for data from various samples and technologies with various applications
in multiple fields of biology, medicine, and pharmacology. METASPACE provides capacities for big
data analysis, results sharing, and can be used in conjunction with other software through API. It is
used by more than 2600 users from over 160 groups from multiple contributing institutions world-
wide. We have processed more than 45.000 datasets submitted, with more than 10.000 of them made
public under the CC-BY 4.0 license. Most users access METASPACE through our web app; however
we also provide headless access through API which is used in particular by major users.

METASPACE is open-source ' and free supported by the funding from the EC, National Insti-
tutes of Health (NIH) from USA, as well as from a number of other grants. Importantly for the field
and for this project, a large number (30%) of the datasets are made public by their submitters (under
the CC-BY 4.0 license) that created the largest data space in this field.

For processing large numbers of diverse datasets, we have implemented METASPACE as a scal-
able data processing platform using the serverless framework Lithops, depicted in Figure 52. More-
over, the data storage infrastructure on METASPACE allows to store all the incoming files together
with the processing results (identified metabolites) and other metadata. Overall, accumulated data
on METASPACE amounts to over 45 TB as of April 2024.

Altogether, the scientific position and reputation, a worldwide community of users, the large
number and size of datasets, and cloud architecture of data storage position METASPACE as an
International Health Data Space in the field of spatial metabolomics.

In this project, we aim to further improve the open METASPACE cloud platform and strengthen
its position as a International Health Data Space.

7.4 Data Connectors

We have developed several Data Connectors supporting the extreme data in METASPACE for ML-
based metabolite identification:

¢ Data submitter: This data connector allows to submit a spatial metabolomics dataset to METAS-
PACE to be subject to the ML-based metabolite identification.

e Feature computer: This data connector computes features needed for ML-based metabolite
identification using Lithops

* FDR estimator: This data connector estimates the FDR values for all molecules from the pro-
vided molecular databases so that the molecules with FDR below a threshold can be reported
to the submitter

e Results downloader: This data connector enables a user to download the results for either their
dataset or a public dataset using its dataset ID

These data connectors allow users to efficiently perform interactions with METASPACE at the
same time ensuring scalability and access to over 45+ TB of historic datasets (provided their are
avilable to the user) including 10+ TB of public datasets (numbers as of April 2024).

16https:/ /lithops-cloud.github.io
17https: / /innovation-radar.ec.europa.eu/innovation/50800
18https:/ / github.com /metaspace2020/metaspace

Page 61 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA
Samples
e @ rETASPACE !)
Animal tissues Big data analysis
Planl ‘ﬁ”ﬂs Large-scale APl access
@ Mt Engine for metabolite annotation | RN Applications ®
Score, FOR-controlled confidence l ﬂ' ey Disease markers
Sample prep 1..MS image ¢ PREMEEL 25
Roboti ical i § scverse 50
Sggegne | 4Optcalimage B o Sinemez seoey, &
Resuilts sharing
| Permalinks for datasets,
Technologies - /'\ma";:sm slsr 3 R&D fields xr
MALDI-ETICR Wetabol ght itegration Analytical chemistry
MALDLOMira Maromiar omoay (63
‘o Other software Ca e o
Public knowledge base of — -Pam%‘g;s;l;;@;zsmn 4
5 Metabolite & lipid databases ~ spatial metabolomes . B reconsiruction
A 2%, & Lipkds AChEBI #DRUGBANK Metabolite images, metadata from >9000 datasets
Kb 3558 SwissoLipids - w \)
Datasets 2000 Polarity 2500 Polarity
30000 All " 2000 m Negative B Negative
" — PUbliC 2 Positive 2000 Positive
2
s © 1000 £ 1500 2
@ 20000 8 I @ @ 1500
E I - =
S T 0 [DT T — & 1000 8 1000
» 10000 {
o
/ g 500 500 I
0 E 20 o —— ol = N L T
> 3 S S & O &Y Y 2R &
0’19 Q’{J’ N2 & \(% ‘,’@Q ~¢ «OQ &0« «OQ o‘e‘o%@g%%%oﬁ%‘z‘ 7;“@@3@@%%%(1\6}0
v v v é & <& 9 3
Date < &
Analyzer MALDI matrix
Top contributing institutions
F G H FDR = 10% I FDR = 10%
=
3 10001 I 800 A 6000
S, _ o 5001 5000 |
167 2521518294 247 222 12 14 5 600
g Human+ @ Y IX X XN 3 6000 " ., 4000
K7 388 242122 45 4 27 g § é 3000 4
S Mouse{ ® ®@®eo oo £ 4000 1 § 400+ 8
g s s a 17 £ 2000 A
Rat{ ® e e oo S 5000 4 2001
1000 -
NS DL 0 2500] I.----] E
é%?éb‘\ S (\00‘&00\:, Count 0 0- T T T 0- v v v
S © F &Q@ooo@qeq\»\)e 0 1 2 3 0 1 2 3
) v\\O\% \" SN & @g\ i log1o Annotations per dataset logio Datasets per annotation
\ fo S S
0$ & V\g\é}' o S e
rgan & &
& 3
RS
Database

oo a2

Figure 51: The overview of the METASPACE cloud platform engine and International Data Space
outlining key functionality and types of usage, with key statistics of the usage illustrating the variety
of the incoming datasets, and screenshots of the web app.

Page 62 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

=+ OtherAWS == =-==-===-=-=-=-=-co-co===-=-- 1

User uploads Results files
(ImzML/ MolDB! (lon images, etc.
(S83) (S83)
Spark Centroids Hosted files

Cache (S3) (S3)

Web Server (AWS
EC2)

-
3

Raw Optical update- cluster-auto- lithops-
BT @flle daemon start-daemon daemon
PostgreSQL Images
(File System) Legend
RabbitMQ

AWS engine == === == =====-------=-=-a

ithops Cloud
Functions ImzML Cache

(COS)

T i
1
: I
1
: |
1
1
I ithops Code !
1 Engine :
1
1
: |
1 1
|
: |

EC2 Cluster

annotate-
daemon

ECS
Lithops Centroids

off-sample Lithops Temp Cache
service (cos) (COS)

(Spark) Annotate Primary (source-of-truth)
/ Update Queue \ / Queue database
Compiled Secondal
) ry (cache/temp)
ElasticSearch 'Webapp Dataset Status Lithops Queue database
(File System) Queue
G Primary file/object
storage
Sm:apl Secondary file/object
storage
Wes?t Session Sparllf C::JStef sm-graphg| /7 Cloud compute resource
orage oc
(Redis) (Redis) Our code
nginx ‘ .
Other service

Figure 52: The architecture for scalable processing of extreme data in METASPACE by employing the
serverless framework Lithops.

7.5 What are the benchmarks/KPI?

7.5.1 Experiment 1 - Mining historic METASPACE datasets with the recently developed ML
model to address the “dark matter” problem in spatial metabolomics.

Here, we are describing the results and KPI benchmarks for the Experiment 1 in the metabolomics
use-case, namely “performing machine-learning-based metabolite identification”. In this experi-
ment, we improve the fundamental part of the METASPACE, namely the engine for metabolite iden-
tification. The engine is implemented following our original publication in 2017 !° where a rule-based
solution was proposed based on the expert knowledge. However, this approach has its drawbacks,
and at the same time it is not flexible and cannot be adapted for specific users or technologies. Ad-
dressing it, we have developed a machine learning-based approach for metabolite identification in
spatial metabolomics. In our pilot study %, adding more features and using a machine-learning based
approach allowed us to significantly improve the results of data analysis, helping find molecules
which could not be found with the rule-based method. In our Experiment 1, we aim to implement
this new machine learning-based approach for the production version of METASPACE. Moreover,
in order to support the extreme data use and the position of METASPACE as an International Data
Space, we developed and optimised a number of data connectors for metabolomics including data
partitioner, feature analyser, and FDR estimator. Implementation of this new version of the engine
can increase the value of the historic and future extreme data in METASPACE for the scientists from
the field of spatial metabolomics.

KPI-1: Significant performance improvements (data throughput, data transfer reduction) in Ex-
tract-Transform (ETL) phases validated with near-data connectors over extreme data volumes (ge-

Yhttps:/ /www.nature.com/articles /nmeth.4072
2https:/ /www.biorxiv.org/content/10.1101/2023.05.29.542736v2

Page 63 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

nomics, metabolomics).

In our pilot study, we have first evaluated the scientific performance of the new ML-based version
of the metabolite identification by comparing it to the state of the art rule-based metabolite iden-
tification currently used on METASPACE. For this we considered the following metrics: PR-AUC
(Precision-Recall Area Under Curve), MAP (Mean Average Precision), and Number of Identified
Metabolites.

Higher Lower
(674) (45)
1.00 . ns
0.75
o
2
<050
[vd
o
0.25
0.00

METASPACE-ML = MSM

Figure 53: The PR-AUC calculated for each of the 720 testing datasets, showing an increase from 0.25
(rule-based) to 0.45 (ML), on average.

METASPACE-ML
MSM

9 O &
{b,ofb sQO\O \2‘® ‘lg/ .\%G}/\Q

v\\b @0 S

Figure 54: The MAP values across all datasets with the value for the recommended database
(CoreMetabolome) highlighted, increasing from 0.3 to 0.5.

Figures 53, 54, 55 show that the ML-version leads to substantial scientific improvements in all
three metrics (PR, AUC, MAP, and number of Identified metabolites). Specifically, we have achieved
the increase of PR-AUC from 0.25 to 0.45 on average, of MAP from 0.3 to 0.5; the number of metabo-
lites identified at FDR 10% increased by 10-100 new molecules.

KPI-3: Demonstrated resource auto-scaling for batch and stream data processing, validated
thanks to data-driven orchestration of massive workflows.

Lithops supplies data-driven partitioning of parallel workloads. Integrating it into the ML-pipeline
provides a scalable building block for inputs of variable data size. To evaluate the scalability of the

Page 64 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

(+-)Log10(Absolute Difference)
LY o N o

1
N

DR (%)

Figure 55: The difference in the numbers of annotations for different FDR levels showing that at FDR
10% (the default value), there are 10-100 more metabolites identified by the ML-version.

ML implementation, we evaluate the two most significant metrics for the use case, runtime and cost,
on increasing input dataset sizes (Table 5).

We compare the runtime of FDR calculation stage, at different inputs. We used the standard
METASPACE configuration for Lithops. Table 6 gives the relative speedup, for each input, of the
new ML-based pipeline against the production version. The runtime values ranging from 1.7 to
4.58 seconds and only minorly depending on the dataset size validate the scalablity of the system.
Table 7 gives the relative speedup, for each input, of the production version of the pipeline against
the new ML-based version. Although the new implementation is slower than the old one (1.5-2 times
slower), such minor increase in the runtime is actually due to delivering larger numbers of identified
metabolites that adds an additional overhead.

Table 6: Runtime for the ML-based metabolite identification, calculated on the production version of
METASPACE, in seconds.

Dataset ID PamDB CoreMetabolome | LipidMaps | HMDB
dsl 1.80s 3.24s 2.34s 2.51s
ds2 1.69s 2.05s 2.35s 3.10s
ds3 1.29s 1.72s 2.10s 3.26s
ds4 1.74s 1.99s 3.02s 4.58s
ds5 1.72s 2.31s 3.67s 4.25s

On the other hand, we calculated the cost of executing the ML-based identification on our pro-
duction version of METASPACE and compared it to our old rule-based version. Table 8 shows the
absolute values, in cents. Table 9 shows the ratio as compared to the rule-based version. Cost is

Page 65 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Table 7: The ratio of the runtime for the ML-based metabolite identification compared to the old rule-
based identification, calculated on the production version of METASPACE.

Dataset ID PamDB CoreMetabolome | LipidMaps | HMDB
dsl 2.31 3.7 1.83 1.5

ds2 2.14 1.97 1.59 1.49
ds3 1.94 1.97 1.57 1.43
ds4 1.92 1.96 1.84 1.54
ds5 2.04 1.84 1.53 1.38

pretty much identical with most combinations of the datasets and databases costing 101-110%. In-
terestingly, this was achieved even in cases where the calculation was slower (e.g. ds5 for HMDB
required 1.38 more runtime, yet the cost is 103%).

Table 8: The cost of performing the ML-based metabolite identification, calculated on the production
version of METASPACE, in cents.

Dataset ID PamDB CoreMetabolome | LipidMaps | HMDB
dsl 1.36¢t 2.62ct 5.69ct 6.22ct
ds2 1.48ct 2.50ct 4.74ct 9.23ct
ds3 3.94ct 5.91ct 10.60ct 15.23ct
ds4 10.34ct 19.07ct 46.88ct 86.85ct
ds5 17.24ct 30.68ct 88.76ct 120.16c¢t

Table 9: The ratio of the cost of performing the ML-based metabolite identification compared to the

old rule-based identification, calculated on the production version of METASPACE.

Dataset ID PamDB CoreMetabolome | LipidMaps | HMDB
dsl 1.23 1.17 1.1 1.0

ds2 1.19 1.15 0.99 1.04
ds3 1.01 1.06 1.06 1.12
ds4 1.01 1.01 1.02 1.02
ds5 0.99 1.06 1.03 1.03

KPI-5: Demonstrated simplicity and productivity of the software platform validated with real

user communities in International Health data Spaces.

We have submitted a manuscript 2! which is currently in review in Nature Communications. The ML-
based metabolite identification is already available to users on the production version of METAS-

2Thttps:/ /www.biorxiv.org/content/10.1101/2023.05.29.542736v2

Page 66 of 76

HORIZON - 101092644
30/04/2024

PACE and is already used by the METASPACE users (Figure 56).

. METASPACE Upload Annotations Datasets Projects Groups

Sample preparation

Sample growth conditions

Sample stabilisation*
N/A

MALDI matrix application*

Tissue modification*

None

Solvent

TM sprayer
MS analysis Polarity* lonisation source* Analyzer*
Positive MALDI FTICR

Data management

Detector resolving power*

400

m/z
Pixel size in pm*

300

horizontal

Submitter name*

140000

resolving power

300

vertical

Group*

Detectability Help Theodore Alexandrov

MALDI matrix*

2,5-dihydroxybenzoic acid (DHB)

Projects

NEARDATA

European Molecular Biology

Visibility private @) Public

Annotation settings Metabolite database*@ Adducts*@ Dataset name*
CoreMetabolome -v3 % M+H]" x M+ Na]" x
HMDB -v4 x M+K]"™ x

BILELIB19_DB x

Chemical modifications @ Analysis version*@

v1 (Original MSM)

m/z tolerance (ppm)*@ Jcts per formula

v1 (Original MSM)

3
Animal_v2.2023-12-14 (METASPACE-ML)

LION enrichment@
Plant_v2.2023-12-14 (METASPACE-ML)

Figure 56: Demonstration for KPI-5, a screenshot from the upload page of the METASPACE (https:
//metaspace2020.eu/upload) demonstrating (bottom part) the ML-based version of metabolite iden-
tification developed in Experiment 1 available on production.

7.5.2 Experiment 2 - Confidential computing for safe offloading of ML-based annotation of “dark
matter” for private datasets.

Once experiment 1 is finished, experiment 2 will port the existing ML-base pipeline architecture into
a confidential trusted environment. Privacy and security will be achieved using SCONE containers
over a confidential K8S backend and a Lithops orchestrator. Most OMICs data have strict confiden-
tiality requirements that are not compatible with public cloud services. Running the pipeline at the
edge, using on-premise cluster resources, will fit the needs of private workloads.

Experiment 2 is still at its early steps, however we achieved an initial prototype of the integration
of Lithops, METASPACE and SCONE containers. We used the KIO testbed for this purpose, whose
native K8S deployment served us to implement a potential architecture for the definite version of
the use-case. Our final proposal, will integrate the confidential version of the pipeline to process the

Page 67 of 76

https://metaspace2020.eu/upload
https://metaspace2020.eu/upload

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

private datasets from METASPACE and ingest the results into the METASPACE database and the
ElasticSearch engine.

To avoid repeating the previous KPI-s, which are transversal to the whole use-case, we will only
include the specification of KPI-4. KPI-4 is strictly correlated with experiment 2 and its future vali-
dation steps.

KPI-4: High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

Although SCONE was integrated into Lithops successfully, the current version of the architecture
could not be validated in adversarial contexts. Our next steps include (1) further security stress-tests
on the ML-based annotation of "dark-matter" for private sets (2) performance comparisons of the
private version of the pipeline against the cloud-based, production one.

Page 68 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

8 Conclusions

This deliverable has shown the work done on the NEARDATA project related to the use cases up
to M14 of the project. First, we have assessed why each of the use cases are extreme-data cases that
require moving the computations near to data. This is summarized in table 10.

Following this initial description of the use cases, we have explained the improvements made so
far in the use cases. To achieve such improvements we have implemented a set of data connectors
intended to move computations near to where the data is. In some cases, the connectors consisted
of integrating NEARDATA architectural frameworks (Lithops, Pravega, and SCONE). In some other
cases have been connectors that allow computational pieces to directly access the data, removing
middle layers that can be typically found in software stacks such as Apache Spark. Table 11 lists the
data connectors developed so far as well as their description and the use cases which are utilizing
them.

We have evaluated how those data connectors developed so far perform utilizing the main KPIs
described in the Description of the Action (DoA). Table 12 highlights the main KPIs achieved by each
of the use cases and quantifies them. For simplicity in the table, we have shortened the KPIs, whose
full names are as follows:

e KPI-1: Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform (ETL) phases validated with near-data connectors over extreme data vol-
umes (genomics, metabolomics).

e KPI-2: Significant data improvements (throughput, latency) in real-time video analytics vali-
dated using stream data connectors.

e KPI-3: Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows.

» KPI-4: High levels of data security and confidential computing validated using Tees and feder-
ated learning in adversarial security experiments.

¢ KPI-5: Demonstrated simplicity and productivity of the software platform validated with real
user communities in International Health data Spaces.

Finally, to make publicly available the work done so far, a Git Hub repository for the NEARDATA
project has been enabled. This repository contains the several use cases implemented so far. Table
13 shows the GitHub URL where available. Some of the use cases are not yet ready to be publicly
released (as this deliverable is a public release) as they are pending for conference and/or journal
publications.

Page 69 of 76

HORIZON - 101092644
30/04/2024

NEARDATA
RIA

H Use-case

| Why extreme-data?

H

Variant-
Interactions

The discovery of variant groups associated with the disease involves the anal-
ysis of over 15 million variants. Studying all the possible combinations of
pairs of variants represents more than 6x1013 tests. Using the Mare Nos-
trum 4 (MN4) architecture (165,888 CPU - 1.880 GB/core and 208 GPU -
16GB/each), this process is estimated to take approximately 9 days. Ideally,
however, we would like to explore combinations with sets of all 23 chromo-
somes, which would take months.

Surgery

In surgical scenarios, the concept of data-driven computer-guided surgery
(CGS) emerges as a solution to aid surgeons during procedures. However,
CGS systems encounter various challenges due to the large volume of data
they handle. A robust CGS framework must effectively manage large vol-
umes of real-time video data, high-resolution data streams, and temporal in-
formation crucial for meaningful guidance. On top of this, we must deal with
stringent regulatory compliance and confidential requirements.

Transcriptomics

To build the Transcriptomics Atlas for a given cell or tissue type, the prereq-
uisite is to obtain a set of identifiers of the input files (usually hundreds of
files are needed per cell/tissue type). The input data for pipelines are SRA
files which contain RNA sequencing data. The total size of the possible sub-
set of available SRA files that need to be processed for the atlas consists of
e.g. 20 human tissues is around 10.8 TiB for 8300 files. Moreover, this file
must be uncompressed and converted into FASTQ format, increasing the in-
put dataset to 79.8TB of data. Increasing the number of tissues moreover
scales the dataset size to hundreds of terabytes.

Genomics

Genome sequence analysis is a compute- and data-intensive task. Current se-
quencing techniques generate an overwhelming volume of data, with repos-
itories accumulating several petabytes each year [38]. Although HPC instal-
lations are commonplace in biology departments, they cannot handle peak
demands, reanalyze extensive public datasets generated by large consortia,
or minimize the run time needed for specific analyses.

Metabolomics

METASPACE, which is at the center of our work, is strongly positioned as an
International Data Space within the field of spatial metabolomics and rep-
resents a use-case for extreme data in this field. The large size of spatial
metabolomics datasets (1-100 GB), multiplied with the increasing numbers
of datasets submitted to METASPACE (10-100 each day) creates a continu-
ously growing amount of data in METASPACE that reached 45 TB of data as
of April 2024. Processing incoming datasets as well as analysis of the historic
data (e.g. using machine learning-based identification as presented in our
Experiment 1) requires performant, highly-scalable, cost-efficient and cloud-
focused methods that can be deployed where the data is stored.

Table 10: Summary of why use cases are extreme data

Page 70 of 76

HORIZON - 101092644
30/04/2024

NEARDATA
RIA

Data connec-
tor

Description

Use-cases

HPC connec- | Allows to accelerate computations and is part of the | Variant-Interactions
tor XtremeHub (MDR)
Data selector | Selects the data to be used and analyzed Variant-Interactions
(MDR and GWD),
Metabolomics
Data prepara- | Loads the data in the correct format and gets the rel- | Variant-Interactions
tor evant information (MDR)
Test of associa- | Associates the variants with clinic and control Variant-Interactions
tion (MDR)
Data func- | Interprets the final execution data Variant-Interactions
tional inter- (MDR)
pretation
Data parti- | Partitions the data into smaller sets Variant-Interactions
tioner (GWD), Genomics,
Metabolomics
Data merger Merges data coming from the partitions Variant-Interactions
(GWD), Genomics,
Metabolomics
Data predictor | Predicts which variants are relevant Variant-Interactions
(GWD)
Federated Integrates SCONE capabilities to enable a secure fed- | Surgery, Transcriptomics
learning erate learning environment across hospitals
Data loader Allows to access object storage and load intermediate | Genomics, Metabolomics
data for further processing
Data shuffling | This connector shuffles the data in the first part of the | Genomics
Genomics use-case using the FASTQ format
Near-Data This connector intends to improve the current shuf- | Genomics
data shuffling | fling connector reducing the volume of data transfers
Pravega Event-based clients APIs to connect applications to | Surgery, Genomics
clients Pravega
Pravega Efficiently manage GStreamer media streams in | Surgery
GStreamer Pravega
Data plug con- | Integrates the data plug library to efficiently handle | Transcriptomics
nector partitions across nodes
Lithops con- | Allows to integrate with the Lithops framework Transcriptomics, Variant-
nector Interactions (GWD),
Metabolomics
Data submit- | Allows a user to submit a spatial metabolomics | Metabolomics
ter dataset for Lithops-based processing in METASPACE
Feature com- | Accesses the dataset in the object storage and cal- | Metabolomics
puter culates features necessary for the machine learning
model, using Lithops
FDR estimator | Calculates the False Discovery Rate using our previ- | Metabolomics
ously published approach but for new features used
in the machine learning model, and using Lithops
Results down- | Allows a user to access results calculated obtained | Metabolomics

loader

using the ML-model deployed on production (devel-
oped and implemented in Experiment 1)

Table 11: Data connectors summary table

Page 71 of 76

HORIZON - 101092644 NEARDATA

30/04/2024 RIA
[Use-case | KPI || Results |
Variant- KPI-1 MPI version shows a speed-up of 5x compared to the Apache Spark version which
Interactions translates into 5x more data ingestion capabilities (we can compare 5x more variants

(MDR) in the same amount of time).
Variant- KPI-1 We explored the adoption of a GPU component in our HPC data connector to further
Interactions improve performance on heavy computational tasks. We have seen a potential speed-
(GWD) up of 2.1x times.

KPI-3 Leveraging Lithops we can now increase the data ingestion capabilities, thus, improv-

ing our data throughput. Data throughput has bieen improved as wel as performance.
Initial experiments in local environments show a speed-up of 2.83x.

KPI-2 With Pravega integration end-to-end IO latency represents only a fraction of the infer-
Surgery ence latency in the tested models (i.e., 45% lower).
KPI-3 Combining federated with Scone will auto-scale the training of multiple clients with

extreme-date achieving high performance.

The orchestrator component auto-scales streaming analytics automatically lever-
aging Pravega’s stream parallelism

KPI-4 Utilizing SCONE training data and code has been encrypted by making all training
inside TEE enclaves. We guaranteed training computations ran correct code not modi-
fied by malicious clients. Preliminary results show such confidentiality is ensured.
KPI-5 NCT estimates that using containerized Al inference applications jointly with Prave-
ga/GStreamer may reduce the combined deployment and data management time for
video analytics in ~ 50%.

KPI-1 Through the implementation of an early stopper for STAR aligner we can predict
whether we should stop processing the alignment with just 10% of the total number of
reads.

KPI-1 We have generated new STAR index on the newest genome release that resulted in (on
average) 12-times faster pipeline that has smaller resource (RAM) requirements.
KPI-1 The FL workflow yields a significant data transfer reduction compared to centralized
approaches.

KPI-1 The FL workflow yields improved data ingestion rates compared to centralized ap-
proaches due to inherent parallelism.

KPI-3 We have determined the best memory per core trade-off in the AWS cloud for the use-
case allowing us to choose the most cost-efficient machines.

Transcriptomics

KPI-3 Index distribution solution has proved itself viable and scalable for the Transcriptomics
Atlas architecture.

KPI-3 Using spot instances we are able to reduce compute costs by about 50%.

KPI-4 Data transfer reduction due to FL nature guarantees a high level of privacy. Further
integration with SCONE will only improve these guarantees.

KPI-5 Increased regulatory compliance and data security due to FL nature increases the pro-

ductivity of the platform.

KPI-1 Reduced data partitioning, data transfer (by 200%), and data duplication through the
integration of the Dataplug connector, as we avoid re-uploading partitions to the object
storage.

KPI-3 Moving the variant calling pipeline from HPC to serverless with Lithops demonstrates
a further optimization of the resources needed for the massively parallelized pipeline
thanks to the elasticity and flexibility of cloud services. Thanks to this, the serverless
version is x37.46 times faster than the HPC version. In addition, Glider integration
on the serverless version reduces execution time by 36% with the full data. The Near-
data shuffling connector demonstrates a reduction of the data transfer ensuring the
workflow orchestration from the distribution of the actions.

KPI-1 We have implemented the machine learning-based version of the metabolite identifi-
cation using Lithops and deployed it on production of METASPACE, thus eliminating
the need for data transfer as ML inference can be performed directly in METASPACE.
KPI-3 The implemented ML-version of metabolite identification allows for resource auto-
scaling for datasets of the size ranging from under 1 GB to 20 GB (a common range of
datasets in METASPACE). This has been demonstrated in the pilot study as well as on
production.

KPI-4 We have integrated SCONE into Lithops and tested its early usage on a on-premise
K8s cluster.

KPI-5 The ML-based metabolite identification is already available to users on the production
version of METASPACE and is already used by the METASPACE users.

Genomics

Metabolomics

Table 12: Highlights of main KPIs achieved by use-cases

Page 72 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA
H Components Description \ GitHub URL H
Variant- MDR use-case source-code | https://github.com/neardata-eu/
Interactions integrated with HPC Data | MPI-genomics-MDR
use-case Connector
MDR use-case with Apache | https://github.com/neardata-eu/spark-mdr
Spark
Lithops backend | Lithops backend for singular- | https://github.com/neardata-eu/

ity

lithops-hpc-singularity-and-k8s-backend

Video-streaming

Video-streaming benchmarks

https://github.com/neardata-eu/

benchmarks with Gstreamer and Pravega | video-streaming-benchmarks
connectors
Dataplug Dataplug python framework | https://github.com/neardata-eu/dataplug
Genomics Variant calling source code https://github.com/neardata-eu/
use-case serverless-genomics-variant-calling

Glider

https://github.com/neardata-eu/
glider-store

Surgery use-case

Federated Learning Source
Code

https://github.com/neardata-eu/nct_tud_
fl_demo

Surgical Pravega GStreamer
Demo

https://github.com/neardata-eu/nct_dell
demo_pravega

Transcriptomic
Atlas use-case

Federated Learning for Hu-
man Genome Variation Anal-
ysis

https://github.com/SanoScience/
neardata-fl-for-transciptomics

Transcriptomic Atlas Pipeline

https://github.com/neardata-eu/
transcriptomics-atlas-sano

Metabolomics
use-case

METASPACE codebase in-
cluding the implementation
of ML-based metabolite iden-
tification (Experiment 1)

https://github.com/metaspace2020/
metaspace

ML models from Experiment
1

https://github.com/metaspace2020/
metaspace/tree/master/metaspace/
scoring-models

Table 13: Use-cases source codes released.

Page 73 of 76

https://github.com/neardata-eu/MPI-genomics-MDR
https://github.com/neardata-eu/MPI-genomics-MDR
https://github.com/neardata-eu/spark-mdr
https://github.com/neardata-eu/lithops-hpc-singularity-and-k8s-backend
https://github.com/neardata-eu/lithops-hpc-singularity-and-k8s-backend
https://github.com/neardata-eu/video-streaming-benchmarks
https://github.com/neardata-eu/video-streaming-benchmarks
https://github.com/neardata-eu/dataplug
https://github.com/neardata-eu/serverless-genomics-variant-calling
https://github.com/neardata-eu/serverless-genomics-variant-calling
https://github.com/neardata-eu/glider-store
https://github.com/neardata-eu/glider-store
https://github.com/neardata-eu/nct_tud_fl_demo
https://github.com/neardata-eu/nct_tud_fl_demo
https://github.com/neardata-eu/nct_dell_demo_pravega
https://github.com/neardata-eu/nct_dell_demo_pravega
https://github.com/SanoScience/neardata-fl-for-transciptomics
https://github.com/SanoScience/neardata-fl-for-transciptomics
https://github.com/neardata-eu/transcriptomics-atlas-sano
https://github.com/neardata-eu/transcriptomics-atlas-sano
https://github.com/metaspace2020/metaspace
https://github.com/metaspace2020/metaspace
https://github.com/metaspace2020/metaspace/tree/master/metaspace/scoring-models
https://github.com/metaspace2020/metaspace/tree/master/metaspace/scoring-models
https://github.com/metaspace2020/metaspace/tree/master/metaspace/scoring-models

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

References

[1] BSC-CNS, “Marenostrum 4 supercomputer technical information.” https://www.bsc.es/
marenostrum/marenostrum/technical-information, 2017.

[2] “Red espafiola de supercomputacion (res).” https://www.res.es/es/acceso-a-la-res/, 2024.

[3] “Partnership for advanced computing in europe (prace).” https://prace-ri.eu/hpc-access/
calls-for-proposals/, 2024.

[4] BSC-CNS, “Greasy software user’s guide.” https://www.bsc.es/user-support/greasy.php,
2023.

[5] M. Carstens, F. M. Rinner, S. Bodenstedt, A. C. Jenke, J. Weitz, M. Distler, S. Speidel, and E. R.
Kolbinger, “The dresden surgical anatomy dataset for abdominal organ segmentation in surgical
data science,” Scientific Data, vol. 10, no. 1, pp. 1-8, 2023.

[6] M. Wagner, B.-P. Miiller-Stich, A. Kisilenko, D. Tran, P. Heger, L. Miindermann, D. M. Lubotsky,
B. Miiller, T. Davitashvili, M. Capek, et al., “Comparative validation of machine learning algo-
rithms for surgical workflow and skill analysis with the heichole benchmark,” Medical Image
Analysis, vol. 86, p. 102770, 2023.

[7] A.P. Twinanda, S. Shehata, D. Mutter,]. Marescaux, M. De Mathelin, and N. Padoy, “Endonet:
a deep architecture for recognition tasks on laparoscopic videos,” IEEE transactions on medical
imaging, vol. 36, no. 1, pp. 86-97, 2016.

[8] “Greasy software user’s guide.” https://github.com/rancher/local-path-provisioner,
2023.

[9] “NCBI NIH website.” https:/ /www.ncbi.nlm.nih.gov/, 2024.

[10] K. Karczewskiand L. Francioli, “The genome aggregation database (gnomad),” MacArthur Lab,
pp- 1-10, 2017.

[11] T. gnomAD Consortium, “gnomad v4.0.” https://gnomad.broadinstitute.org/news/
2023-11-gnomad-v4-0/, 2023.

[12] . G. P. Consortium et al., “A global reference for human genetic variation,” Nature, vol. 526,
no. 7571, p. 68, 2015.

[13] K. J. Karczewski, B. Weisburd, B. Thomas, M. Solomonson, D. M. Ruderfer, D. Kavanagh,
T. Hamamsy, M. Lek, K. E. Samocha, B. B. Cummings, et al., “The exac browser: displaying
reference data information from over 60 000 exomes,” Nucleic acids research, vol. 45, no. D1,
pp- D840-D845, 2017.

[14] N. C. L (NCI), “The cancer genome atlas (tcga) history,” 2017.

[15] M. Goddard, “The eu general data protection regulation (gdpr): European regulation that has a
global impact,” International Journal of Market Research, vol. 59, no. 6, pp. 703-705, 2017.

[16] L. O. Gostin, “National health information privacy: regulations under the health insurance
portability and accountability act,” Jama, vol. 285, no. 23, pp. 3015-3021, 2001.

[17] “NCBI NIH: The Sequence Read Archive.” https:/ /www.ncbi.nlm.nih.gov/sra/docs, 2024.
[18] “Sequence Read Archive Data Working Group.” https:/ /dpcpsi.nih.gov/council /sradwg, 2024.

[19] “NIH’s Sequence Read Archive, the world’s largest genome sequence repository: Openly
accessible on AWS.” https:/ /aws.amazon.com/blogs/industries/nihs-sequence-read-archive-
the-worlds-largest-genome-sequence-repository-openly-accessible-on-aws/, 2024.

Page 74 of 76

https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.res.es/es/acceso-a-la-res/
https://prace-ri.eu/hpc-access/calls-for-proposals/
https://prace-ri.eu/hpc-access/calls-for-proposals/
https://www.bsc.es/user-support/greasy.php
https://github.com/rancher/local-path-provisioner
https://gnomad.broadinstitute.org/news/2023-11-gnomad-v4-0/
https://gnomad.broadinstitute.org/news/2023-11-gnomad-v4-0/

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

[20] “The European Nucleotide Archive in 2022.” https://doi.org/10.1093 /nar/gkac1051, 2024.

[21] “Statistics regarding data growth in ENA.” https:/ /www.ebi.ac.uk/ena/browser/about/statistics,
2024.

[22] A. Dimitromanolakis, J. Xu, A. Krol, and L. Briollais, “sim1000g: a user-friendly genetic variant
simulator in r for unrelated individuals and family-based designs,” BMC bioinformatics, vol. 20,
no. 1, pp. 1-9, 2019.

[23] R. C. Team, “R language definition,” Vienna, Austria: R foundation for statistical computing,
vol. 3, no. 1, 2000.

[24] “Salmon repository,” 2023.
[25] “STAR repository,” 2023.

[26] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and
T. R. Gingeras, “Star: ultrafast universal rna-seq aligner,” Bioinformatics, vol. 29, no. 1, pp. 15-
21,2013.

[27] “DESeq2,” 2023.
[28] “SRA-Toolkit repository,” 2023.

[29] European Parliament and Council of the European Union, “Regulation (EU) 2016/679 of the
European Parliament and of the Council.”

[30] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient
learning of deep networks from decentralized data,” in Artificial intelligence and statistics,
pp- 1273-1282, PMLR, 2017.

[31] D.]. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, T. Par-
collet, P. P. B. de Gusmado, et al., “Flower: A friendly federated learning research framework,”
arXiv preprint arXiv:2007.14390, 2020.

[32] A.Paszke,S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[33] L. Deng, “The mnist database of handwritten digit images for machine learning research [best
of the web],” IEEE signal processing magazine, vol. 29, no. 6, pp. 141-142, 2012.

[34] A.Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[35] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’keeffe, M. L. Stillwell, et al., “{SCONE}: Secure linux containers with intel {SGX},” in 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 689-703,
2016.

[36] F. J. Martin, M. R. Amode, A. Aneja, O. Austine-Orimoloye, A. Azov, I. Barnes, A. Becker,
R. Bennett, A. Berry, J. Bhai, S. Bhurji, A. Bignell, S. Boddu, P. R. Branco Lins, L. Brooks, S. B.
Ramaraju, M. Charkhchi, A. Cockburn, L. Da Rin Fiorretto, C. Davidson, K. Dodiya, S. Don-
aldson, B. El Houdaigui, T. El Naboulsi, R. Fatima, C. G. Giron, T. Genez, G. S. Ghattaoraya,
J. G. Martinez, C. Guijarro, M. Hardy, Z. Hollis, T. Hourlier, T. Hunt, M. Kay, V. Kaykala, T. Le,
D. Lemos, D. Marques-Coelho, J. C. Marugan, G. Merino, L. Mirabueno, A. Mushtaq, S. Hossain,
D. N. Ogeh, M. P. Sakthivel, A. Parker, M. Perry, I. PiliZota, I. Prosovetskaia, J. G. Pérez-Silva,
A. Salam, N. Saraiva-Agostinho, H. Schuilenburg, D. Sheppard, S. Sinha, B. Sipos, W. Stark,
E. Steed, R. Sukumaran, D. Sumathipala, M.-M. Suner, L. Surapaneni, K. Sutinen, M. Szpak,

Page 75 of 76

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

E. Tricomi, D. Urbina-Gémez, A. Veidenberg, T. Walsh, B. Walts, E. Wass, N. Willhoft,]. Allen,
J. Alvarez-Jarreta, M. Chakiachvili, B. Flint, S. Giorgetti, L. Haggerty, G. Ilsley, J. Loveland,
B. Moore, J. Mudge, J. Tate, D. Thybert, S. Trevanion, A. Winterbottom, A. Frankish, S. E. Hunt,
M. Ruffier, F. Cunningham, S. Dyer, R. Finn, K. Howe, P. W. Harrison, A. D. Yates, and P. Flicek,
“Ensembl 2023,” Nucleic Acids Research, vol. 51, pp. D933-D941, 11 2022.

[37] “STAR aligner manual.” https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf,
2024.

[38] E. N. Archive, “Statistics.” https:/ /www.ebi.ac.uk/ena/browser/about/statistics, 2022.

[39] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC 17,
(New York, NY, USA), p. 445-451, Association for Computing Machinery, 2017.

[40] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on
serverless infrastructure,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), (Boston, MA), pp. 193-206, USENIX Association, Feb. 2019.

[41] S. Marco-Sola, M. Sammeth, R. Guig6, and P. Ribeca, “The gem mapper: fast, accurate and
versatile alignment by filtration,” Nature methods, vol. 9, no. 12, pp. 1185-1188, 2012.

[42] L. Ferretti, C. Tennakoon, A. Silesian, G. Freimanis, and P. Ribeca, “Sinple: Fast and sensitive
variant calling for deep sequencing data,” Genes, 2019.

[43] A. W. Services, “Amazon s3 object lambda.” https://aws.amazon.com/es/s3/features/
object-lambda/, 2021.

[44] A. W. Services, “Introducing aws lambda response streaming.” https://aws.amazon.com/es/
blogs/compute/introducing-aws-lambda-response-streaming/, 2023.

[45] P. Stuedi, A. Trivedi,]. Pfefferle, A. Klimovic, A. Schuepbach, and B. Metzler, “Unification
of temporary storage in the NodeKernel architecture,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), (Renton, WA), pp. 767-782, USENIX Association, July 2019.

Page 76 of 76

https://aws.amazon.com/es/s3/features/object-lambda/
https://aws.amazon.com/es/s3/features/object-lambda/
https://aws.amazon.com/es/blogs/compute/introducing-aws-lambda-response-streaming/
https://aws.amazon.com/es/blogs/compute/introducing-aws-lambda-response-streaming/

	Executive summary
	Introduction
	Variants-Interactions Use-case
	Why is the use case extreme data?
	Assessed Datasets
	Description of the use-case
	Data Connectors
	Multi Dimensionality Reduction (MDR)
	Genome-Wide discovery (GWD)

	What are the benchmarks/KPI?
	Experiment 1: Multi Dimensionality Reduction (MDR)
	Experiment 2: Genome-Wide Discovery (GWD)

	Integration with the architecture components of NEARDATA

	Use Case Surgery
	Why is the use case extreme data?
	Assessed Datasets
	Description of the use-case
	Data Connectors
	Federated Learning
	GStreamer and Pravega

	What are the benchmarks/KPI?
	Federated Learning
	Pravega and GStreamer

	Integrations with the architecture components of NEARDATA

	Transcriptomics Use Case
	Why is the use case extreme data?
	Transcriptomic Atlas
	Federated Learning for Human Genome Variation Analysis

	Assessed Datasets
	Transcriptomic Atlas
	Federated Learning for Human Genome Variation Analysis

	Description of the use-case
	Transcriptomic Atlas
	Federated Learning for Human Genome Variation Analysis

	Data Connectors
	Transcriptomic Atlas
	Federated Learning for Human Genome Variation Analysis

	What are the benchmarks/KPI?
	Experiment 1: Transcriptomic Atlas
	Experiment 2: Federated Learning for Human Genome Variation Analysis

	Genomics Use-case
	Why is the use case extreme data?
	Assessed Datasets
	Description of the use-case
	Data Connectors
	What are the benchmarks/KPI?

	Metabolomics Use-case
	Why is the use case extreme data?
	Assessed Datasets
	Description of the Use-Case
	Data Connectors
	What are the benchmarks/KPI?
	Experiment 1 - Mining historic METASPACE datasets with the recently developed ML model to address the “dark matter” problem in spatial metabolomics.
	Experiment 2 - Confidential computing for safe offloading of ML-based annotation of “dark matter” for private datasets.

	Conclusions

