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1 Executive summary

The NEARDATA Data Broker, as presented in this final release and documentation, is a central ele-
ment of the NEARDATA architecture (refer to D2.1) that orchestrates secure and trustworthy data
flows across the Cloud/Edge continuum. Its primary objective is to provide robust data gover-
nance, enabling stakeholders to securely access, share, and transfer confidential data from distributed
sources, while ensuring the confidentiality and integrity of both applications and their components.
The Data Broker manages user access policies and roles, supports multiple confidential data access
methods, and integrates seamlessly with existing NEARDATA frameworks and tools.

To demonstrate its capabilities in controlling data access and enforcing security policies, the Data
Broker has been integrated with a federated learning application using the FLOWER framework and
Trusted Execution Environments (TEEs) This federated learning example is referenced throughout
the document to illustrate the practical enforcement of confidentiality and integrity within NEAR-
DATA. Beyond federated learning, the Data Broker extends its confidential computing capabilities to
metabolomics workflows by supporting confidential containers for both Kubernetes and Singularity
compute backends, as well as for the MinlO storage backend. This ensures that all data processed
by Lithops whether at rest in MinlO, in transit between services, or in use during computation, is
encrypted and protected within secure enclaves. SCONE's policy-driven access control and attesta-
tion mechanisms guarantee that only authorized, attested services can access sensitive metabolomics
data, delivering comprehensive confidentiality and integrity across the entire workflow.

A comprehensive evaluation has confirmed that the Data Broker achieves the following key per-
formance indicators (KPIs): validated confidentiality and integrity; negligible performance overhead;
and secure multi-user access with robust policy enforcement. These results are supported by quan-
titative benchmarks and practical demonstrations in both metabolomics and surgomics use cases,
which confirm the effectiveness, scalability and suitability of the Data Broker for high-throughput,
distributed workloads.

The document also details the suite of security tools developed to support these capabilities,
including the SCONE runtime (enabling applications to run in TEEs), a cross-compiler, and the
Sconify tool, which together allow developers to convert native applications into confidential ones
and streamline secure deployment. By integrating federated learning (via FLOWER), secure stream-
ing (via Pravega), and confidential computing (via SCONE), the Data Broker enables privacy pre-
serving, scalable, and trustworthy data processing for modern healthcare and life sciences research.

In conclusion, this deliverable summarizes the Data Broker’s achievements and outlines the re-
search activities that have supported these advancements, positioning the Data Broker as a central
enabler of secure, compliant, and future-proof data ecosystems within NEARDATA. The comprehen-
sive approach ensures that sensitive data remains confidential and secure throughout its lifecycle,
meeting the stringent requirements of contemporary scientific environments.
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2 Introduction

The NEARDATA project, titled "Extreme Near-Data Processing Platform," marks a paradigm shift
in the design, deployment, and protection of data-intensive applications across the compute contin-
uum. Building on robust security foundations established in earlier phases, this document introduces
the overarching security framework that underpins the Data Broker component and its integration
within the broader NEARDATA ecosystem.

Modern data processing applications, especially those that leverage artificial intelligence and
real-time analytics, face unprecedented challenges in balancing performance, scalability, and secu-
rity. The distributed nature of edge-to-cloud environments introduces a wide spectrum of attack
vectors and privacy risks that cannot be adequately addressed by conventional centralised security
models. NEARDATA addresses these challenges through an innovative combination of trusted exe-
cution environments (TEEs), federated processing, and privacy-preserving data flows, all designed
to guarantee strong security assurances without undermining computational efficiency.

At the heart of NEARDATA’s architecture lies the Data Broker, the central orchestration compo-
nent responsible for enabling secure data exchange between heterogeneous data sources, processing
engines, and consumer applications. Unlike traditional data management systems, the Data Broker
enforces a zero-trust security paradigm, embedding data protection mechanisms throughout the en-
tire processing pipeline. This approach is especially vital for sensitive domains such as healthcare an-
alytics, where compliance with stringent regulatory frameworks and data sovereignty requirements
requires uncompromising safeguards.

2.1 Target Audience

The present document, which evaluates the Data Broker security framework, is formally intended
for internal circulation within the NEARDATA consortium, though it remains publicly accessible.
Its primary audience comprises the NEARDATA technical team, including all partners engaged in
work packages related to data management, security implementation, and platform integration. In
addition, the document serves as a technical reference for developers working on NEARDATA use
cases, with particular relevance for federated learning applications in the surgical and metabolomics
domains. It also provides practical guidance for system architects and security engineers responsible
for deploying NEARDATA components across cloud and edge environments.

2.2 Structure of document

This document includes four main parts:
This document is organized into the following key sections:

1. Control Plane Architecture This section details the architectural components of the Data Bro-
ker, including:

(a) Core Data Broker Design: Foundational Architecture and its role in orchestrating secure
data flows.

(b) Confidential Compute Layer: Integration of TEEs and confidential computing to protect
data in use, at rest, and in transit.

(c) Confidential Data Exchange Layer: Mechanisms for secure, policy-driven data exchange
between distributed sources and consumers.

(d) Orchestration Layer: Management of data processing workflows, resource allocation, and
secure service composition.

(e) Federated Orchestration Layer: Coordination of federated learning and distributed ana-
lytics across multiple, potentially untrusted domains.

This section explains how these layers interact to manage and secure data flows across the
compute continuum, implementing a multi-layered security approach that aligns with best
practices in modern data broker architectures
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2. NEARDATA Threat Model and Policy Model This part provides a comprehensive summary
of potential threats and attacks in the context of streaming data processing and Al applications
across the compute continuum. It presents:

(a) Threat Model: Analysis of attack vectors, including those specific to cloud, edge, and
federated environments (e.g., data leakage, model inversion, poisoning, side-channel at-
tacks).

(b) Policy Model: Detailed policy definitions, including protection goals and mechanisms de-
signed to address the analyzed threats within the Data Broker architecture. This includes
access control, encryption, attestation, and auditing strategies, as well as compliance with
regulatory requirements.

3. Use Cases This section demonstrates how the Data Broker security framework supports real-
world applications, with detailed examples from:

(a) Surgical with Federated Learning and Pravega and Flower framework: Showcasing
secure streaming and federated learning for surgical data, leveraging Pravega for high-
throughput video streaming and Flower for privacy-preserving distributed model train-
ing, all protected by SCONE’s confidential computing.

(b) Metabolomics with Lithops, Metaspace, and Keycloak: Detailing the application of the
Data Broker in spatial metabolomics annotation, utilizing Lithops for multi-cloud server-
less computing, Metaspace for annotation, and Keycloak for identity and access manage-
ment. This use case highlights secure, scalable, and confidential processing of large-scale
biomedical data.

4. Final Release of the Data Broker This section provides an overview of the final release of the
Data Broker, highlighting its features and capabilities.

(a) Features and capabilities: Secure data governance (Confidential data transfer, Policy-
driven access control)

(b) Security Tools: The suite of tools developed to control data access and provide confiden-
tiality and integrity for applications running within NEARDATA, including the SCONE
runtime (enabling applications to run in TEEs), a cross-compiler, and the Sconify tool (en-
abling developers to convert native apps into confidential ones)

5. Performance Evaluation This section presents the results of a preliminary evaluation, which
was conducted to validate various design decisions and assess the performance of the system.

6. Conclusion section, We summarise our contributions to securing data brokering in extreme-
scale processing environments, and we outline the ongoing and future work planned to en-
hance the platform’s security capabilities.

The document concludes with a summary of achievements and outlines ongoing and future work
planned for enhancing the platform’s security capabilities.
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3 Data Broker Reference Architecture
3.1 Control Plane: Confidential Data Orchestration

The NEARDATA Control Plane delivers robust confidential data orchestration across the entire Cloud-
Edge continuum, ensuring secure governance, processing, and exchange of sensitive data in dis-
tributed environments. Leveraging trusted execution environments (TEEs) and advanced crypto-
graphic mechanisms, the control plane enforces strict confidentiality and integrity guarantees, even
in multi-tenant and federated learning scenarios where data must remain at its origin while enabling
collaborative computation and model training across multiple stakeholders. This approach is fully
aligned with the zero-trust security paradigm, which requires continuous verification of identity,
context, and policy compliance for every access request, regardless of network location.
Core Functions of the Control Plane

1. Orchestrating data flows and analytics pipelines across diverse environments, ensuring that
data is processed where it is most efficient and secure.

2. Managing security, access control, and policy enforcement for data sharing and computation,
in line with modern data governance principles.

3. Coordinating the deployment and execution of data processing tasks, including confidential
and federated learning workflows, while maintaining compliance with privacy regulations

3.1.1 Data Broker Architecture

Data Broker and Data Connectors are integral components of NEARDATA's architecture, and as such,
their notions are innovatively redefined as pioneering improvements inside our Data Space. The Data
Plane is a sophisticated data service that acts as an intermediary, enhancing and streamlining data
flows by leveraging the S3 API for storing and retrieving objects, as well as streaming APlIs via fast
near-data connections in Cloud /Edge environments.

To further strengthen the trustworthiness and security of NEARDATA'’s Data Broker, we inte-
grate SCONE (Secure Container Environment) as a foundational technology. SCONE is not merely
a platform component within NEARDATA'’s architecture, it is a cornerstone for enabling trustwor-
thy, confidential, and policy-driven data operations across the entire data lifecycle. Its significance
extends far beyond providing a runtime environment:

Key Comparative Strengths

1. 1End-to-End Confidentiality SCONE ensures that data is encrypted not only at rest and in
transit, but also during computation. This comprehensive approach means sensitive informa-
tion remains protected throughout its entire lifecycle, even from privileged insiders like system
administrators.

2. Seamless Integration with Containers A standout feature is SCONE’s ability to secure existing
containerized applications with little to no code modification. This allows organizations to
adopt confidential computing without re-architecting their software, streamlining the path to
enhanced security.

3. Remote Attestation for Trust SCONE provides robust remote attestation, enabling users to
verify that their applications are running in a genuine, untampered secure enclave. This builds
trust in the integrity of both the application and the underlying platform.

4. Confidential Service Mesh Support SCONE supports secure orchestration and communication
between multiple microservices, making it suitable for complex, distributed applications that
require confidential interactions across service boundaries.
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5. Broad Language and Application Support Unlike solutions that focus only on compiled lan-
guages, SCONE can secure interpreted languages such as Python. This flexibility makes it ideal
for a wide range of workloads, including data analytics and machine learning.

6. Performance Optimization SCONE employs advanced thread management and asynchronous
system calls, which help maintain high performance and scalability, even for demanding, multi-
threaded applications.

7. Minimal Trusted Computing Base By isolating only the application and its data within the
secure enclave, SCONE reduces the amount of code that must be trusted, minimizing potential
vulnerabilities and simplifying security audits.

Figure 1 illustrates the architecture of NEARDATA'’s Data Broker components and tooling we
utilize in order to run applications in a trustworthy manner. The Data Broker’s Confidential Compute
Layer incorporates a CAS as a vital element within this framework. Furthermore, the Confidential
Orchestration of the Data Broker is managed via Kubernetes. To enhance data security, we will
also utilize SCONE’s network shield within the Confidential Data Exchange component of the Data
Broker, which is an integral part of the SCONE runtime, enabling precise control over data access.

On the left side of the figure, a list of tools is depicted which are used for transforming native
applications into a confidential ones. The transformation can be either achieved through the SCONE
cross compiler or the so-called sconify tool.

In the figure, components are depicted that come into play during the runtime of an application,
assuming the hardware supports the execution of applications in TEEs.

Runtime with TEE Hardware Suport

Setup Tools
Kubernetes
. Data Broker -Confidential
Sconify Image Orchestration Layer
Scone
Network Runtime
. shield
Cross Compiler ST el P— .
File System
Shield

Data Broker -Confidential Computer Layer
and Confidential Data Exchange Layer

Figure 1: Security tools architecture.

The high-level policy definitions stored as Custom Resource Records (CRR) using Custom Re-
source Definitions (CRD) within the Kubernetes cluster which application user typically uses to de-
ploy his or her application. This approach aligns with the cloud-native paradigm and represents
the current standard for deploying modern applications. It's worth noting that the policy session
language for the Data Brokers Configuration and Attestation Service (CAS) is stored in a separated
CAS instance rather than in the etcd server of the Kubernetes cluster. In addition to storing records
in the Kubernetes cluster, a Kubernetes operator will be developed to execute the necessary con-
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figuration steps required for deploying application within the context of NEARDATA securely and
confidentially. The key tasks the Kubernetes operator will perform as follows:

* Sconifies Docker Images: Transforms native Docker images into confidential ones using the
Sconify process.

¢ Extracts and Converts Program Arguments and Environment Variables: Gathers and converts
program arguments and environment variables according to the defined security policies.

* Generates SCONE Sessions: Creates SCONE sessions based on the parsed information and
submits them to the CAS for further processing.

This comprehensive set of steps ensures that the deployment process is not only aligned with the
defined security policies but also takes advantage of confidential computing features provided by
tools like SCONE within a Kubernetes environment. The Kubernetes operator acts as an automated
orchestrator, seamlessly integrating security measures into the deployment workflow.

Key capabilities of the Data Broker include:

- Zero Trust Data Governance Framework: The Data Broker enforces comprehensive access con-
trol policies, supporting data residency, institutional sharing agreements, and regulatory compliance.
Every data access or movement is subject to continuous authentication and authorization checks,
in line with zero-trust principles . Integration with data catalogs ensures consistent governance
throughout the data lifecycle, even across organizational boundaries.

- Trustworthy Flow Orchestration: Multi-party workflows are coordinated such that sensitive
data never leaves authorized environments. All data movements are validated against governance
policies, and cryptographic proofs of compliance are maintained, supporting auditability and regu-
latory requirements.

- Heterogeneous Service Integration: The broker abstracts the complexity of integrating diverse
data processing services and TEE implementations, providing uniform security semantics across dif-
ferent hardware platforms. This enables seamless orchestration of confidential workloads on both
edge and cloud resources.

By leveraging data access components and connectors from the data plane, the Data Broker cre-
ates a unified control interface that spans edge devices, institutional resources, and public clouds.
This architecture enables organizations to maintain data sovereignty while participating in collabo-
rative analytics and research, all under a zero-trust security model.

3.1.2 Confidential Compute Layer

The Confidential Compute Layer is foundational to NEARDATA’s security, providing TEE-protected
execution for sensitive data processing. It supports multiple TEE technologies, including Intel SGX,
ARM CCA, and emerging GPU-based confidential computing, ensuring broad compatibility and
flexibility.

- Multi-Platform TEE Support: The framework dynamically selects the optimal TEE implemen-
tation based on workload and hardware availability. For example, SCONE enables transparent en-
clave management, attestation, and secure communication for Intel SGX, while ARM CCA extends
confidential computing to edge and mobile devices.

- Transparent Application Transformation: SCONE’s binary transformation and runtime inter-
position allow existing applications to run confidentially without source code changes or recompila-
tion. Sensitive operations are redirected through TEE-protected channels, preserving both compati-
bility and performance.

- Verified Data Connector Execution: Data connectors are executed within sealed environments,
with cryptographic verification and attestation ensuring that data transformation and transfer cannot
be observed or tampered with by unauthorized entities.

- High-Volume Data Processing: The layer is optimized for large-scale scientific and healthcare
datasets, using advanced memory management and efficient cryptographic operations to minimize
the performance overhead typically associated with confidential computing.
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This layer is tightly integrated with the data plane, ensuring that all data processing benefits from
TEE protections and that confidential computing is accessible across the NEARDATA ecosystem.

3.1.3 Confidential Data Exchange

The Confidential Data Exchange subsystem enables secure, end-to-end encrypted data transfer across
network boundaries, supporting collaborative computation without exposing sensitive data during
transit or at intermediate points.

- Mutual Authentication Framework: All participating systems undergo mutual authentication
using cryptographic certificates and TEE attestation, ensuring that data is only exchanged with veri-
fied, authorized recipients operating in secure environments.

- High-Performance Encrypted Transport: Optimized cryptographic primitives, including hardware-
accelerated encryption and pipeline processing, enable high-throughput, low-latency data trans-
fers—critical for real-time analytics and federated learning.

- Transparent Integration: Applications benefit from confidential data exchange without code
changes; the subsystem intercepts network operations and applies encryption, authentication, and
authorization policies automatically.

- Policy-Driven Access Control: Fine-grained access policies govern all data exchanges, consid-
ering data classification, recipient identity, intended use, and temporal constraints. This supports
complex, multi-stakeholder federated research scenarios.

- Secure Storage Integration: Data at rest is transparently encrypted, ensuring that even cloud
providers or administrators cannot access stored data, in line with best practices for data sovereignty
and privacy.

3.1.4 Confidential Orchestration

Confidential Orchestration extends platforms like Kubernetes with confidential computing capabil-
ities, ensuring that entire application deployments operate within trusted environments while re-
maining compatible with standard DevOps and container workflows.

- Zero Trust Kubernetes Integration: The orchestration layer is TEE-aware and zero-trust com-
pliant, scheduling confidential workloads on appropriate hardware and maintaining standard Ku-
bernetes APIs. Every workload deployment and access request is continuously authenticated and
authorized, regardless of network location or user role [1].

- Identity Broker Services: Federated identity management maintains trust relationships across
institutional domains, leveraging both PKI and TEE attestation for strong authentication while pre-
serving privacy and autonomy.

- Tamper-Proof Application Deployment: All applications are cryptographically verified before
deployment, and runtime modifications trigger security alerts and potential termination, ensuring
integrity throughout the application lifecycle.

- Zero Trust Compliance: The architecture is designed to enforce zero-trust principles at every
layer, ensuring that no implicit trust is granted based on network location, device, or user identity.
All access and data flows are subject to continuous verification and least-privilege enforcement.

- Privacy-Aware Data Manipulation: Data processing automatically adapts to governance poli-
cies, using techniques such as differential privacy, data masking, and selective disclosure to ensure
compliance with regulatory and institutional requirements.

3.1.5 Federated Learning Orchestration

The Federated Learning Orchestration framework enables collaborative machine learning across in-
stitutional boundaries, allowing organizations to jointly train models without sharing raw data—a
critical requirement for privacy-sensitive domains like healthcare.

- Decentralized Training Architecture: Training data remains at its origin, with local model train-
ing in TEE-protected environments. This ensures that raw data never leaves institutional boundaries,
supporting both privacy and compliance.
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- Secure Model Aggregation: Aggregation servers operate within attested TEEs, using advanced
cryptographic protocols to combine local model updates while preserving the confidentiality of in-
dividual contributions and mitigating attacks such as model poisoning.

- Zero Trust Federated Learning: The orchestration framework applies zero-trust security to ev-
ery stage of the federated learning process, continuously verifying the identity and authorization of
all participants and enforcing strict access controls on model updates and aggregation.

- Framework Compeatibility: Built on open-source federated learning platforms like Flower and
FedML, the orchestration framework is compatible with popular ML frameworks (e.g., TensorFlow,
PyTorch), facilitating adoption without significant code changes.

- Flexible Infrastructure and Serverless Simulation: The framework leverages NEARDATA'’s
secure infrastructure and, as a key project contribution, extends the Flower platform with a novel,
Lithops-based simulation engine. This integration introduces serverless computing as a highly scal-
able and flexible alternative to the existing Ray simulation engine for serverful infrastructure. It em-
powers researchers to conduct large-scale simulations on their infrastructure of choice—supporting
federations with thousands of clients without the overhead of provisioning and managing dedicated
clusters—while ensuring consistent security and governance across the entire lifecycle.!

- Quality Assurance and Monitoring: Confidential monitoring tracks training progress, detects
anomalies, and provides audit trails for compliance, all within TEE-protected environments to ensure
monitoring data remains confidential.

This federated learning orchestration is a key enabler for collaborative research, particularly in
healthcare, where it allows institutions to jointly develop advanced models while maintaining strict
privacy and regulatory compliance. The integration with SCONE and NEARDATA’s confidential
computing infrastructure ensures that all aspects of the federated learning process are protected by
strong security guarantees and comprehensive governance, fully aligned with zero-trust security
principles.

3.2 NEARDATA Security Overview

In the following section, we provide a comprehensive overview of the security-related components
integrated into the NEARDATA platform. Table 1 summarizes the individual tools and subcompo-
nents, outlining their specific security functions, technical capabilities, and the responsible develop-
ment partners. This overview establishes the foundation for understanding how the platform sys-
tematically addresses confidentiality, integrity, and availability requirements across the entire com-
pute continuum, from edge devices to cloud infrastructure.

The security architecture of NEARDATA is built upon a multi-layered approach that combines a
hardware-based trusted execution environment and policy-driven access controls. Each component
has been designed to operate both independently and as part of an integrated security ecosystem,
ensuring comprehensive protection for sensitive data processing workflows while maintaining the
performance characteristics required for extreme-scale analytics applications.

After presenting the individual security components, we provide a detailed analysis of the threat
model specifically developed for NEARDATA’s distributed processing environment. This threat
model has guided the systematic derivation of security requirements and informed the definition
of security policies tailored for different stakeholder categories, including data providers, applica-
tion developers, and system operators. These high-level security policies represent fundamental
requirements originating from platform users and regulatory frameworks, particularly those gov-
erning healthcare data processing and bioinformatics research.

To enable fine-grained security configuration and dynamic policy adaptation, the NEARDATA
platform employs sophisticated policy management mechanisms and session descriptions that spec-
ify application-level security constraints, multi-party attestation workflows, and runtime protection
parameters. The policy framework supports context-aware security decisions, allowing the system

IThe contribution was submitted to the official Flower repository (https://github.com/adap/flower/pull/5658) and
the full implementation is also available in the project’s repository fork: https://github.com/janprz/flower/tree/
add-1lithops-backend-support.
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to adapt protection mechanisms based on data sensitivity levels, processing locations, and trust rela-
tionships between federated participants.

Finally, we describe how the comprehensive security architecture integrates these policies across
the Data Broker and other platform services, creating a unified security fabric that spans the entire
data processing pipeline. This integration ensures consistent security enforcement while supporting
the platform’s core objectives of enabling secure federated learning, privacy-preserving analytics,
and compliant data sharing across organizational boundaries.
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Table 1: NEARDATA Security Components Overview - Core Infrastructure
Tool/Component Security Function & Technical Description Lead / Major Con-

tributors
Data Broker Security | Central security orchestration service imple- | TUD, Consortium
Core menting zero-trust architecture for secure data | Partners

stream exchange. Provides comprehensive pol-
icy enforcement, access control, and secure ses-
sion management between distributed sources,
processing engines, and consumer applica-
tions.

SCONE Runtime Envi-
ronment v5.8+

Hardware-based trusted execution environ-
ment leveraging Intel SGX technology (SDK
2.18) for containerized workloads. Pro-
vides memory encryption with EPC exhaus-
tion warnings, remote attestation with DCAP
v4 support, and secure code execution guaran-
tees.

TUD

CAS (Configuration and
Attestation Service)

Centralized trust management service han-
dling remote attestation procedures with MAA
token support, secure application and configu-
ration deployment.

TUD

Sconify Security Tool

Enhanced command-line interface tool for au-
tomated transformation of standard container
images into SGX-enabled confidential contain-
ers.

TUD

Dynamic Policy Manage-
ment Framework

Implements fine-grained, context-aware secu-
rity policies for data flows and federated appli-
cations with governance access policy rules.

TUD, Consortium
Partners

Keycloak Identity Inte-
gration

Enterprise-grade identity and access manage-
ment system and role-based authorization inte-
grated with Data Broker for secure user and ap-
plication identity verification across federated
deployments with TLS mutual authentication.

SCONTAIN

Secure Lithops Integra-
tion

Enhanced serverless computing framework
with integrated policy enforcement and con-
fidential execution support via SCONE’s Ku-
bernetes operator. Enables secure, scalable
execution of data analytics functions within
TEE-protected environments while maintain-
ing serverless flexibility and performance char-
acteristics.

SCONTAIN, TUD,
Partners

Pravega-SCONE Integra-
tion

Secure, confidential data streaming with
Pravega, leveraging SCONE for end-to-end
encryption and integrity protection of data
streams. Integrates a sconified Pravega client
running inside a Trusted Execution Envi-
ronment (TEE), ensuring confidentiality and
integrity for both data in transit and at rest.
Experimental results show affordable latency
increase at low throughput (up to 2x), and
negligible overhead at high throughput (e.g.,
10,000 events/sec), making it practical for
latency-sensitiVeger€atttilne analytics on sensi-
tive data.

TUD, DELL,SCO
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Table 2: NEARDATA Security Components Overview - Advanced Features & Applications

Tool/Component Security Function & Technical Description Lead / Major Con-
tributors
Federated Learning Secu- | Privacy-preserving collaborative machine | Use Case Partners,
rity Framework learning infrastructure supporting secure | TUD
multi-party computation with Flower ML
integration. Implements differential privacy
mechanisms, secure aggregation protocols,
and TEE-based model training for sensitive
applications including surgical use case .
Zero Trust Network Ar- | Comprehensive network security framework | Network  Security
chitecture implementing continuous verification, micro- | Partners, TUD
segmentation, and encrypted communications
across the entire NEARDATA platform.

3.3 Threat Model

NEARDATA is an advanced near-data processing and edge computing platform designed for effi-
cient ingestion, storage, and retrieval of data streams in distributed environments. Its modular and
scalable architecture integrates components such as stream storage engines (e.g., Pravega), server-
less computing frameworks (e.g., Lithops), and confidential computing technologies (e.g., SCONE).
NEARDATA is typically deployed close to data sources—at the edge or near-edge—where resources
are shared among multiple applications, tenants, and users. This architectural approach is consistent
with recent surveys on near-data processing and computational storage, which highlight the perfor-
mance and security benefits of processing data near its source, while also introducing new security
challenges due to increased architectural complexity and resource sharing [2, 3].

NEARDATA environments are inherently multi-tenant, meaning that computational, storage,
and network resources are shared among diverse users and applications. This shared model in-
troduces risks: if a device or process is compromised, it could potentially access or disrupt resources
belonging to other tenants. The distributed and heterogeneous nature of NEARDATA, combined
with the evolving state of near data processing security best practices, means that consistent and
comprehensive security measures are still maturing [4, 5].

Table 3: Summary of Key Threats to NEARDATA and Mitigation Strategies

Threat Category Threat Description Mitigation Strategy

Potentially  Mali-
cious Environment

Privileged processes (OS, container
runtime, orchestration layer) may be
compromised, allowing attackers to
manipulate system calls, intercept
data, and monitor activities. This ex-
pands the attack surface in edge and
near-data processing environments.

Employ hardware-based Trusted Ex-
ecution Environments (TEEs) such as
Intel SGX to isolate sensitive compu-
tations from the host OS and hypervi-
sor, ensuring even root-level attackers
cannot access protected data or code.

Hardware Trust

Boundary

Physical access to hardware is tightly
controlled, but attackers may install
privileged software (e.g., rootkits, ma-
licious hypervisors) with administra-
tive rights.

Data Broker performs remote attesta-
tion of enclaves before provisioning
secrets or configuration, ensuring only
trusted hardware and software stacks
are used.
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Table 3 (Continued): Summary of Key Threats to NEARDATA and Mitigation Strategies

Threat Category

Threat Description

Mitigation Strategy

External Attackers

Adversaries may target data gener-
ated by field devices or edge nodes,
especially if those devices lack robust
access controls or encryption. Risk
is heightened in distributed, multi-
tenant edge environments.

Data Broker transparently encrypts
data at rest, in transit, and in use.
All network traffic between services is
protected with TLS, with keys man-
aged inside enclaves.

Data Confidential-
ity and Privacy

¢ Privileged Data Exfiltration: At-
tackers with superuser privi-
leges can copy files or intercept
data streams. Even with encryp-
tion, attackers may extract keys
from memory dumps.

¢ Unauthorized Data Monetiza-
tion: Weak access controls or
insufficient encryption can al-
low sensitive data streams to be
monetized or sold in real time.

Data Broker enforces strict, policy-
driven access to secrets and data.
Only attested, authorized services can
access protected resources.  Cryp-
tographic keys are managed within
TEEs and never exposed in plaintext.
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Table 3 (Continued): Summary of Key Threats to NEARDATA and Mitigation Strategies

Threat Category Threat Description Mitigation Strategy

Data Integrity and

Tampering * Malicious Data Injection: At- * Only attested, trusted data

tackers may inject false or ma- sources are allowed to partic-
nipulated data into NEARDATA ipate in data pipelines. The
pipelines, corrupting analytics Data Broker verifies the identity
or Al model training. and integrity of each source
. before allowing data ingestion.
. Tral.nlng Code or Mode'I Tam- Cryptographic verification and
pering: Attackers with file sys- continuous ~ monitoring  are
tem access can alter code or employed.
models used in analytics or Al
workloads. ¢ CRISP (Confidentiality, Roll-
back, and Integrity Storage Pro-
tection) is integrated as a last-
level defense for application in-
tegrity and confidentiality, en-
suring that data and code stored
on untrusted media remain pro-
tected against tampering and
rollback attacks.
¢ Last-Level Defense for Applica-
tion Integrity and Confidential-
ity: This approach provides an
additional security layer at the
storage boundary, ensuring that
even if all other controls fail, the
integrity and confidentiality of
application data are preserved.
Availability and Resource management, monitoring,
Service Disruption e Denial of Service (DoS): At and rat'e‘ limiting are used to detect
tackers may flood NEARDATA and mltlgate DoS and resource ex-
. . haustion attacks. Isolation mecha-
components with excessive re- | . .
quests, exhausting resources and nisms prevent one tenant from impact-
disrupting legitimate services. ing others.
pung leg
* Resource Exhaustion: In multi-
tenant settings, one tenant could
monopolize resources, degrad-
ing performance for others.

Lateral Movement | Once a NEARDATA node is compro- | Data Broker supports namespaces and
mised, attackers may attempt to move | policy isolation, ensuring that com-
laterally to access additional resources | promise of one enclave or service does
or data streams. not grant access to others. Micro-

segmentation and strict authentication
are enforced.
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Table 3 (Continued): Summary of Key Threats to NEARDATA and Mitigation Strategies

tions, causing analytics or Al models
to revert to less secure or less accurate
states.

Threat Category Threat Description Mitigation Strategy
Rollback and Re- | Attackers may supply outdated ver-
play Attacks sions of data, models, or configura-

¢ Strong version control, crypto-
graphic integrity checks, and at-
testation of data and model ver-
sions are used to prevent roll-
back and replay attacks.

¢ CRISP provides a robust mecha-
nism to detect and prevent roll-
back of stored data and appli-
cation states, ensuring that only
the latest, authorized versions
are used.

Network and Com-
munication Threats

Man-in-the-Middle (MitM) and injec-
tion attacks: Unsecured communi-
cation between NEARDATA compo-
nents can be intercepted or manipu-
lated, leading to data leakage or injec-
tion of malicious commands.

All communications are encrypted us-
ing TLS with mutual authentication.
Keys are managed inside enclaves,
and network protection shields (NPS)
are used to ensure confidentiality and
integrity in transit.

External Data Ac-
cess and Tamper-
ing with Analytic-
s/Al Workloads

¢ External Data Access: Insuffi-
cient or weak access controls on
edge devices or APIs can be ex-
ploited to gain unauthorized ac-
cess to, or exfiltrate, sensitive
data streams.

¢ Tampering with Analytics/Al
Workloads: Attackers may in-
ject false data, manipulate in-
put streams, or alter intermedi-
ate results within analytics or Al
workloads.

Robust authentication, authorization,
and encryption mechanisms are im-
plemented to protect data at the edge
and during transmission. Data val-
idation, integrity verification (e.g.,
cryptographic hashes or digital sig-
natures), and continuous monitoring
for anomalous behavior are employed
throughout the analytics pipeline.
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Table 3 (Continued): Summary of Key Threats to NEARDATA and Mitigation Strategies

Threat Category

Threat Description

Mitigation Strategy

Micro-Architectural
Side-Channel At-
tacks

Attackers exploit shared memory,
caches, or row buffers in NDP mod-
ules to infer sensitive information,
such as cryptographic keys or propri-
etary data streams.

¢ Isolation of sensitive workloads,
monitoring for anomalous ac-
cess patterns, and use of TEE fea-
tures to minimize side-channel
leakage. (Further research and
adaptive defenses are recom-
mended.)

e SinClave (Hardware-assisted
Singletons for TEEs) ensures
that only a single, attested in-
stance of a critical service runs
within a TEE, reducing the risk
of side-channel leakage from
co-located malicious enclaves.

Black-Box Model
Extraction and
Inference Attacks

Attackers use probing and observa-
tion of system responses to infer inter-
nal states, extract Al/analytics mod-
els, or reconstruct sensitive data, even
without detailed architectural knowl-
edge.

Protect APIs with rate limiting,
anomaly detection, and access con-
trols. Monitor for systematic or
suspicious query patterns.

Adversarial Attacks
on Al Workloads

Attackers craft inputs to mislead mod-
els or extract proprietary algorithms,
degrading the accuracy of edge Al
models.

Employ lightweight, adaptive de-
fenses such as input validation, adver-
sarial training, and continuous moni-
toring for anomalous model behavior.

Supply Chain
and Dependency
Attacks

Attackers may compromise third-
party components or dependencies
to introduce vulnerabilities or back-
doors.

¢ SCONE supports Software Bill
of Materials (SBOM) and crypto-
graphic integrity verification for
all dependencies. Only verified
and attested components are de-
ployed.

e TICAL (Trusted and Integrity-
protected  Compilation  of
AppLications) ensures that
the entire compilation process,
from source code to binary, is
integrity-protected and veri-
fiable, mitigating risks from
compromised compilers or build
environments.

3.4 Policy Definitions

In NEARDATA, application developers and users can describe their security constraints through a
comprehensive policy framework that integrates with SCONE’s Configuration and Attestation Ser-
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vice (CAS). The NEARDATA Data Broker employs SCONE’s session language to define protection
goals and mechanisms, enabling fine-grained control over data confidentiality, integrity, and access
controls across distributed computing environments.

Users can specify their security requirements through two complementary approaches: selecting
high-level protection goals that automatically map to appropriate security mechanisms, or directly
specifying concrete mechanisms when detailed control is required. This dual approach accommo-
dates both security-aware users who prefer abstracted goals and experts who need granular control
over the underlying security infrastructure.

In NEARDATA, application developers and users define security constraints through a compre-
hensive policy framework integrated with SCONE’s Configuration and Attestation Service (CAS).
This framework not only enables fine-grained control over data confidentiality, integrity, and access
controls across distributed environments, but also facilitates compliance with real-world standards
such as GDPR (General Data Protection Regulation) and HIPAA (Health Insurance Portability and
Accountability Act).

Compliance Mapping:

¢ GDPR: NEARDATA policies enforce data minimization, purpose limitation, and strong access
controls, ensuring that only authorized entities can access or process personal data. Encryption
at rest and in transit, as well as audit logging, support GDPR Articles 5, 25, and 32 2.

* HIPAA: The framework ensures confidentiality, integrity, and availability of protected health
information (PHI) through technical safeguards such as encryption, access control matrices,
and audit trails, aligning with HIPAA Security Rule requirements (§164.312) 3

3.4.1 Protection Goals and Mechanisms

The NEARDATA security framework defines six primary protection goals, each mapped to specific
SCONE-based mechanisms as shown in Table 4. These mappings leverage SCONE’s comprehensive
confidential computing capabilities, including Trusted Execution Environments (TEEs), file system
protection shields (FSPF), and network protection shields (NPS).

For environments lacking TEE support (such as GPU accelerators), SCONE provides fallback
mechanisms including secure boot verification and platform-based attestation. Platform-based attes-
tation allows SCONE CAS to establish trust in the execution environment by verifying the integrity
of the boot process, firmware versions, and platform configuration, providing a foundation for con-
fidential computing even without hardware TEE support.

’https://gdpr-info.eu/art-5-gdpr/
Shttps://www.govinfo.gov/content/pkg/CFR-2004-title45-voll/pdf/CFR-2004-title45-voll-sec164-312.
pdf.
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Attack Mechanism

Memory dumps, i.e., stealing secrets and data
temporarily stored in RAM (confidentiality pro-
tection for data being processed). Modifications
of data structures stored in RAM (integrity pro-
tection for data being processed). Integrity pro-
tection for application.

Data Broker — Confidential Compute Layer
(Trusted Execution Environment, TEE)

Reading & modifying input data for training as
well as training models (confidentiality protec-
tion and integrity protection for data at rest).

Data Broker — Confidential Data Exchange Layer
(File System Protection Shield, FSPS)

Reading data exchanged over the network dur-
ing training (confidentiality protection and in-
tegrity protection for data in transit).

Data Broker — Confidential Data Exchange Layer
(Network Protection Shield, NPS)

Reading & modifying or forging input data
for training as well as training models
(confidentiality protection, integrity pro-
tection, lateral movement, and tampering with
training results for data at rest).

Mobile Device Authentication

Table 4: Attacks and corresponding security mechanisms

3.4.2 SCONE Session Language Integration

NEARDATA leverages SCONE'’s session language version 0.3.11 to define comprehensive security
policies. The session language provides a YAML-based syntax for specifying services, secrets, attes-
tation policies, and access controls. The following example demonstrates a NEARDATA federated
learning configuration with mutual authentication:

name: NEARDATA_FEDERATED_LEARNING
version: "0.3.11"
security:
attestation:
mode: hw
tolerate: [outdated-tcb]

ignore_advisories: []
singleton_enclaves: true

services:
- name: flower_server
mrenclave: "alb2c3d4e5f67890abcdef1234567890abcdef1234567890abcdef1234567890"

command: python3

args: ["/app/server.py"]
environment:
SCONE_HEAP: "1G"

FLOWER_SERVER_ADDRESS:
fspf_path: /app/fspf
fspf_key: "$$SCONE: : fspf_key$s$"

"0.0.0.0:8080"

- name: flower_client
mrenclave: "b2c3d4e5£67890abcdef1234567890abcdef1234567890abcdef123456789012"
command: python3

args: ["/app/client.py"]
environment:
SCONE_HEAP: "2G"
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volumes:

images:

secrets:

name: shared_models

path: /app/models

fspf_path: /models.fspf
fspf_key: "$$SCONE: :model_key$$"

name: flower_base_image
volumes:
- name: shared_models
path: /app/models

name: fspf_key
kind: aes-gcm-key
name: model_key
kind: aes-gcm-key

Certificate Authority for mutual authentication
name: ca_private_key

kind: ed25519-key

name: ca_certificate

kind: x509-ca

private_key: ca_private_key

common_name: "NEARDATA_FL_CA"

Server certificates

name: server_private_key

kind: ed25519-key

name: server_certificate

kind: x509

private_key: server_private_key

issuer: ca_certificate

common_name: "flower_server"

endpoint: server

dns: ["localhost", "flower-server.neardata.svc.cluster.local"]

Client certificates

name: client_private_key

kind: ed25519-key

name: client_certificate

kind: x509

private_key: client_private_key
issuer: ca_certificate
common_name: "flower_client"
endpoint: client

This configuration demonstrates several key SCONE features integrated into NEARDATA:

Hardware-based Attestation: Themode: hw setting ensures applications run only in genuine Intel SGX
enclaves.

Singleton Enclaves: Prevents replay attacks and ensures fresh enclave instances.

MRENCLAVE Verification: Each service specifies its expected enclave measurement for integrity veri-
fication.

File System Protection: FSPF with AES-GCM encryption protects model data and application files.

Page 19 of 91



© ® N G e W N =

O Sy
N e W = O

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

¢ Automatic Certificate Generation: SCONE CAS generates and provisions TLS certificates for mutual
authentication.

* Secret Management: Cryptographic keys are generated within TEEs and never exposed in plaintext.

3.4.3 Fine-Grained Policy Definitions

Beyond high-level protection goals, NEARDATA supports fine-grained policy definitions that enable complex
multi-stakeholder scenarios. This is particularly important for federated learning where different participants
may have varying trust relationships and data sharing requirements.

The SCONE session language supports advanced features including:

Secret Import and Export: Policies can import secrets from other sessions, enabling secure collaboration
between different NEARDATA deployments while maintaining cryptographic separation of concerns.

Platform-based Attestation: For environments without TEE support, SCONE can verify platform integrity
through measurements of the boot process, allowing confidential computing on a broader range of hardware.

Policy Fragments: Reusable policy components that can be imported across sessions, enabling standard-
ization of security configurations across NEARDATA deployments.

Access Control Matrices: Fine-grained permissions that specify which entities can read, update, or create
sessions within specific namespaces.

Example fine-grained access control specification:

access_policy:
read:
- "$$SCONE: :hospital_admin_cert$$"
- "$$SCONE: :researcher_cert$$"
update:
require-at-least-2:
- "$$SCONE: :hospital_a_admin$$"
- "$$SCONE: :hospital_b_admin$$"
- "$$SCONE: :hospital_c_admin$$"
create_sessions:
require-all:
- "$$SCONE: :data_protection_officer$s$"
- require-at-least-1:
- "$$SCONE: :lead_researcher$s$"
- "$$SCONE: :ethics_board_chair$$"

This access control policy ensures that:
* Medical data can be read by authorized hospital administrators and researchers
¢ Policy updates require approval from at least two hospital administrators

¢ New federated learning sessions require both data protection officer approval and either lead researcher
or ethics board authorization

3.5 Governance and Policy Board

NEARDATA leverages SCONE’s advanced governance mechanisms to support multi-stakeholder decision
making in federated learning environments. The governance framework addresses the challenge of distributed
trust in healthcare scenarios where multiple hospitals must collaborate while maintaining institutional auton-
omy.

3.5.1 Multi-Signature Policy Management

SCONE’s governance model enables policy boards where critical decisions require approval from multiple
stakeholders. This is implemented through cryptographic signatures rather than traditional voting mecha-
nisms, ensuring that governance decisions are tamper-proof and auditable.

The governance framework supports several approval patterns:

Threshold Signatures: Require at least N out of M stakeholders to approve changes. Hierarchical Ap-
proval: Different stakeholders have different approval authorities. Veto Powers: Specific stakeholders can
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block changes regardless of other approvals. Automated Policy Checkers: SCONE-protected programs that
can automatically approve simple changes.
Example governance configuration for hospital federation:

access_policy:
read:
- "$$SCONE: :ethics_board_cert$s$"
- "$$SCONE: :data_protection_officer$$"”
update:
require-at-least-1:
- signer: "$$SCONE::medical_director_signer$s$"
- require-all:
- require-at-least-3:
- signer: "$$SCONE: :hospital_a_signer$$"
- signer: "$$SCONE: :hospital_b_signer$$"
- signer: "$$SCONE: :hospital_c_signer$$"
- signer: "$$SCONE: :hospital_d_signer$$"
- signer: "$$SCONE: :hospital_e_signer$$"
- require-all:
- signer: "$$SCONE: :privacy_officer_signer$$"
- signer: "$$SCONE::security_officer_signer$s$"

This policy ensures that federated learning model updates require either:
e Approval from the medical director (emergency override), or

¢ Approval from at least 3 out of 5 participating hospitals AND both privacy and security officers

3.5.2 Automated Policy Validation

NEARDATA includes automated policy checkers implemented as SCONE-protected services that can validate
policy changes against regulatory requirements and best practices. These checkers run within TEEs to prevent
tampering and can automatically approve routine changes while flagging complex modifications for human
review.

Automated policy checkers validate:

¢ Compliance with GDPR, HIPAA, and other healthcare regulations.
¢ Adherence to institutional data sharing agreements.

¢ Consistency with established security baselines.

® Proper attestation policy configurations.

* Resource allocation limits and quotas.

The integration of governance, technical controls, and regulatory compliance ensures that NEARDATA
provides a comprehensive platform for confidential federated learning in healthcare environments while main-
taining the flexibility needed for research and clinical applications.

3.6 Advanced Access Control Mechanisms

NEARDATA extends SCONE’s access control capabilities to support complex multi-tenant scenarios common
in federated learning and distributed data processing environments. The access control framework operates
at multiple levels: session-level permissions, service-level attestation, and data-level encryption.

3.6.1 Certificate-Based Authentication

The NEARDATA access control system relies on X.509 certificate-based authentication integrated with SCONE’s
attestation framework. Each stakeholder in a federated learning deployment possesses unique certificates that
are verified both cryptographically and through enclave attestation.

Certificate validation occurs through multiple mechanisms:

Static Certificate Verification: Public keys are embedded in session policies and verified during TLS hand-
shake Dynamic Certificate Chains: Certificate authorities can be managed within SCONE sessions, enabling

Page 21 of 91



© ® N G R W N =

WOW W W W W W W RN RN RNNRNNNRN N s s s s s e s s
N3 O R RN RS Y 0 N R 0N R DS Y ® N U e W N R, O

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

certificate rotation Attestation-Bound Certificates: Certificates are only valid when presented by attested en-
claves with specific measurements Role-Based Certificate Extensions: X.509 extensions carry role information
validated by SCONE CAS

Example certificate hierarchy for hospital federation:

secrets:

# Root CA managed by medical ethics board

- name: ethics_board_ca_key
kind: rsa-key
size: 4096

- name: ethics_board_ca_cert
kind: x509-ca
private_key: ethics_board_ca_key
common_name: "NEARDATA Medical Ethics Authority"
validity: "3650d" # 10 years

# Intermediate CA for each hospital
- name: hospital_a_intermediate_key
kind: rsa-key
size: 2048
- name: hospital_a_intermediate_cert
kind: x509-ca
private_key: hospital_a_intermediate_key
issuer: ethics_board_ca_cert
common_name: "Hospital A Federated Learning Authority"
validity: "1825d" # & years

# End-entity certificates for spectific roles
- name: hospital_a_researcher_key
kind: rsa-key

size: 2048
- name: hospital_a_researcher_cert
kind: x509

private_key: hospital_a_researcher_key
issuer: hospital_a_intermediate_cert
common_name: "Dr. Alice Johnson - Hospital A Researcher"
validity: "365d" # 1 year
extensions:
- key: "1.3.6.1.4.1.12345.1" # Custom O0ID for role
value: "researcher:surgical_oncology"

3.6.2 Multi-Level Security Integration

For highly sensitive medical data, NEARDATA supports integration with Multi-Level Security (MLS) frame-
works. This enables fine-grained data classification where individual data elements can have different security
levels, and access decisions are made based on both user clearance and data classification.

The MLS integration leverages SCONE'’s secret management capabilities to implement:

® Security Labels: Each data element carries cryptographically protected security labels
* Clearance Verification: User clearances are verified through attestation and certificate validation

¢ Information Flow Control: SCONE policies prevent information from flowing from high to low security
levels

¢ Trusted Computing Base: All security decisions are made within attested enclaves

Page 22 of 91



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

3.7 Integration with External Security Infrastructure

NEARDATA's policy framework is designed to integrate with existing enterprise security infrastructure while
maintaining the security guarantees provided by confidential computing. This integration is crucial for health-
care organizations that must maintain compliance with existing security policies and regulatory frameworks.

3.7.1 Continuous Compliance Monitoring

NEARDATA implements automated compliance monitoring through SCONE-protected policy checkers that
continuously validate system configuration against regulatory requirements. These monitors can detect policy
drift, unauthorized access attempts, and potential compliance violations in real-time.

Compliance monitoring capabilities include:

* Policy Validation: Automated verification that all policies meet regulatory requirements
® Access Pattern Analysis: Detection of unusual data access patterns that might indicate policy violations
* Encryption Verification: Continuous monitoring that all sensitive data remains encrypted at all times

¢ Attestation Monitoring: Verification that all confidential workloads maintain proper attestation status

3.8 Performance and Scalability Considerations

The NEARDATA policy framework balances security requirements with the performance needs of large-scale
federated learning and data processing workloads. Performance optimization focuses on minimizing the over-
head of cryptographic operations and attestation while maintaining security guarantees.

3.8.1 Policy Evaluation Optimization

Complex access control policies can introduce significant overhead in high-throughput data processing sce-
narios. NEARDATA addresses this through several optimization strategies:

Policy Caching: Frequently evaluated policy decisions are cached within enclaves to avoid repeated cryp-
tographic operations.

Batch Attestation: Multiple service instances can be attested collectively to reduce individual attestation
overhead.

Lazy Evaluation: Complex policy conditions are evaluated only when necessary, with early termination
for obvious allow/deny decisions.

Hardware Optimization: SGX-optimized cryptographic libraries minimize the performance impact of en-
cryption and attestation operations.

3.8.2 Scalability Architecture

Large-scale federated learning deployments require policy frameworks that can scale to hundreds of partici-
pating institutions and thousands of concurrent workloads. NEARDATA addresses scalability through:

Hierarchical Policy Management: Policies are organized hierarchically to enable efficient delegation and
reduce central bottlenecks.

Distributed CAS Deployment: Multiple SCONE CAS instances can be federated to distribute policy eval-
uation load.

Edge Policy Enforcement: Simple policy decisions can be made at edge nodes without central coordina-
tion.

Asynchronous Audit: Audit logging is performed asynchronously to avoid impacting real-time policy
decisions.

3.9 Future Extensions and Research Directions

The NEARDATA policy framework establishes a foundation for advanced confidential computing applications
in healthcare and beyond. Several areas of ongoing research and development extend the current capabilities:

3.9.1 Zero-Knowledge Policy Proofs

Advanced privacy requirements in multi-stakeholder environments may require zero-knowledge proofs of
policy compliance without revealing the actual policies. NEARDATA is exploring;:

e Zero-knowledge proofs of access control compliance
¢ Privacy-preserving audit mechanisms

® Selective disclosure of policy attributes
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* Verifiable computation of policy decisions

The comprehensive policy framework described in this section provides the foundation for secure, compli-
ant, and scalable federated learning and distributed data processing in healthcare environments. The integra-
tion of SCONE's confidential computing capabilities with NEARDATA’s domain-specific requirements creates
a robust platform for advancing medical research while maintaining the highest standards of patient privacy
and data security.
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4 Use Cases Enhanced through Data Broker Integration
4.1 Use case: surgery

The challenge of advancing surgical Al while maintaining patient privacy has found an innovative solution
through federated learning a distributed machine learning approach that fundamentally changes how med-
ical institutions collaborate on Al development. Instead of traditional methods that require centralized data
collection, federated learning enables hospitals to train shared Al models by keeping sensitive surgical data
within their own secure environments. During laparoscopic procedures, Pravega’s streaming platform cap-
tures and preprocesses video data locally at each hospital, creating institutional datasets that never leave their
originating facilities.

The Flower ML framework coordinates the federated learning process across participating hospitals, al-
lowing them to collectively build sophisticated surgical Al models through a secure exchange of model pa-
rameters and training updates rather than raw patient data. This federated learning methodology ensures
that each hospital’s laparoscopic video recordings remain completely private while still contributing to a col-
laboratively trained model that benefits from the diverse surgical experiences across multiple institutions.
SCONE’s trusted execution environment provides comprehensive security throughout the entire federated
learning pipeline, protecting both the local video processing at each hospital and the secure model parameter
exchanges between institutions. Through this federated learning architecture, hospitals can harness the col-
lective intelligence of their combined surgical expertise to develop more robust and generalizable Al models
for applications such as surgical skill assessment, procedure optimization, and real-time surgical guidance, all
while maintaining strict compliance with healthcare privacy regulations.

Training
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Figure 2: Federated Learning Architecture in NEARDATA.

Figure 2 illustrates the architecture of the federated learning application in NEARDATA. The main goal of
our hardened version is not only to ensure the confidentiality, integrity and freshness of input data, code, and
machine learning models but also to enable multiple clients (who do not necessarily trust each other) to get
the benefits of collaborative training without revealing their local training data. In the confidential setup, each
client performs the local training also inside TEE enclaves to make sure that no one tampers with the input
data or training code during the computations. To govern and coordinate the collaborative machine learning
training computation among clients, we design a Data Broker component which consists of a CAS which
maintains security policies based on the agreement among all clients to define the access control over global
training computation, the global training model, also the code and input data used for local training at each
client. The CAS component transparently performs remote attestation to make sure the local computations are
running the correct code, correct input data, and on the correct platforms as per the agreement. It only allows
clients to participate in the global training after successfully performing the remote attestation process. It also
conducts the remote attestation on the enclaves that execute the global training in a cloud, to ensure that no
one at the cloud provider side modifies the global training aggregation computation. In addition to remote
attestation, it encrypts the training code, and the CAS only provides the key to decrypt it inside enclaves
after the remote attestation. Secrets including keys for encryption/decryption in each policy are generated by
the Configuration and Attestation Service also running inside Intel SGX enclaves and cannot be seen by any
human or client.
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After receiving the agreed security policies from clients, the Data Broker CAS component strictly enforces
them. It only passes secrets and configuration to applications (i.e., training computations), after attesting them.
The training computations are executed inside Intel SGX enclaves and associated with policies provided and
pre-agreed by clients. The training computations are identified by a secure hash and the content of the files
(input data) they can access. Secrets can be passed to applications as command-line arguments, or environment
variables, or can be injected into files. The files can contain environment variables referring to the names of
secrets defined in the security policy. The variables are transparently replaced by the value of the secret when
an application permitted to access the secrets reads the file. We design the CAS in a way that we can delegate
its management of it to an untrusted party, e.g., a cloud provider, while clients can still trust that their security
policies for protecting their properties are safely maintained and well protected. In the confidential version of
the federated learning application, clients can attest to the Configuration and Attestation Service component,
i.e., they can verify that it runs the expected unmodified code, in a correct platform before uploading security
policies.

We have implemented the federated learning prototype jointly with NCT using FLOWER a distributed
federated machine learning framework. Flower is a novel end-to-end federated learning framework that en-
ables a more seamless transition from experimental research in simulation to system research on a large cohort.
In order to showcase the features of our novel Data Broker, we performed the following steps:

1. The federated learning demo (using Flower) is executed/running inside of Intel SGX enclaves using
SCONE, a framework to enable unmodified applications to run inside SGX enclaves.

2. We complemented the demo using SCONE’s network shield, configured through the Data Broker’s CAS
component which protects network connections between client and server as well as controls data access.

3. In order to protect data at rest, we furthermore utilized SCONE’s file system shield mechanism which
encrypts the input (training) data using the file system shield of SCONE, and de-crypts it when process-
ing inside of SGX enclaves.

As for the implementation of the Data Broker’s CAS component, we partially rely on previous works.

This deliverable explains the selected use cases for federated learning, which serves to show the accom-
plishments of NEARDATA'’s objectives. The Data Broker component addressed objective O-3, which has been
verified through the use of Key Performance Indicators (KPIs) 4. The objective is to ensure the secure coordi-
nation, transmission, manipulation, and retrieval of data. The third goal is to establish a Data Broker service
that facilitates reliable data sharing and secure coordination of data pipelines throughout the Compute Con-
tinuum. The project aims to enhance the security and reliability of the data by using TEEs within federated
learning systems. Policy-driven mutual authentication techniques also enable advanced data access policies
for parties that do not trust each other. These policies are managed by policy boards, allowing access rules to
be dynamically changed by human decision-makers and other entities.

The system employs encryption to secure both the input training data and code, such as Python code.
It carries out all training calculations within TEE enclaves, including local and global training. This secure
federated learning enables transmitting all gradient changes using TLS connections between the enclave of
clients and the enclaves of the central training computation. Consequently, individuals who have elevated
access cannot compromise the integrity and confidentiality of the input training data, code, and models. The
Data Broker component is connected with CAS and utilises the remote attestation technique enabled by TEEs.
This component guarantees the accuracy and reliability of the input data and training code. Put simply, it
guarantees that training calculations are executed using accurate code, and accurate input data, and have
not been tampered with by any unauthorised individuals, such as an attacker or malicious client. Based on
the initial assessment, we can guarantee the privacy and security of federated learning calculations without
compromising the effectiveness or accuracy of the training calculations.

The source codes for these use cases are publicly available.

| Components | Description | GitHub URL |

Surgery use-case | Federated Learning | https://github.com/neardata-eu/nct_tud_
Source Code f1_demo

Table 5: Use-cases source codes released.

Page 26 of 91


https://github.com/neardata-eu/nct_tud_fl_demo
https://github.com/neardata-eu/nct_tud_fl_demo

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

4.2 Use case: metabolomics

Spatial metabolomics annotation presents one of the most computationally demanding challenges in modern
bioinformatics, requiring the processing of gigabytes of mass spectrometry imaging data to identify and map
metabolite distributions within biological tissues. This field is critical for advancing drug discovery, disease
research, and personalized medicine, as it provides unprecedented insights into how metabolites are spatially
organized in complex biological systems. The computational complexity stems from the need to analyze thou-
sands of molecular features across spatial coordinates, requiring sophisticated algorithms like those imple-
mented in Metaspace to accurately detect metabolite structures and distinguish them from background noise
and artifacts.

Lithops revolutionizes spatial metabolomics processing by implementing a multi-cloud serverless comput-
ing approach that breaks down massive annotation tasks into manageable, parallelizable computation slices
distributed across cloud clusters. This framework enables researchers to leverage the elastic scalability of cloud
computing, dynamically allocating resources based on workload demands while significantly reducing pro-
cessing times for complex metabolomics analyses. MinlO provides the essential storage infrastructure through
its S3-compatible object storage system, serving both as a secure repository for raw mass spectrometry files and
as a coordination hub for pipeline execution, ensuring seamless data synchronization across distributed com-
pute nodes.

SCONE’s integration across the entire processing stack creates a comprehensive confidential
computing environment that protects sensitive biological data and proprietary research algorithms through-
out the cloud pipeline. This security framework supports Lithops execution across multiple cloud platforms
through confidential containers for Kubernetes and Singularity compute backends, while simultaneously se-
curing MinlO'’s storage operations. This end-to-end protection is particularly crucial for pharmaceutical re-
search and clinical applications where metabolomics data may contain patient information or represent valu-
able intellectual property, enabling researchers to harness powerful cloud computing resources while main-
taining strict data confidentiality and regulatory compliance.

421 Lithops

Lithops has a new backend named "Singularity", that introduces a new engine for working with "threads" in-
stead of the traditional OS processes "forks". It requires Python 3.13t, that implements improvements on
parallelization of threads* with the optional disabling of GIL>.

The setup requires a RabbitMQ server to concentrate the synchronization between submitters (client ap-
plication) and workers (Lithops Singularity instances). Clients will submit work to a queue in RabbitMQ and
Lithops Singularity instances will read that queue and process accordingly. Example of a small Lithops pro-
gram execution using Singularity backend deployed on a Kubernetes cluster:

® $ SCONE_VERSION=1 SCONE_CONFIG_ID=horizon-mesh-20135-21162/1ithops/multiproc \
SCONE_MODE=HW SCONE_LOG=ERROR SCONE_HEAP=3G PYTHON_GIL=0 \
python3.13 multiprocessinglithops.py
[SCONE] Using the following values (default values or specified in the untrusted
environment) :
SCONE_QUEUES=4
SCONE_SLOTS=256
SCONE_SIGPIPE=0
SCONE_MMAP32BIT=0

Enclave hash: 3170dfd56a81dfc0508c37be6e44519bcd4123c6a928978abd7e0abed5212f8a

2025-09-09 12:38:04,427 [INFO] config.py:139 - Lithops v3.6.1.dev0 - Python3.13

2025-09-09 12:38:05,494 [INFO] minio.py:62 - MinIO client created - Endpoint:
http://10.36.152.162:9000

2025-09-09 12:38:06,080 [INFO] singularity.py:55 - Singularity client created

2025-09-09 12:38:06,081 [INFO] invokers.py:119 - ExecutorID 83d2d8-0 | JobID MOOO - Selected
Runtime: singularity-metabolomicsl.sif - 512MB

2025-09-09 12:38:06,260 [INFO] invokers.py:186 - ExecutorID 83d2d8-0 | JobID MOOO - Starting
function invocation: cloud_process_wrapper() - Total: 4 activations

2025-09-09 12:38:06,261 [INFO] invokers.py:225 - ExecutorID 83d2d8-0 | JobID MOOO - View
execution logs at /tmp/lithops-root/logs/83d2d8-0-M000.1log

2025-09-09 12:38:06,263 [INFO] executors.py:494 - ExecutorID 83d2d8-0 - Getting

“What’s New In Python 3.13 https:/ /docs.python.org/3/whatsnew/3.13.html
SGIL - global interpreter lock https:/ /docs.python.org/3/ glossary.html#term-global-interpreter-lock
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results from 4 function activations
2025-09-09 12:38:06,263 [INFO] wait.py:101 - ExecutorID 83d2d8-0 - Waiting for 4
function activations to complete

2025-09-09 12:38:10,500 [INFO] executors.py:618 - ExecutorID 83d2d8-0 - Cleaning
temporary data
[2 3 4 3 6 b 8]

Lithops'’s traditional working mechanics (considering backend: 1localhost and backend: k8s)isto
divide the work using OS processes and Containers plus OS processes on a cluster, respectively. In confidential
computing, this is very expensive, because for each OS process fork()’ed and container created a full copy
of enclave’s memory is made to the new instance. For example, if Lithops requires runtime_memory: 768

MB, SCONE has to reserve enclave=1024 MB; if runtime_memory: 1280 MB, then enclave=2048 MB is
reserved; if runtime_memory: 3072 MB, then Jenclave=4096 MB is reserved; and so on exponentially in
powers of 2. Lithops Singularity saves resources by not having to spawn dozens of containers on a cluster;
instead, one or multiple instances can be started to process the user’s data using less resources.

4.2.2 Metaspace

Metaspace is a Python system specialized in processing metabolite annotation of imaging mass spectrometry
data and spatial metabolites. It employs Lithops as an engine to distribute workload among backend nodes
in the cloud®. Metaspace, as-is, is exclusively compatible with Python 3.8; and this poses a challenge to the
new approach of Lithops Singularity, that requires Python 3.13t. To cope with that, URV forked the Metaspace
repository from Github and tailored an adapted version for Python 3.13”. The setup consists of 6 instances of
Lithops Singularity, 1 instance of MinlO, and 1 instance of RabbitMQ serving 1 client using their services. Here
is an excerpt from the sconified execution of the demonstration metabolomics pipeline:

® $§ SCONE_VERSION=1 SCONE_CONFIG_ID=horizon-mesh-20135-21162/1ithops/mboltest \
SCONE_HEAP=7G python3.13 test-local.py
[SCONE] Using the following values (default values or specified in the untrusted
environment) :
SCONE_QUEUES=4
SCONE_SLOTS=256
SCONE_SIGPIPE=0

SCONE_MPROTECT=no

SCONE_FORK=yes

SCONE_FORK_0S=1

SCONE_CONFIG_ID: horizon-mesh-20135-21162/1ithops/mboltest

musl version: 1.2.5

SCONE version: 5.9.0-239-g941a371d1-dirty-sergei/lithops (base: £9230ace) (2025-01-20
14:09:47)

Enclave hash: dbd66f2c6facle4f68d3199636889feb87£324ef1a899ec97eabb699eba3717d
2025-05-05 14:16:25,548 [INFO] config.py:139 - Lithops v3.6.1.dev0 - Python3.13
2025-05-05 14:16:25,548 [DEBUG] config.py:179 - Loading Serverless backend module:
singularity

2025-05-05 14:16:25,555 [DEBUG] config.py:219 - Loading Storage backend module:
minio

2025-05-05 14:16:25,562 [DEBUG] minio.py:38 - Creating MinIO client

2025-05-05 14:16:25,562 [DEBUG] minio.py:43 - Setting MinIO endpoint to
http://10.36.1562.162:9000

2025-05-05 14:16:26,280 [INFO] minio.py:62 - MinIO client created - Endpoint:
http://10.36.152.162:9000

2025-05-05 14:16:26,288 [DEBUG] singularity.py:41 - Creating Singularity client
2025-05-05 14:16:26,381 [INFO] singularity.py:55 - Singularity client created

bServerless METASPACE with Lithops https:/ / github.com/metaspace2020/ Lithops-METASPACE
"METASPACE annotation pipeline adaptation to python 3.13 - https:/ /github.com /GEizaguirre/metaspace-py13/

Page 28 of 91



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

2025-05-05 14:21:33,625 [DEBUG] monitor.py:144 - ExecutorID 7e88c3-0 - Pending:
O - Running: O - Done: 32

2025-05-05 14:21:33,657 [DEBUG] monitor.py:465 - ExecutorID 7e88c3-0 - Storage
job monitor finished

2025-05-05 14:21:34,611 [DEBUG] future.py:229 - ExecutorID 7e88c3-0 | JobID MO12
- Got status from call 00022 - Activation ID: 5e202a2b440f - Time: 9.49 seconds
2025-05-05 14:21:34,614 [DEBUG] future.py:286 - ExecutorID 7e88c3-0 | JobID MO12
- Got output from call 00022 - Activation ID: 5e202a2b440f

2025-05-05 14:22:00,345 [DEBUG] monitor.py:144 - ExecutorID 7e88c3-0 - Pending:
O - Running: O - Done: 1

2025-05-05 14:22:00,367 [DEBUG] monitor.py:465 - ExecutorID 7e88c3-0 - Storage
job monitor finished

2025-05-05 14:22:01,295 [DEBUG] future.py:229 - ExecutorID 7e88c3-0 | JobID MO013
- Got status from call 00000 - Activation ID: bc6931c690b9 - Time: 1.49 seconds
2025-05-05 14:22:01,298 [DEBUG] future.py:286 - ExecutorID 7e88c3-0 | JobID MO013
- Got output from call 00000 - Activation ID: bc6931c690b9

2025-05-05 14:22:01,311 [INFO] executors.py:618 - ExecutorID 7e88c3-0 - Cleaning
temporary data

2025-05-05 14:22:14,539 [DEBUG] executors.py:519 - ExecutorID 7e88c3-0 - Finished
getting results

Proceeding to the next step of processing a pipeline with concrete payload, we look for real data. The
dataset obtained comes from the Metaspace 2020 website? and has 705MB - very small in comparison with
other datasets. The same setup as above was used regarding the "serving side". First, executions of native
Python 3.13 were made to observe its general profile, and later move to the sconified ones. It was observed
that Metaspace has a varying range of runtime memory values to work out the payload: 512MB, 1024MB,
2048MB, and 4096MB. Metaspace sets these values when spawning new (fork () ed) processes.

The enclave’s memory has a perpetual rigid size that is never changed once it is created and it persists
until the program exits; it has to be a number in powers of 2 to build the memory heap®. So, if the enclave has
started with 1024MB, it will persist with this heap size until it exits, and it is shared between the program itself
and TEE management activities; such that if the program has code identifying the total memory to work with,
the enclave might eventually abort due to out of memory.

The SCONE runtime sets the enclave’s memory using the environment variable "SCONE_HEAP" upon the
program’s startup. Both the TEE management activities and the size in powers of 2 restriction are taken
into consideration to reserve the encrypted memory; therefore the SCONE runtime will "bump" the value
set there to the next in power of 2. For example, to counter for the TEE management activities, if set to
"SCONE_HEAP=1500M", the SCONE runtime will "bump" the enclave’s encrypted memory size to the next value
in power of 2, "2048M"; if set to "SCONE_HEAP=2048M", it will be bumped to "4096M"; if set to "SCONE_HEAP=3G",
the enclave’s memory will be bumped to "4G"; and so on.

Considering this TEE feature, together with the profiled varying runtime memory used by Metaspace, the
sconified execution has to have the enclave’s memory size set to cover both the maximum observed of 4096MB
and the TEE management overhead. The value that passed the tests is "SCONE_HEAP=7G", which SCONE run-
time will round up to 8GB.

Firstly, the execution is made on "confidential computing simulation mode", by setting the SCONE runtime
with the environment variable "SCONE_MODE=SIM", where less restrictions are enforced on the enclave. Here is
an excerpt of the pipeline execution with the selected dataset.

® $ SCONE_VERSION=1 SCONE_CONFIG_ID=horizon-mesh-20135-21162/1ithops/mbolpayload\
SCONE_MODE=SIM SCONE_HEAP=7G python3.13 /python/process-payload.py

SCONE_MPROTECT=no

SCONE_FORK=yes

SCONE_FORK_0S=1

SCONE_CONFIG_ID: horizon-mesh-20135-21162/1ithops/mbolpayload

musl version: 1.2.5

SCONE version: 5.9.0-239-g941a371d1-dirty-sergei/lithops (base: £9230ace) (2025-01-20

8 AstraZeneca/ / Xenograft https:/ /metaspace2020.org/dataset/2016-09-21_16h06m53s
Ypage 4: "Table 2-2 (...) SIZE | Size of enclave in bytes; must be power of 2"
https:/ /www.intel.com/content/dam/develop/external /us/en/documents/329298-002-629101.pdf
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14:09:47)

Enclave hash: db5d66f2c6facle4f68d3199636889feb87£324ef1a899ec97eab5699eba3717d
2025-05-05 14:16:25,548 [INFO] config.py:139 - Lithops v3.6.1.dev0 - Python3.13
2025-05-05 14:16:25,548 [DEBUG] config.py:179 - Loading Serverless backend module:
singularity

2025-05-05 14:16:25,548 [INFO] config.py:139 - Lithops v3.6.1.dev0 - Python3.13
2025-05-05 14:16:25,548 [DEBUG] config.py:179 - Loading Serverless backend module:
singularity

2025-05-05 14:16:25,555 [DEBUG] config.py:219 - Loading Storage backend module:
minio

2025-05-05 14:16:25,562 [DEBUG] minio.py:38 - Creating MinIO client

2025-05-05 14:16:25,562 [DEBUG] minio.py:43 - Setting MinIO endpoint to
http://10.36.152.162:9000

2025-05-05 14:21:23,051 [INFO] invokers.py:186 - ExecutorID 7e88c3-0 | JobID M012
- Starting function invocation: process_centr_segment() - Total: 32 activations

2025-05-05 14:21:33,542 [DEBUG] future.py:286 - ExecutorID 7e88c3-0 | JobID M012
- Got output from call 00023 - Activation ID: 5e202a2b440f

2025-05-05 14:21:33,625 [DEBUG] monitor.py:144 - ExecutorID 7e88c3-0 - Pending:
0 - Running: O - Done: 32

2025-05-05 14:21:33,657 [DEBUG] monitor.py:465 - ExecutorID 7e88c3-0 - Storage
job monitor finished

2025-05-05 14:22:01,295 [DEBUG] future.py:229 - ExecutorID 7e88c3-0 | JobID M013
- Got status from call 00000 - Activation ID: bc6931c690b9 - Time: 1.49 seconds
2025-05-05 14:22:01,298 [DEBUG] future.py:286 - ExecutorID 7e88c3-0 | JobID M013
- Got output from call 00000 - Activation ID: bc6931c690b9

2025-05-05 14:22:14,539 [DEBUG] executors.py:519 - ExecutorID 7e88c3-0 - Finished
getting results

Please note that at a later point in the pipeline execution, Metaspace had 32 activations, meaning it spawned
32 simultaneous processes running. This is very expensive in native execution and more expensive in a confi-
dential computing one. This pipeline runs in confidential computing simulation mode, which means that it is
less restrictive in the lowest level. For example, the size of the enclave is also set with SCONE_HEAP, and when
a forked execution takes place, there is enough memory for everyone. Additionally, we can employ a fork
optimization in simulation mode, making the execution faster than if it were using the actual TEE hardware.

Next, the execution is made on "confidential computing hardware mode", where the program will be handled
inside the TEE hardware, and the SCONE runtime enforces more confidential computing restrictions. It is
worth mentioning that, despite Metaspace being integrated with Lithops Singularity, it will eventually call the
OS process fork () system call, to parallelize work. As mentioned above, every fork() is very expensive, due
to the copying of the complete current enclave state to the new child process (and it is all encrypted, thus more
processing activities).

Despite dividing the work among 6 Lithops Singularity instances, hosted in 3 powerful nodes (with CPU of
2.7GHz, 32 cores, 64GB of RAM), the same pipeline execution was very slow in comparison with the simulation
version and consequently aborted. The investigation indicated that the EPC (Enclave Page Cache) was much
smaller than the RAM size, so all processes will not fit in it when needed. EPC has been set to the new value
of 16GB, from the initial 1GB. This helped mitigate the slowness, but the program still crashed:

® 2025-04-23 18:49:16,815 [INFO] invokers.py:186 -- ExecutorID 9difa4-0 | JobID
MO13 - Starting function invocation: process_centr_segment() - Total: 32
activations
2025-04-23 18:49:16,815 [DEBUG] invokers.py:212 -- ExecutorID 9difa4-0 | JobID
MO13 - Worker processes: 6 - Chunksize: 6
Traceback (most recent call last):
File "/python/test-local.payload.py", line 48, in run_job
job.run(debug_validate=True, perform_enrichment=False)
File "/extra/sources/metaspace/sm/engine/annotation_lithops/annotation_job.py",
line 228, in run
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File "/extra/sources/metaspace/sm/engine/annotation_lithops/annotate.py",
line 309, in process_centr_segments
File "/extra/sources/metaspace/sm/engine/annotation_lithops/executor.py",
line 278, in map
request_ids=[f.activation_id for f in futures], # pylint: disable=not-an
-iterable
TypeError: 'NoneType' object is not iterable

The "not iterable" exception on the futures object indicates that the program failed to build it correctly due
to running out of memory. On the Lithops Singularity server side, Python 3.13 processes aborted when the
memory limit was reached. Example:

® root 1943778 1943765 5 08:09 7 00:02:09 python3.13
root 1974405 1943778 87 08:42 00:04:07 python3.13
root 1974577 1943778 23 08:42 00:01:03 [python3.13] <defunct>
root 1974685 1943778 26 08:42 00:01:12 python3.13
root 1974745 1943778 25 08:42 00:01:08 python3.13

N N N N

A successful execution in simulation mode spans to the 6 Lithops Singularity instances with on average
13 concurrent OS processes, with maximum of 15 per container. We tried to increase RAM on each of the 3
worker nodes to 256GB and vary the setup of 6 Lithops Singularity instances to 3 approaching the maximum
available for each node. Nevertheless, the same problems happened, but now reached a farther point in the
pipeline, with 32 OS processes spawned simultaneously.

On a more refined analysis, the 32 OS processes, i.e. 32 enclaves with full copy state (of memory HEAP)
from parent to child, would consume around the full 256GB if run on the same node; but regardless of that,
they were split among the worker nodes and the memory limit was still an issue. Our best estimate now is to
have 320GB RAM per worker node with 3 Lithops Singularity instances. But the same problems occurred at
the same point:

® 2025-05-06 10:23:34,441 [INFO] invokers.py:186 -- ExecutorID b7cOb5-0 | JobID MO11
- Starting function invocation: merge_centr_df_segments() - Total: 32 activations
2025-05-06 10:23:34,442 [DEBUG] invokers.py:212 -- ExecutorID b7cOb5-0 | JobID MO11
- Worker processes: 3 - Chunksize: 3
Traceback (most recent call last):
File "/python/process-payload.py", line 48, in run_job
job.run(debug_validate=True, perform_enrichment=False)
File "/extra/sources/metaspace/sm/engine/annotation_lithops/annotation_job.py",
line 228, in run

File "/extra/sources/metaspace/sm/engine/annotation_lithops/segment_centroids.py",
line 205, in segment_centroids
db_segms_cobjs = fexec.map_concat (
merge_centr_df_segments, second_level_segms_cobjs, runtime_memory=512
)
File "/extra/sources/metaspace/sm/engine/annotation_lithops/executor.py",
line 396, in map_concat
results = self.map(func, args, runtime_memory=runtime_memory, **kwargs)
File "/extra/sources/metaspace/sm/engine/annotation_lithops/executor.py",
line 278, in map
request_ids=[f.activation_id for f in futures], # pylint: disable=not-an-
iterable
TypeError: 'NoneType' object is not iterable

Analyzing the executions with strace a peculiar behavior was identified: the forked processes had made
a second fork(). Example:

® root 3374777 3374765 5 12:33 7 00:05:01 python3.13
root 3581635 3374777 16 13:54 7 00:01:18 python3.13
root 3581807 3374777 15 13:54 7 00:01:14 [python3.13] <defunct>
root 3582661 3374777 16 13:54 7?7 00:01:15 python3.13

Page 31 of 91



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

root 3585332 3581635 24 13:55 ? 00:01:38 python3d.13
root 3586372 3582661 19 13:556 ? 00:01:17 python3.13

Taking 3 processes to analyze: the root parent PID 3374777 forks to 3581635, which subsequently will fork
to 3585332. This means that considering only these 3 processes, there are "8GB * 3 = 24GB" of memory allocated,
despite the application’s runtime memory at that moment of 32 activations had been set by Metaspace being
512MB per activation. This happens because the root parent process started with the upper bound memory
reservation of full 8GB and less would crash the execution — and this cannot be changed throughout the
program’s lifetime. In sconified programs, each OS process is an enclave and when executed in hardware
mode and a fork () is called the whole state is copied from parent to child.

This double-forking behavior indicates that it comes from internal decision of the Python interpreter (an-
alyzing deeper its source code was outside of the scope of the project), as Lithops simply uses the standard
core Python modules subprocess and multiprocessing without modifications; from the SCONE side, only
the translation of system calls issued by the programs are made. Moreover, it is not possible to inspect inside
the enclave (either with strace or any other tool) to understand precisely what is being done — it is a security
feature by design.

The runtime memory variation inside the Metaspace pipeline is related to inner business logic, and cur-
rently no external settings are possible to change such as to guide the behavior at any given time. In conclusion,
regardless of how many activities are decided by the application, the current Metaspace version will fork the
execution to parallelize work and does not benefit from the current Lithops Singularity mechanism of using
threads instead. And more hardware cannot be always the answer for speeding up a system.

However, Metaspace can be supported by SCONE, benefiting from attestation policies to transfer data
securely along the network, as long as it is setup to work on simulation mode, hence not benefiting from the
security features provided by the TEE hardware.

4.2.3 Scalability challenges in sconified Metaspace

This subsection summarizes the hardware requirements and compares with the scalability challenges faced
to support the sconified Metaspace. The cluster supporting Metaspace initially consisted of 3 worker nodes
configured with CPU Intel(R) Xeon(R) Platinum 8458P[19] of 2.7GHz with 32 cores and 64GB of RAM, and
Intel SGX for TEE; they hosted 6 Lithops Singularity instances.

We progressively upgraded the nodes setup, according to the investigations of failed runs:

1. Enclave Page Cache - EPC increased from 1GB to 16GB;
2. Memory increased from 64GB RAM to 256GB RAM,;

3. Memory increased from 256GB RAM to 320GB RAM.

4. Memory returned to 320GB RAM to baseline 64GB RAM;

CPU speed is automatically adjusted if necessary; this Intel model has an automatic upper bound of
3.8GHz[!!].

In conclusion, confidential computing has a known trade-off of performance for security, and often more
hardware made available can do a good job; but in this scenario, more hardware exclusively is not the answer
for adequate scalability of sconified Metaspace with Lithops. The dataset used has no much more than 700MB
and there are other datasets much larger than it. This is a scenario of a very specific niche, where the amount of
data is often huge and the corresponding hardware addressed to it is already potent, but considering the port-
ing to confidential computing, it becomes prohibitive to increase resources 500 times the provisioned baseline.
This presents a great opportunity to future works on the integration of Metaspace with the new Confidential
Computing Lithops Singularity backend, adapting Metaspace to benefit of the threads mechanics and confi-
dential computing in their full extent.

424 Keycloak

Both systems ported and non-ported to SCONE can benefit from confidential computing auxiliary services.
Keycloak is an identity and access manager that is used as an outsourcing user management. In cases that not
every person with access to a particular system is allowed to submit certain computations, Keycloak offers an
authentication mechanism that provides additional information so that the recipient system can assert whether

OIntel CPU https://www.intel.com/content/www/us/en/products/sku/231742/intel-xeon-platinum-
8458p-processor-82-5m-cache-2-70-ghz/specifications.html

U'What Is Intel® Turbo Boost Technology? https://www.intel.com/content/www/us/en/gaming/resources
/turbo-boost.html
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a user can or cannot access certain resources (or submit computation, in our case). Keycloak has been setup in
the KIO infrastructure and provides services via keycloak.neardata.eu:30443 .

The configurations are made in realms, that contain users, roles, clients, client scopes,and other authentication
configurations.

* Realm: Logic domain containing clients, users and their roles;

¢ Client: Logic entity corresponding to systems to which users will refer when logging in to Keycloak. A
client is the gateway to services on other recipient systems;

* Client scopes: Client feature; albeit the client can access a service, some special resources might be
restricted to certain scopes, giving the recipient system flexibility to control what can be done within its
perimeter;

¢ User: Entity in the realm representing a person or another system;
* Roles: User feature representing a role in the recipient system.

Broadly speaking, the workflow is this: users in each realm will have roles and will access clients to deliver
their information to the recipient systems. Roles are labels that the recipient system uses to allow and proceed,
or deny and abort the connection. Upon successful logging in, a data structure called "access token" is sent to the
recipient system with details about the user, including their roles. The recipient system will certify the user’s
claims by requesting a validation token from Keycloak.

NEARDATA has 4 realms that cover the use cases: genomics, transcriptonomics, metabolomics and sur-
gomics. Each realm has been setup with users, clients and authentication configurations. Considering that the
majority of systems we have dealt in NEARDATA are developed in Python, to ease the way in to partners,
Scontain is providing a Python module accessible via pip: sconekc!?.

Here is an example of how to use sconekc in an automated integration with secrets injection via attestation:

e install it with pip install sconekc.

e make a x509 client certificate
export KEYCLOAKCLICERTSUBJ="/C=ES/ST=CA/L=Barcelona/0=NEARDATA/0U=BSC/CN=genomics";

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -sha2b6 -days 365 -nodes

-subj "$KEYCLOAKCLICERTSUBJ";
* With this Python code:

® $ SCONE_CONFIG_ID=horizon-mesh-20135-21162/keycloak/kc-client-userpass \
python3 kc-client-injection.py

import sconekc as kc

SERVER=0s.environ['KEYCLOAK']
REALM=0s.environ['MBOLREALM']
CLIENT=o0s.environ['MBOLCLIENT']
USERNAME=0s.environ['MBOLUSER']
PASSWORD=o0s.environ['MBOLPASS']

try:
AT=kc.get_access_token(SERVER, REALM, CLIENT, USERNAME, PASSWORD,
cert='cert.pem', key='key.pem')
print ("Access Token")
kc.showJWT (AT)
VT=kc.get_validation_token(SERVER, REALM, AT, cert='cert.pem', key='key.pem')
print("Validation Token")
print (VT)
except Exception as e:
print (f 'Exception: {el}')

This should give something like:

125coneke — Module to interact with Keycloak access token and validation token https:/ /pypi.org/project/sconekc/
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Access Token
Header: <{'alg': 'RS256', 'kid': 'Qt5SlaqaZtwfZKzc673xBLd0TnOvU72eht2JnyHAh-A',

"typ': 'JWT'}
Token: {'azp': 'serverless-genomics',
'email': 'frogins@neardata.eu',

'exp': 1758021156,
'iat': 1758018816,
'iss': 'https://keycloak.neardata.eu:30443/realms/genomics',

'name': 'Frobor Laggins',

'preferred_username': 'frogins',

'realm_access': {'roles': ['trypanosome',
'bos-taurus',
'human',

'default-roles-genomics']},

'sid': 'eb854207-e800-495a-aal19-1b7a01d069da’,

'sub': 'db58e846b-8e79-4d0b-9aba-c4be0d17£530"',

'typ': 'Bearer'}
Signature: 'ZHQVWnTkcJohatnWnXSPu_HYQuKpGbOK_PK1K-6J5dADo. . .XgbhGx_2shdrFVOYLEjDtGQ'
Issued at: 2025-09-16 12:33:36 (localtime)
Not before: Undefined (localtime)
Expiration: 2025-09-16 13:12:36 (localtime)

Validation Token

{'sub': 'd58e846b-8e79-4d0b-9aba-c4be0d17£530', 'preferred_username': 'frogins', 'email':
'frogins@neardata.eu', 'accesstokentimestampissuing': 1758018816, 'accesstokendatetime)\
issuing': 'Issued at: 2025-09-16 12:33:36 (localtime)', 'accesstokentimestampexpiring':
1758021156, 'accesstokendatetimeexpiring': 'Expiration: 2025-09-16 13:12:36 (localtime)',
'validationtokentimestampvalidation': 1758018816, 'validationtokendatetimevalidation':
'Validated on: 2025-09-16 12:33:36 (localtime)'}

The code above is the trivial workflow using Keycloak’s REST API, where a user is authenticated with
their password via secure HTTPS channel. The communication is made on behalf of the "genomics" realm
user "frogins", via the client "serverless-genomics" that started the communication requiring services from a
third party (the recipient system). Upon authentication, the access token is sent to the recipient system to check
which roles have been assigned to the user. This allows for a RBAC — Role Based Access Control filtering.
And as important as getting the access token from the user, is the validation token requesting by the recipient
system. The validation token is generated by the same identity and access manager that generated the access
token; therefore, the same access token is sent to the server for validation; and, once issued, the recipient can
assert that everything is trustworthy.

The following snippet is a more refined approach of authentication that does not mediate the passing of
username and password to Keycloak, but instead uses the Keycloak login page itself. This is an interactive
integration approach, with injection of secrets via attestation.

® $ SCONE_CONFIG_ID=horizon-mesh-20135-21162/keycloak/kc-loginpage-1lt-multiproc \
python3 kc-multiprocessinglithops.py

AUTH_SERVER = os.environ['KEYCLOAK']

REALM = os.environ['MBOLREALM']

CLIENT_ID = os.environ['MBOLCLIENT']

ROLE = os.environ['MBOLROLE']

REDIRECT_URI = "http://127.0.0.1:4443/callback"
BROWSER = "/usr/bin/opera"

BROWSER_PARAMS = "--private"

server = threading.Thread
kcsession = kc.KeycloakSession()
browser_t = threading.Thread

if __name__ == "__main__":
start_server()
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x=lambda: kc.login_browser_auth(kcsession, AUTH_SERVER, REALM, CLIENT_ID,
REDIRECT_URI, BROWSER, BROWSER_PARAMS)

t=threading.Thread(target=x)

t.start ()

t.join()

print (f"Performing verification: RBAC access={ROLE}")
access_token_json=json.loads(kcsession.access_token_json)
header, access_token, signature, issued, started, validto = kc.sliceJWT(
access_token_json["access_token"])
if ROLE in access_token['realm_access'] ['roles']:
print ("User IS AUTHORIZED to proceed with computation")
header, payload, signature, issued, started, validto = kc.sliceJWT(
access_token_json["access_token"])

VT=kc.get_validation_token(AUTH_SERVER, REALM,
access_token_json['access_token'])
print(f"validation_token={VT}")
print(f"validation_token.name={VT['name']}")
if VT['name'] != "":
from lithops.multiprocessing import Pool
def double(i):
return i * 2
with Pool() as pool:
result = pool.map(double, [1, 2, 3, 4])
print (result)
else:
print ("User IS FORBIDEN to proceed with computation")
kc.logout_session(kcsession, AUTH_SERVER, REALM)

This mechanics uses the Keycloak’s endpoint /auth (used with browser interaction) instead of /token
(which is used by the trivial access token generation). The endpoint /auth requires that a callback URI (open
port or HTTP URL) is prepared to receive a response code, which will then be sent to Keycloak to generate
the access token on behalf of the user. Please note that in this approach both the starting program the user
is interacting with and the recipient system have no access to their password; upon authentication on the
Keycloak webpage, the recipient system will use the authorization code received and submit it to the same
/token and get the same access token with the user’s details, roles, etc.

The module sconekc provides the function login_browser_auth() that will build the configurations to sub-
mit to /auth and will open the default desktop’s browser or use the one specified by the variable BROWSER.
It is essential to define the correct redirect URI. If is different from what is configured and allowed for that
client, the logging in fails and no authorization code is generated. The redirect URI has to be accessible by
the user resources or the recipient system.

The function callback_endpoint() is used to receive the authentication token generated from the Key-
cloak’s login webpage and will request the access token with the authorization code received. It has to have
setup the same redirect URI that was used initially. It is not an HTTP server; instead, it is a function that can
be used, for instance, in a Flask handler deployment. And this is what has been done in the application above:
despite being a command line Python program, it will load a temporary web server exclusively to listen for
the callback communication and proceed to obtain the access token. The program above brings the integration
of Keycloak with Lithops, demonstrating that the confidential computing covers the broadest extent of the
computation continuum.

If the integration of sconekc is made with the traditional username+password mediation, the best op-
tion is to use environment variables inject via SCONE attestation (e.g. os.environ[’MBOLPASS’]), and this is
the option-of-choice if the pipeline non-interactive. Otherwise, the authentication via browser, for interactive
execution is the way to go. An important authentication configuration introduced is the "passkeys" support
in Keycloak. Once the authentication is made using the browser, the use of passkeys can be employed and
substitute the use of passwords.

The example above will allow access to users from the realm "metabolomics", accordingly to the successful
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login via the webpage. Once the Keycloak login page is open, the user can choose to login by typing their

username and password or use the their passkey issued in advance by Keycloak [6]. It has been setup to allow

both username + password typing and the passkeys passing, but it can be setup to exclusively passkeys.
METABOLOMICS METABOLOMICS

Signin to your account Select login method

Username or email

| = Username and password
—_—

Password
Sign in by entering your username and password

p Passkey

Use your Passkey for passwordless sign in.

‘ Try Ancther Way ‘

Keycloak login webpage. Login method selection.
r? b Use a passkey from another device?
Scan this QR code with the device that has the passkey you
want to use for keycloak.neardata.eu
METABOLOMICS
Passkey login
Try Ancther Way
Use a different device Cancel
Select passkeys method. QR-CODE to read from mobile.
” kb
]
@)
Follow the steps on your device l
o bewegt
METABOLOMICS = Passkey of "keycloak.neardata.eu”
Passkey login
Touch ID
Continue from mobile. Allow to use passkey from mobile.

Table 6: Keycloak authentication webpage using passkeys

The diagrams [3] depict both automated and interactive integrations of user authentication.

Keycloak configuration : here are the steps to setup the Keycloak server installed by the confidential mesh
of services[4.2.5]. After installation, the temporary bootstrap administrator user + password have to be "sani-
tized" (new permanent user created and given the administrator rights, plus disabling or deleting the bootstrap
administrator user). This step is done in the web management interface of master realm. The complete list of
configurations can be found in table [7].
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1: Attestation

2: Configurations.
and Secret:

4: Create localhost k)
callback endpoint &

5: Obtain Access
Token
7: Authorized
eeeee tion 6: Issue Validation
roken

(a) Keycloak automated client integration. (b) Keycloak interative client via browser integration.

Figure 3: Keycloak integration methods.

. Go to: menu | Users| » [Add user] » Fill in: "username" and "email" » Switch: "Email verified" to On »

[Create];

Go to: menu | Credentials | » [Credential Reset] » [Set password] » "Enter the new administrator’s password"
» Switch: "Temporary" to Off » [Save];

3. Go to: menu | Role mapping | » [Assign role] » Switch: "Filter by realm roles" » Select: admin » [Assign];

4.
5.

Go to: menu | Users| » select the bootstrap admin user » Switch: "Enabled" to Off;

Logout and login with the new administrative user.

Now the realms, clients, roles, and users can be set up.

1.

Go to: drop down menu "master" » [Create real] » Enter: "Realm name" » [Create]
The interface changes to the new realm. If not, select it from the drop down menu.

Go to: menu | Client scopes | » [Create client scope] » Fill in: "Name" with "openid" » Switch: "Display
on consent screen" Off » [Save];

The scope "openid" is mandatory and is used to properly verify an authenticated user by a recipient
system (i.e. obtain a validation token);

If necessary, create other scopes;

. Go to: menu |Clients!| » [Create client] » Fill in: "Client ID" » [Next] » [Next] » Fill in: "Valid redirect

URIs" with "http://127.0.0.1:4443/callback" » [Save] ;
Enter as many redirect URIs you need in the client or as many new clients; The interface changes to the
new client.

Go to: menu | Client scopes | » [Add client scopes] » Select: "openid" and any other client scope needed
» [Add-Default];

When clicking [Add] select "Default" to have those scopes always present in that client when the user
requests access to it.

Go to: menu | Realm roles| » [Create role] » Fill in: "Role name" » [Save];

Go to: menu | Users| » [Add user] » Fill in: "username" and "email"”, and "First name" and "Last name"
» Switch: "Email verified" to On » [Create];

Go to: menu | Credentials | » [Credential Reset] » [Set password] » Switch: "Temporary" to Off » [Save];

Go to: menu | Role mapping | » [Assign role] » Switch: "Filter by realm roles" » Select: the roles created
before » [Assign];

Realm Clients Client scopes Roles Users
. . openid human frogins
genomics serverless-genomics : . :
variant-calling trypanosome sanfwise
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openid lithops_k8s allota
metabolomics lithops-backend sm-az-rat-brains . . . bewegt
lithops_singularity
sm-ct26-xenograf myuser
openid pravega_kidney haneks
surgomics pravega-client surg-ongo pravega_liver kellsen
pravega_lungs
openid atlas_salmon mofarrej
transcriptonomics | atlas-terraform infra_ec2 -
- atlas_star tivoli
infra_hpc

Table 7: Summary of the Keycloak settings

4.2.5 Confidential Mesh of Services

A Kubernetes cluster with nodes that support TEE hardware can host a mesh of confidential services that will
communicate with authorized parties and are controlled by the attestation system CAS.

A CAS instance, with replicas spread among the cluster’s nodes, is controlled by the systems administrator
using the program "SCONE Operator"'®. The Operator is a Kubernetes plugin for kubectl installed'* in the
systems administrator’s workstation and is capable of provisioning and managing CAS installations in the
cluster. Here is an example of installing a new CAS in the cluster:

® kubectl provision neardata-cas cas --dcap-api bade60cc793457139e71d472420c3ea3

The DCAP API Key above has to be the same used to install the Operator. You can get a DCAP API Key
from the Intel website!.

The mesh of services is managed by the application "SCONECTL". SCONECTL helps to transform cloud-
native applications into cloud-confidential applications. It supports converting native services into confiden-
tial services and services meshes into confidential services meshes.

The configuration of a mesh of services, "mesh.yaml" transcribed below, is made through a YAML manifest
file. Here is the confidential mesh of services containing Lithops, MinlO, and Keycloak with MariaDB:

apiVersion: scone/5.8
kind: mesh

cas:
- name: neardata-cas-vl # cas used to store the policy of this application

alias: ["image", "security", "access", "attestation"]

cas_url: neardata-cas-vl.default

cas_key: 4REHj3wFQRt6yi5b3c5BDnRLLxyuotTq9y1FDbzOFRNDb32kxQ

tolerance: "--accept-configuration-needed --accept-group-out-of-date
--accept-sw-hardening-needed"

mode: SignedManifest

cas_encryption_key: 3704f£3e07fafb5961259f12e9c751bb8419b9b90067afa65acd028c9992db

policy:
namespace: horizon-mesh-20135-21162
tolerate: debug-mode
ignore_advisories: 'x!'
attestation_policy_name: null
access_policy_name: null
security_policy_name: null
image_policy_namespace: null
maa: null

# Define environment variables
# These wariables will be used to dynamically configure the policies and services

13SCONE Kubernetes Operator https:/ /sconedocs.github.io/1_scone_operator/
14Deploying & Reconciling the SCONE Operator https:/ /sconedocs.github.io/2_operator_installation/
15Intel® Provisioning Certification Service https://api.portal.trustedservices.intel.com /provisioning-certification
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# - we define two special services:
# - "global": these definitions are shared by all services
# "helm": this behaves like the "global" service - the intention s to
# collect helm specific definitions here
# - *_host: container's hostname
# - *_port: service port
# - *_fqdn: service hostname accesstible elsewhere
# - *_service_name: service name in the policies
# - cluster_namespace: Kubernetes namespace of installation
# - pvc_identification: disambiguation PVC identification
# - cluster_release: Pods/Depoyments/Services nmame prefiz
# - domain_name: DNS domain name
#it#
# - and for each individual service defined in the services section
# - these definitions are only visible for this service
# - these definitions overwrite any definitions of the "global"” or "helm" section
env:

- service: global

env:

- name: imagePullSecrets
value: sconeapps

- name: useSGXDevPlugin
value: scone

- name: sgxEpcMem
value: 128

- name: database_host

value: horizon-mesh-mariadb
- name: database_port

value: 3306

- name: keycloak_host

value: horizon-mesh-keycloak
- name: keycloak_fqdn

value: keycloak.neardata.eu
- name: keycloak_service_name

value: keycloak

- name: minio_host

value: horizon-mesh-minio
- name: minio_fqdn

value: minio.neardata.eu
- name: minio_service_name

value: minio

- name: lithops_host

value: horizon-mesh-lithops
- name: lithops_fqdn

value: lithops.neardata.eu
- name: lithops_service_name

value: lithops

- name: cluster_namespace
value: default

- name: pvc_identification
value: horizon-storage

- name: cluster_release
value: horizon-mesh
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- name: domain_name
value: neardata.eu

- name: pkcs_generator_image # Python image with libraries for the Keycloak
# initialization container used to generate PKCS12 credentials
value: registry.scontain.com/sconecuratedimages/experimental/lithops:3.6.1-
metaspace-5.9.0-239-g941a371d1

###
# database supporting Keycloak
# - sqlInitScript: injected via attestation; S{L script to create user & database
# by the first load/configuration
# - etcMyCnf: injected via attestation; /etc/my.cnf MariaDB configuration file
- service: mariadb
env:
- name: sqlInitScript
value: |
|
GRANT ALL PRIVILEGES ON *.* TO 'root'@'}' IDENTIFIED BY '$$SCONE: :
mariadbrootpassword$$’;

CREATE DATABASE keycloak;

CREATE USER 'ciam'@'},' IDENTIFIED BY '$$SCONE: :keycloakdbpassword
$$';

GRANT ALL PRIVILEGES ON *.* TO 'ciam'@'},' REQUIRE X509 WITH GRANT
OPTION;

FLUSH PRIVILEGES;

SHOW GRANTS FOR 'ciam'@'%';

- name: etcMyCnf
value: |
|
# This group is read both both by the client and the server
# use it for options that affect everything
[client-server]
# This group is read by the server
[mysqld]
user=mysql
skip-host-cache
skip-name-resolve
# Disabling symbolic-links is recommended to prevent assorted
security risks
symbolic-1links=0
# Network
bind-address = 0.0.0.0
port = 3306
# Encryption parameters
plugin_load_add = file_key_management
file_key_management_filename = /etc/keys.txt
file_key_management_encryption_algorithm = aes_cbc
encrypt_binlog = 1
innodb_encrypt_tables = ON
innodb_encrypt_log = ON
innodb_encryption_threads = 4
innodb_encryption_rotate_key_age = 0 # Do not rotate key
innodb-tablespaces-encryption = ON
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encrypt_tmp_files = ON
innodb_log_group_home_dir = /external
innodb_data_home_dir = /external
## Trying direct user access
# Enabling TLS for MariaDB server
ssl
ssl_cert = /etc/server.crt
ssl_key = /etc/server.key
ssl_ca = /etc/mariadb-ca.crt
## Enabling TLS for MariaDB clients
[client]
ssl_cert = /etc/client.crt
ssl_key = /etc/client.key
ssl-verify-server-cert
##t#
# * Keycloak is named 'ciam' (Confidential Identity and Access Manager)
# - imagePython: - Python image for startup container to generate
# database PKCS12 client credentials
# generator
# - suffizPkcsSession: - used to format the auxiliary session name containing
# the database PKCS12 client credentials. Exzample:
# {{the_same_namespace}}-aur-2

- service: keycloak
env:

- name: sconeHashJavaKeycloak
value: 597a4blbf92283b93b423c44b9aba30bebbf3cbf456a2a6459832355631f1beb

- name: sconeKeycloakImage
value: registry.scontain.com/sconecuratedimages/experimental/keycloak:26-
alpine3.20-sconectl-5.9.0-rc.5

- name: sconeKeycloakImageUnderline
value: registry_scontain_com_sconecuratedimages_experimental_keycloak_26_
alpine3_20_sconectl_5_9_0_rc_5

- name: databaseConnectUrl # env var KC_DB_URL
value: jdbc:mariadb://horizon-mesh-mariadb/keycloak?user=ciam&
password=$$SCONE: : keycloakdbpassword$$&sslMode=trust&
keyStore=/tls/mariadb.pkcs12&
keyStorePassword=$$SCONE: :MariadbPkcs12Password$$

- name: pathJavaKc # env var PATH
value: "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:
/usr/1ib/jvm/java-21-openjdk/jre/bin: /usr/1ib/jvm/java-21-openjdk/bin:
/keycloak/bin"

- name: ldLibraryPathJavaKc # env var LD_LIBRARY_PATH
value: /usr/lib/jvm/java-21-openjdk/lib/server:/usr/1lib/jvm/java-21-openjdk/
lib:/usr/lib/jvm/java-21-openjdk/../1ib

- name: javaHomeJavaKc # env var JAVA_HOME
value: /usr/lib/jvm/java-21-openjdk

- name: kcAdditionalParams

value: --features=preview --features=passkeys
- name: javaXms # JVM minimal heap: -Xms
value: 256m
- name: javaXmx # JVM mazmimum heap: -Xmx
value: 2048m
- name: javaXMetaspace # classes metadata inttial size: -XX:MetaspaceSize
value: 96M

- name: javaXMaxMetaspace # classes metadata maxzimum size: -XX:MaxMetaspaceSize
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value: 256m
- name: kcSconeEdmm # env var SCONE_EDMM_MODE
value: auto
- name: kcSconeMinHeap # env var SCONE_MIN_HEAP
value: 50m
- name: kcSconeHeap # env var SCONE_HEAP
value: 12G
- name: kcSconeStack # env var SCONE_STACK
value: 8M
- name: kcSconelLog # env wvar SCONE_LOG
value: ERROR
- name: kcSconeNetshield # env var SCONE_NETWORK_SHIELD

R R

#H#

env:

value: protected

TEMPORARY application admin user + password used to bootstrap initial setup
MUST HAVE a new admin user added via web management interface and this
removed right after installation

name: kcAdminUser # env var KC_BOOTSTRAP_ADMIN_USERNAME
value: temporarybootstrapadmin

name: kcAdminPassword # env var KC_BOOTSTRAP_ADMIN_PASSWORD
value: $$SCONE: :keycloakbootstrappassword$$

name: kcDbManager # env var KC_DB

value: mariadb

name: httpPort # env var KC_HTTP_PORT. localhost service
value: 30080
name: httpsPort # env var KC_HTTPS_PORT. Public service

value: 30443

name: imagePython

value: registry.scontain.com/sconecuratedimages/experimental/python:3.10-
pkcsandcas-5.9.0-rc.11

name: suffixPkcsSession

value: aux-2

# cloud object storage
# MinI0 environment vartiables have default values, but need to be setup by design
- service: minio

name: sconeHashMinio

value: 1d9e2c61a12e2997d008238ee106824650e6c8e20ee24d053£dab68cb0109600
name: sconeMiniolmage

value: registry.scontain.com/sconecuratedimages/experimental/minio:master-
alpine3.21-sconectl-5.9.0-831-g2f59cb75a

name: sconeMinioImageUnderline

value: registry_scontain_com_sconecuratedimages_experimental_minio_master_
alpine3_21_sconectl_5_9_0_831_g2f59cb75a

name: mnSconeHeap # env var SCONE_HEAP

value: 7G

name: mnSconeAllowDl0Open # env var SCONE_ALLOW_DLOPEN
value: 1

name: mnSconelog # env var #SCONE_LOG

value: ERROR

name: mnSconeNetshield # env var SCONE_NETWORK_SHIELD

value: protected
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#H#

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name: sconeHashPythonLithops
: b5dc3e21b285878826efa64c34ede05c8ae93684c5397698b7701d1c14del0cc

value
name:

mnRootUser
minioroot
mnRootPassword

mnRootUserFile
access_key
mnRootPasswordFile
secret_key
mnDataDirVolume
/minio-data
mnMcConfigDir
/minio-data/.mc
mnAccessKeyFile
access_key
mnSecretKeyFile
secret_key
mnKmsSecretKeyFile
kms_master_key
mnConfigEnvFile
config.env
mnServicePort
9000
mnConsolePort
9001
mnServiceAddress
:9000
mnConsoleAddress
:9001

# Lithops singularity
- service: lithops
env:

sconeLithopsImage

# env wvar
# env wvar
$$SCONE: :minioadminpassword$$

# env wvar
# env wvar
# path to
# env wvar
# env wvar
# env wvar

# env var

# env var

MINIO_ROOT_USER

MINIO_ROOT_PASSWORD

MINIO_ROOT_USER_FILE

MINIO_ROOT_PASSWORD_FILE

mounted wvolume

MC_CONFIG_DIR

MINIO_ACCESS_KEY_FILE
MINIO_SECRET_KEY_FILE
MINIO_KMS_SECRET_KEY_FILE
MINIO_CONFIG_ENV_FILE
Kubernetes service settings
Kubernetes service settings
value for parameter --address

value for parameter --console-address

NEARDATA
RIA

value: registry.scontain.com/sconecuratedimages/experimental/lithops:3.6.1-

metaspace-5.9.0-239-g941a371d1
name: sconelLithopsImageUnderline

value: registry_scontain_com_sconecuratedimages_experimental_lithops_3_6_1_

metaspace_5_9_0_239_g941a371d1

name:
value
/sbin

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

name:

value:

pathLithops

: "/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:

:/bin"

1tSconeEdmm
auto

1tSconeMinHeap
50m

1tSconeHeap
7G

1tSconeAllowD10pen
1

1tSconelog
ERROR

1tSconeMode
SIM

# env var

# env var

# env var

# env var

# env var

# env var

SCONE_EDMM_MODE

SCONE_MIN_HEAP

SCONE_HEAP

SCONE_ALLOW_DLOPEN

#SCONE_LOG

SCONE_MODE
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- name: ltSconeFork # env var SCONE_FORK
value: 1
- name: ltSconeForkOs # env var SCONE_FORK_O0S
value: 1
- name: ltSconeSysLibs # env var SCONE_SYSLIBS
value: 1
- name: ltSconeNetshield # env var SCONE_NETWORK_SHIELD

value: protected

- name: 1tPythonGil # env var PYTHON_GIL
value: 0

- name: ltKubeReplicas # YAML: lithops_server: replicaCount:
value: 6

- name: ltKubeRequestsMem # YAML: resources: requests: memory:
value: 16Gi

- name: ltKubeRequestsCpu # YAML: resources: requests: cpu:
value: 12

- name: ltKubeLimitsMem # YAML: resources: limits: memory:
value: 24Gi

- name: ltKubeLimitsCpu # YAML: resources: limits: cpu:
value: 20

- name: rabbitmqUser # command line argument im URL amqp://
value: $$SCONE: :rabbitmquser$$

- name: rabbitmqPassword # command line argument in URL amgp://
value: $$SCONE: :rabbitmgpassword$$

- name: rabbitmgServerPort # command line argument in URL amgp://
value: 10.36.152.162

- name: rabbitmqUrl # command line argument in URL amqp://

value: test

services:

- name: keycloak
image: registry.scontain.com/sconecuratedimages/experimental/keycloak:26-
alpine3.20-sconectl-5.9.0-rc.5

- name: mariadb
image: registry.scontain.com/sconecuratedimages/experimental/mariadb:10.4.24-
sconectl-keycloak-5.8.0

- name: minio
image: registry.scontain.com/sconecuratedimages/experimental/minio:master-
alpine3.21-sconectl-5.9.0-831-g2f59¢cb75a

- name: lithops
image: registry.scontain.com/sconecuratedimages/experimental/lithops:3.6.1-
metaspace-5.9.0-239-g941a371d1

helm_extra_values:
mariadb:
persistence:
enabled: true
existingClaim: kc-horizon-storage-maria-data-pvc
size: 8Gi
mountPath: /var/lib/mysql
accessModes:
- ReadWriteOnce
extraVolumes:
- name: external
persistentVolumeClaim:
claimName: kc-horizon-storage-maria-external-pvc
- name: vartmp
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persistentVolumeClaim:
claimName: kc-horizon-storage-maria-vartmp-pvc
extraVolumeMounts:
- name: external
mountPath: /external
- name: vartmp
mountPath: /var/tmp

The confidential mesh of sevices is installed using/storing CAS configurations in the systems administra-
tor home directory:

sconectl apply --cas-config $HOME/.cas -f mesh.yaml

The mesh YAML manifest is divided in sections:

cas: contains information to reach the CAS server and configurations to use it, trust it based on the key at

"cas_key", and the special feature "mode" which allows two values "SignedManifest" and "Encrypted-Manifest",

that will upload manifests to the cluster either signed or encrypted and will be addressed properly with
by the CAS;

policy: defines policy related configurations. The feature "namespace" represents the session name that
starts the chain of authorized services in a set of policies;

env: environment variables used to setup policies and cluster manifests. They are set up by the parame-
ter "service", that represents the services names that will be managed (e.g. service: mariadbetc.). A
special "service: global" is used to setup variables used by SCONECTL core mechanisms and also
by the services. Each variable is placed below the corresponding "service: env:" and defined by the
parameter "name" followed by the parameter "value";

services: a pair of parameters "name" and "image" telling SCONECTL the service name and its corre-
sponding Docker image;

helm_extra_values: consists of paths to values that will be used on cluster manifest files
"values.yaml.template" of each service, used by Helm to generate Kubernetes manifests. Example
inside the file: "claimName: {{ .Values.persistence.existingClaim }}".

The mesh of services[4] installed will have 6 instances of Lithops Singularity, one MinIO serving the system
and the users, one Keycloak + MariaDB identity and access manager supporting the granularity of access at
the levels of authenticated users and their roles. Data at rest, in transit, and in use are protected by the SCONE
mechanisms of encryption, authentication, and attestation.

SCONE CONFIDENTIAL
MESH OF SERVICES

SCONE

=
MaricDB

LITHOPS

Figure 4: Confidential Mesh of Services.

The policies used by the services policies have special syntax placeholders (enveloped between double
curly-brackets, e.g. "{{someplaceholdername}}") that are controlled by SCONECTL to substitute at config-
uration and upload time to CAS. Example from the "lithops.yaml" service policy manifest: PYTHON_GIL:
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"{{1tPythonGil}}", obtained from the mesh.yaml, at "env:
This will setup the environment variable "PYTHON_GIL=0" in the policy file that will be made available to the

program upon attestation.

» service:

lithops » env:

NEARDATA
RIA
» - name: 1tPythonGil »

The policies and cluster manifests settings are embedded in special Docker images prepared for SCONECTL
compatibility. Refer to "mesh.yaml" [transcription above] to learn which environment variables the settings go
to. To ease the reader’s understanding, the policies presented below highlight the most important parts and
show with ". . ." the repeated configurations among them (like the shared configuration below) and the envi-

ronment variables that come from "mesh.yaml".

Shared configuration for services policies: All policies share the same set of configurations below. Access,
security and attestation are managed by SCONECTL:

access_policy: $$SCONE: :access_policy$$

creator:
{{session_creator}}

security: $$SCONE: :security_policy$$

attestation:
- $$SCONE: :attestation_service$$

secrets:
- name: access_policy
import:
session: {{access_policy_name}}
secret: access_policy
cas_url: {{cas.access.cas_url}}
cas_key: {{cas.access.cas_key}}
- name: security_policy
import:
session: {{security_policy_name}}
secret: security_policy
cas_url: {{cas.security.cas_url}}
cas_key: {{cas.security.cas_key}}
- name: SCONE_SESSION_ID_
kind: ascii
value: "{{RANDOM}}"
- name: attestation_service
import:
session: {{image_policy_namel}}

cas_url: {{cas.image.cas_url}}
cas_key: {{cas.image.cas_key}}

secret: mrsigner_mrenclave_versions

Lithops service policies: It is started from the Singularity entry_point.py. It has one parameter pointing
to the RabbitMQ URL, that is filled in with SCONECTL controlled variables and provisioned to the program
upon attestation; it will be hidden from the Operating System when a "ps -ef" is executed, for example, it will

only show the program "python3.13".

services:
# server policy
- name: lithops-singularity

pwd: /app

#ARHH
# application configuration

environment: # generated from service mantfest
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SCONE_NETWORK_SHIELD: {{ltSconeNetshield}}
SCONE_NETWORK_SHIELD_SERVER_1: {{1ltSconeNetshield}}
SCONE_NETWORK_SHIELD_SERVER_1_PORT: TCP:8080
SCONE_NETWORK_SHIELD_SERVER_1_CLIENT_AUTH: $$SCONE::ca_certificate$$
SCONE_NETWORK_SHIELD_SERVER_1_IDENTITY: $$SCONE::server_certificate:privatekey
:pkcs8: pem$$$SSCONE: : server_certificate:crt:pem$$
SCONE_NETWORK_SHIELD_CLIENT_1: {{1tSconeNetshield}}
SCONE_NETWORK_SHIELD_CLIENT_1_DESTINATION: TCP:confidential:9000
SCONE_NETWORK_SHIELD_CLIENT_1_DESTINATION_IP: "x"
SCONE_NETWORK_SHIELD_CLIENT_1_SERVER_AUTH: $$SCONE::ca_certificate$$
SCONE_NETWORK_SHIELD_CLIENT_1_IDENTITY: $$SCONE::client_certificate:privatekey
:pkcs8:pem$$$$SCONE: : client_certificate:crt:pem$$

- name: hello
command: python3.13 hellolithops.py
pwd: /python
environment: # generated from service manifest
SCONE_NETWORK_SHIELD: {{ltSconeNetshieldl}}

- name: multiproc
command: python3.13 multiprocessinglithops.py
pwd: /python
environment: # generated from service manifest
SCONE_NETWORK_SHIELD: {{ltSconeNetshield}}

- name: mboltest
command: python3.13 test-local.py
pwd: /python
environment: # generated from service manifest
SCONE_NETWORK_SHIELD: {{ltSconeNetshield}}

- name: mbolpayload
command: python3.13 process-payload.py
pwd: /python
environment: # generated from service manifest
SCONE_NETWORK_SHIELD: {{1ltSconeNetshield}}

attestation:
- $$SCONE: :attestation_service$$
secrets:

Minio service policies: MinlO receives a parameter indicating the volume to store data and the addresses
to listen for service and for console panel. One additional parameter is passed, "--anonymous", that forces
the MinlO log not to show administrator and password in log output. When executed with "Docker run", for
example, it is shown, which poses a major security threat; therefore, it is explicitly hidden.

services:
HARHH
# server policy
- name: minio
image_name: app_image
command: minio server {{mnDataDirVolumel}}/data --anonymous --address
"{{mnServiceAddress}}" --console-address "{{mnConsoleAddress}}"
environment:
HA#HH
# application configuration
# environment variables necessary and with fized values
MINIO_UPDATE_MINISIGN_PUBKEY: "RWTx5Zr1tiHQLwGO9keckTO0c45M3AGeHD6IvimQHpyRywVW
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GbP1aVSGav"

PATH: "/usr/bin:/usr/local/sbin:/usr/local/bin:
/usr/sbin:/sbin:/bin"

HOME : "/root"

# FSPF environment vartiable for continued operation

SCONE_FSPF_MUTABLE: 1

SCONE_FSS_VERIFICATION_ERROR: eio

SCONE_NETWORK_SHIELD: {{mnSconeNetshieldl}}
SCONE_NETWORK_SHIELD_SERVER_1: {{mnSconeNetshield}}
SCONE_NETWORK_SHIELD_SERVER_1_PORT: TCP:9000
SCONE_NETWORK_SHIELD_SERVER_1_CLIENT_AUTH: $$SCONE::ca_certificate$$
SCONE_NETWORK_SHIELD_SERVER_1_IDENTITY: $$SCONE::server_certificate:privatekey
:pkcs8: pem$$$SSCONE: : server_certificate:crt:pem$$
SCONE_NETWORK_SHIELD_SERVER_2: {{mnSconeNetshield}}
SCONE_NETWORK_SHIELD_SERVER_2_IDENTITY: $$SCONE::server_certificate:privatekey
:pkcs8: pem$$$SSCONE: : server_certificate:crt:pem$$
SCONE_NETWORK_SHIELD_SERVER_2_CLIENT_AUTH: $$SCONE::ca_certificate$$
SCONE_NETWORK_SHIELD_SERVER_2_PORT: unix:/dev/log
SCONE_NETWORK_SHIELD_CLIENT_2: {{mnSconeNetshield}}
SCONE_NETWORK_SHIELD_CLIENT_2_DESTINATION: unix:/run/systemd/journal/dev-log
SCONE_NETWORK_SHIELD_CLIENT_2_SERVER_AUTH: $$SCONE::ca_certificate$$
SCONE_NETWORK_SHIELD_CLIENT_2_IDENTITY: $$SCONE::client_certificate:privatekey
:pkcs8:pem$$$SSCONE: :client_certificate:crt:pem$$
SCONE_NETWORK_SHIELD_CLIENT_2_SERVER_DNS_NAME: confidential

SCONE_NETWORK_SHIELD_SERVER_3: protected
SCONE_NETWORK_SHIELD_SERVER_3_PORT: unix:/var/run/syslog

SCONE_NETWORK_SHIELD_CLIENT_3: protected
SCONE_NETWORK_SHIELD_CLIENT_3_DESTINATION: unix:/var/run/syslog

SCONE_NETWORK_SHIELD_SERVER_4: protected
SCONE_NETWORK_SHIELD_SERVER_4_PORT: unix:/var/run/log

SCONE_NETWORK_SHIELD_CLIENT_4: protected
SCONE_NETWORK_SHIELD_CLIENT_4_DESTINATION: unix:/var/run/log

attestation:
- $$SCONE: :attestation_service$$
pwd: /
images:
- name: app_image
volumes:
- name: set_minio_datadir_volume
path: {{mnDataDirVolume}}
volumes:
- name: set_minio_datadir_volume
secrets:

Keycloak service policies: Keycloak is a large memory-consuming system, hence the memory reserved for
the enclave is a full 16GB of RAM, with additional JVM memory parameters to adjust its execution properly.
There is a second service "pypkcsandcas" that is used for attested execution to generate a PKCS12 credentials
set used by Java applications on SSL connections and used in JDBC URL to connect to MariaDB. The first time
Keycloak starts, it will set the initial configurations in the database. Once done, the systems administrator can
log in to the interface (example keycloak.neardata.eu:30443/admin/master/console/) with the initial user
and password set via KC_BOOTSTRAP_ADMIN_USERNAME and KC_BOOTSTRAP_ADMIN_PASSWORD. Once inside, the
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administrator has to create new user with the admin role and remove this one (as explained above).
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services:
RERHEH
# server policy
- name: keycloak
image_name: app_image
command: java -Dkc.home.dir=/keycloak/bin/../ -Djboss.server.config.dir=
/keycloak/bin/../conf -Djava.util.logging.manager=org.jboss.logmanager
.LogManager -Dquarkus-log-max-startup-records=10000 -cp /keycloak/bin/../1lib/
quarkus-run. jar io.quarkus.bootstrap.runner.QuarkusEntryPoint --verbose start
--hostname={{keycloak_fqdn}} {{kcAdditionalParamsl}}
environment:
HHRHH
# application configuration
# environment wvariables necessary and with fized values
KEYCLOAK_HOME: /keycloak
KC_HTTPS_CERTIFICATE_FILE: /tls/keysrv.crt
KC_HTTPS_CERTIFICATE_KEY_FILE: /tls/keysrv-key.pem
PROXY_ADDRESS_FORWARDING: "true"
JAVA_TOOL_OPTIONS: -Xmx{{javaXmxl}}
JAVA_OPTS: '-Xms{{javaXms}} -Xmx{{javaXmx}} -XX:MetaspaceSize={{javaXMetaspace
}} -XX:MaxMetaspaceSize={{javaXMaxMetaspace}} -Djava.net.preferIPv4Stack=true'
JAVA_OPTS_APPEND: -Djboss.as.management.blocking.timeout=7200

SCONE_NETWORK_SHIELD: {{kcSconeNetshield}}

SCONE_NETWORK_SHIELD_SERVER_1: {{kcSconeNetshield}}

SCONE_NETWORK_SHIELD_SERVER_1_PORT: TCP:{{httpsPort}}

SCONE_NETWORK_SHIELD_SERVER_1_CLIENT_AUTH: $$SCONE::ca_certificate$$

SCONE_NETWORK_SHIELD_SERVER_1_IDENTITY: $$SCONE::server_certificate:privatekey
:pkcs8:pem$$$SSCONE: : server_certificate:crt:pem$$

attestation:
- $$SCONE: :attestation_service$$
pwd: /keycloak

HERHH
# auziliary program to register policy with PKCS12 credentials for Keycloak to
# access MartaDB
- name: pypkcsandcas
image_name: transformer_image
command: python3 /python/pkcsandcas.py
pwd: /python
environment:
HRRHH
# program configuration
MARIADB_CLIENT_CERT: "$$SCONE::MARIADB_CLIENT_CERT.crt$s$"
CAS_URL: {{cas.cas.cas_url}}
CAS_SESSION: {{session}}
SFX_PKCS_SESSION: {{{suffixPkcsSession}}}
PKCSPWD: $$SCONE: :MariadbPkcs12Password$$
PKCSALIAS: MARIADB_CLIENT_CERT
PKCSCACRT: /tls/i_mariadb-ca.crt
PKCSCERT: /tls/i_mariadb-client.crt
PKCSCERTPRIV: /tls/i_mariadb-client.key
CASCLICERT: /tls/cert.pem
CASCLIKEY: /tls/key.pem
POLTMPL: /tls/pol.template.yaml
SECRETSTORE: MariadbPkcs12
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attestation:
- $$SCONE: :attestation_service_saver$$

- name: kc-client-userpass
command: python3 kc-client-injection.py
pwd: /python
environment:

- name: kc-loginpage-lt-multiproc
command: python3 kc-multiprocessinglithops.py
pwd: /python
environment:
###
# services tmages: configurations, files and secret injections for each service
# - app_image: Keycloak configurations
# - transformer_image: PKCS gemerator configurations
images:
- name: app_image
injection_files:
- path: /tls/scn-keycloak-ca.crt
content: $$SCONE: :Keycloak CA_Cert.chain$$ # Ezport this sesston's (A
# certificate & chain
- path: /tls/keysrv.crt
content: $$SCONE: :Keycloak_Server_Cert.crt$$
- path: /tls/keysrv-key.pem
content: $$SCONE: :Keycloak_Server_Cert.key$$
- path: /tls/scn-keycloak-client.crt
content: $$SCONE: :Keycloak_Client_Cert.crt$$
- path: /tls/scn-keycloak-client.key
content: $$SCONE: :Keycloak_Client_Cert.key$$
##t#
# PKCS12 file with client MariaDB credentials used by Java applications
# currently generated by pkcsandcas.py auziliary program
- path: /tls/mariadb.pkcsl2
content: $$SCONE: :Mariadb_Pkcs12:bin$$
volumes:
- name: prodtmp
path: /production/hashes/tmp
- name: transformer_image
injection_files:
##t#
# mariaddb credentials imported
- path: /tls/i_mariadb-ca.crt
content: $$SCONE: :MARIADB_CA_CERT.chain$$
- path: /tls/i_mariadb-client.crt
content: $$SCONE: :MARIADB_CLIENT_CERT.crt$$
- path: /tls/i_mariadb-client.key
content: $$SCONE: :MARIADB_CLIENT_CERT.key$$
- path: /tls/pol.template.yaml
content: |
name: POLNAME
version: "0.3.10"
access_policy:
read:
- CREATOR
update:
- CREATOR
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security:
attestation:
tolerate: [debug-mode, hyperthreading, outdated-tcb,
insecure-configuration, software-hardening-needed]
ignore_advisories: "x"
secrets:
- name: SECRETSTORE
kind: binary
value: KEYBIN
export:
- session: EXPSESS
volumes:
- name: prodtmp
path: /production/hashes/tmp
secrets:

- name: attestation_service_saver
import:
session: {{image_policy_namel}}
secret: mrsigner_mrenclave_versions
cas_url: {{cas.image.cas_url}}
cas_key: {{cas.image.cas_key}}
- name: MARIADB_CA_CERT
import:
session: {{namespace}}/secrets
secret: MARIADB_CA_CERT
- name: MARIADB_CLIENT_CERT
import:
session: {{namespacel}}/secrets
secret: MARIADB_CLIENT_CERT
- name: MARIADB_CLIENT_KEY
import:
session: {{namespacel}}/secrets
secret: MARIADB_CLIENT_KEY
#t#
obtained from the attested program pkcsandcas.py, which gets client
credentials from MariaDB, makes a PCKCS12 and uploads onto the CAS
under the sesstion: {{namespacel}-{{{suffizPkcsSession}}}
- name: Mariadb_Pkcsl2
import:
session: {{namespace}}-{{{suffixPkcsSession}}}
secret: MariadbPkcsl2
volumes:
- name: prodtmp

R R

MariaDB service policies: The database supporting Keycloak is also prepared in confidential computing.
The sharing with Keycloak policies of the database client credentials, that is automatically generated by CAS,
allows for the subsequent generation of PKCS12 credentials done by the auxiliary attested application as initial-
ization container in Keycloak cluster setup. MariaDB’s administrative root’s user password is also generated
automatically by CAS. The complete installation takes 3 phases: database bootstrap, without any external ac-
cess; initial users and schemes setup, to create users and databases; and startup with network support. This
process is done only once; the next time the system is started, it will directly load the database server.

services:
#H###
# server policy
- name: db

image_name: db_image
command: mysqld --innodb-use-native-aio=0 --innodb-flush-method=fsync
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attestation: $$SCONE::attestation_service_usr_bin_mysqld$$

pwd: /

environment:
MYSQL_ROOT_PASSWORD: "$$SCONE: :MYSQL_ROOT_PASSWORD$$"
MYSQL_ALLOW_EMPTY_PASSWORD: "" # Empty means 'false', anything else 'true'
MYSQL_RANDOM_ROOT_PASSWORD: "" # Empty means 'false', anything else 'true'

SCONE_NETWORK_SHIELD: unprotected
SCONE_NETWORK_SHIELD_SERVER_1: protected

- name: bootstrap
image_name: bootstrap_image
command: mysqld --bootstrap --basedir=/usr --datadir=/var/lib/mysql
--log-warnings=0 --plugin-dir=/usr/lib/mariadb/plugin --innodb-use-native-aio=0
--user=mysql --max_allowed_packet=8M --net_buffer_length=16K
--default-storage-engine=innodb
attestation: $$SCONE::attestation_service_usr_bin_mysqld$$

pwd: /

environment:
MYSQL_ROOT_PASSWORD: "$$SCONE: :MYSQL_ROOT_PASSWORD$$"
MYSQL_ALLOW_EMPTY_PASSWORD: "" # Empty means 'false', anything else 'true'’
MYSQL_RANDOM_ROOT_PASSWORD: "" # Empty means 'false', anything else 'true'’

SCONE_NETWORK_SHIELD: protected
- name: db_before_setup

image_name: db_image

command: mysqld --innodb-use-native-aio=0 --innodb-flush-method=fsync
--skip-networking

attestation: $$SCONE: :attestation_service_usr_bin_mysqld$$

pwd: /

environment:
SCONE_LOG: debug
SCONE_NETWORK_SHIELD: protected
SCONE_NETWORK_SHIELD_UNSUPPORTED_PROTOCOLS: refuse
SCONE_NETWORK_SHIELD_SERVER_1: protected

- name: create_user
image_name: mysql_client_setup_image

command: ["mysql", "-e", "source /etc/create-user.sql;"]
attestation: $$SCONE::attestation_service_usr_bin_mysql$$
pwd: /

environment:

SCONE_LOG: debug

# Only explicitly configured connections are permitted, all others are refused
SCONE_NETWORK_SHIELD: protected

SCONE_NETWORK_SHIELD_UNSUPPORTED_PROTOCOLS: refuse
SCONE_NETWORK_SHIELD_CLIENT_1: protected

images:
- name: mysql_client_setup_image
injection_files:

- path: /etc/create-user.sql
content: {{{sqlInitScript}}}

- name: bootstrap_image
volumes:

- name: encrypted_datadir_volume
path: /var/lib/mysql
update_policy: no_rollback_protection

- name: var_tmp
path: /var/tmp
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- name
volu

inje

secrets:

impo
se

se

- name
impo
se

se

- name
impo
se

se
volumes:
- name
- name
- name

- name:
kind:
size:

- name:
kind:
size:

- name:

update_policy: no_rollback_protection

name: external_datadir_volume

path: /external

update_policy: no_rollback_protection

: db_image

mes :

name: encrypted_datadir_volume

path: /var/lib/mysql

update_policy: no_rollback_protection

name: var_tmp

path: /var/tmp

update_policy: no_rollback_protection

name: external_datadir_volume

path: /external

update_policy: no_rollback_protection

ction_files:

path: /etc/my.cnf

content: {{{etcMyCnf}}}

path: /etc/keys.txt

content: "1;$$SCONE: :mysql_encryption_keyl6.hex$$;$$SCONE: :mysql_encryption
_key32.hex$$"

path: /etc/mariadb-ca.crt

content: $$SCONE: :MARIADB_CA_CERT.chain$$

path: /etc/server.crt

content: $$SCONE: :mariadb.crt$s$

path: /etc/server.key

content: $$SCONE: :mariadb.key$$

path: /etc/client.crt

content: $$SCONE: :MARIADB_CLIENT_CERT.crt$$

path: /etc/client.key

content: $$SCONE: :MARIADB_CLIENT_CERT.key$$

mysql_encryption_keyl6
binary

16
mysql_encryption_key32
binary

32

MYSQL_ROQOT_PASSWORD

rt:

ssion: {{session_secrets}}
cret: MYSQL_ROOT_PASSWORD
: mariadb-key

rt:

ssion: {{session_secrets}}
cret: mariadb-key

: mariadb

rt:

ssion: {{session_secrets}}
cret: mariadb

: encrypted_datadir_volume
: var_tmp
: external_datadir_volume

RIA

SCONECTL is a great choice to manage the confidential mesh of services lifecycle; it will keep the poli-
cies up-to-date and the secrets fresh. All configurations have been made available at https://github.com/
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neardata-eu/scone-artifacts/.
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5 Final Release of the Data Broker

This section describes the components of the Data Broker. To describe these components, we will utilize the
Software Design Specification (SDS) standard (IEEE Standard 1016), which will help us explain their purpose
and function, as well as their position within the high-level architecture. This section focuses exclusively on
components that control data access and provide security measures within NEARDATA.

Since we have made slight changes to the template used to describe our tools compared to previous
projects, we will first summarize the adopted methodology. Next, we will describe each component, its main
functionalities, and its high-level architecture. Finally, we will provide a detailed description of the activities
performed and the enhancements introduced in the final release of the tools over the last twelve months of the
project. A specific subsection is dedicated to analysing the performance evaluation. The second release of the
tools.

Identification | The unique name for the component and its location in the system
Type A module, a subprogram, a data file, a control procedure, a class, etc.
Function and performance requirements implemented by the design component,
Purpose including derived requirements. Derived requirements are not explicitly stated
in the SRS, but are implied or adjunct to formally stated SDS requirements.
What the component does, the transformation process, the specific inputs
Function that are processed, the algorithms that are used, the outputs that are produced,
where the data items are stored, and which data items are modified.
High level The internal structure of the component, its constituents, and the functional
Architecture requirements satisfied by each part.
How the component’s function and performance relate to other components.
How this component is used by other components.
D : The other components that use this component.
ependencies I ) ) . . ..
nteraction details such as timing, interaction conditions
(such as order of execution and data sharing), and responsibility for creation,
duplication, use, storage,and elimination of components.
Detailed descriptions of all external and internal interfaces as well as of any
mechanisms for communicating through messages, parameters, or common data
Interfaces areas. All error messages and error codes should be identified. All screen formats,
interactive messages, and other user interface components (originally defined
in the SRS) should be given here.
For the data internal to the component, describe the representation method,
Data initial values, use, semantics, and format. This information will probably be
recorded in the data dictionary.
2?3?;1?; ¢ A summary of the new features introduced during
Rel Y1 within the NEARDATA project.
elease
2}1311?2;};1 A description of the implemented improvements in the service to achieve the first
release of the runtime environment.
Release
Release Version . . .
& Repositor The software version released and the repository from where it can be down-
P y loaded.

Table 8: Final Release of the Data Broker

5.1 Data Broker and Security Mechanisms

The security mechanisms and tools presented here offer a range of protective measures to ensure confidential-
ity, integrity, and freshness when applied within the context of NEARDATA.
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5.1.1 Runtime Security

In this section, we will present the different security measures we implemented in order to run applications in
a secure fashion. In order to achieve this, we follow the confidential computing paradigm which focuses on
the protection of applications. Hence, we require that the mechanisms we implement protect the application’s:

1. Confidentiality, i.e., no other entity, like a root user, can read the data, the code, or the secrets of the

application in memory, on disk or on the network,

2. Integrity, i.e., no other entity, like the hypervisor, can modify the data, or at least any modifications are

detected in the memory, on disk or on the network, and

3. Consistency, i.e., the application always reads the value that was written last - both in memory as well

as on disk and on the network.

5.1.2 Hardware Support

Currently, there are multiple classes of hardware support for confidential computing available, representing a
significant evolution from the original two-class model. The current mechanisms can be classified as follows.

VM-level protection: Encrypt entire Virtual Machines (VMs) using technologies like AMD SEV-SNP
and Intel TDX

Process-level enclaves: Encrypt individual services or processes inside enclaves (Intel SGX)

Architecture-level realms: ARM’s Confidential Compute Architecture (CCA) introducing dynamic
realms

The Latest Developments in Hardware Technologies (2024-2025)

1. Intel Technologies - 2024-2025 Developments

e TDX Production Rollout: Intel TDX hardware shipments reached production scale in 2024, with

major cloud service providers including Microsoft Azure, Google Cloud, and AWS beginning
widespread deployment [6]. This marks the transition from experimental to enterprise-ready con-
fidential computing infrastructure.

Enterprise Adoption: Unlike the limited adoption seen with SGX, TDX is experiencing rapid up-
take due to its VM-level protection model that requires no application modifications. The technol-
ogy leverages the proven secure arbitration mode (SEAM) architecture while utilizing SGX quoting
enclaves for attestation, creating a hybrid approach that maximizes compatibility [7].

2. AMD Advancements - 2024-2025 Security Updates

* Vulnerability Research and Mitigations: The BadRAM attack demonstrated in 2024 by Chen et

al. exposed fundamental challenges in memory protection, showing how $10 hardware modifica-
tions could compromise SEV-SNP protections. This prompted AMD to release enhanced firmware
updates and additional security guidelines throughout 2024-2025 [8].

SEV-SNP Production Hardening: AMD has focused on strengthening production deployments
with improved attestation mechanisms and enhanced memory integrity checks. The company
has also worked closely with cloud providers to implement additional detection mechanisms for
hardware-based attacks.

3. ARM CCA - 2024-2025

¢ First Commercial Implementations: 2024 marked the first commercial availability of ARM CCA-

enabled processors, with initial deployments in edge computing and mobile applications. The
Realm-based architecture has shown particular promise in IoT and automotive applications where
dynamic security requirements are critical.

Ecosystem Development: ARM has accelerated ecosystem development in 2024-2025, with major
cloud providers announcing support for CCA-based services and multiple OS vendors integrating
Realm support into their platforms. This rapid adoption is driven by the architecture’s flexibility
and standardized approach compared to vendor-specific solutions.
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5.1.3 Encrypted VMs vs. Enclaves

When running applications in untrusted environments such as public clouds, there are usually multiple stake-
holders involved. This includes:

® a host admin that maintains the host Operating System (OS)

® a container/service admin that takes care of the services and the containers.

1. Encrypted VMs Approach In the context of an Al application in NEARDATA, an encrypted VM would
be used to represent, e.g., a worker node performing training or inference. The trusted computing base
would not only include the Al application itself but we would also need to trust:

¢ the operating system and the OS admin and

¢ the container/service admin.

One approach is to execute each container/process in a separate encrypted VM. This would reduce
the size of the trusted computing base (TCB) since the host admin would not be part of the trusted
computing base anymore. However, the container/service admin and the operating system within the
VM and its OS admin would still be part of the TCB.

2. Enclaves Approach In contrast to VMs, enclaves permit us to reduce the size of the trusted computing
base to the application/process itself: we can remove all admins and all code outside of the application
from the trusted computing base. Note that our approach will help to protect the files of an Al applica-
tion and also the network if needed, i.e., a service admin will only see encrypted files and will not know
any application secrets.

3. Realms Approach (ARM CCA) RME introduces a new kind of confidential compute environment called
a realm. Any code or data belonging to a realm, whether in memory or in registers, cannot be accessed
or modified by code or agents outside the TCB:

5.1.4 Isolation and Cooperation

The advantage of the enclave-based approach is that one can protect services from each other. A service has
only access to its own enclave and to its files but not to the data/files of other enclaves.

Using encrypted VMs, one would need to run each service in a separate VM with its own operating system
which increases the TCB as explained above. This would also increase the resource usage since each container
would come with its own operating system which is also impractical in the context of edge devices and their
limiting processing capacity.

SCONE added a new network shield to support confidential service meshes. With the help of our CAS as
part of the Data Broker, which we will explain more in detail later in this document, services of an application
can cooperate and implicitly attest each other via TLS: a service can only establish a TLS connection with
another service of the application if that service executes inside of an enclave, its code was not modified and
the filesystem is in the correct state. This is an important property as it ensures that only trusted collaborator
nodes in federated learning can establish connections to the aggregator node and vice versa.

5.2 SCONE Overview

In order to use Intel SGX, programmers need to download and install the Intel SGX SDK and extend their
application to use the new instructions. In its original design, the framework creators only envisioned the use
of Intel SGX for secret generation, i.e., that only a single function runs within an enclave without any further
communication to the untrusted outside world. However, running an entire process in an enclave imposes the
following challenges:

1. An application running in an enclave cannot perform any system calls such as writing /reading to/from
files or a network socket, etc. If a system call needs to be executed, the enclave execution must be first
paused, the system call is then executed and the application resumed afterwards inside the enclave. This
imposes a huge overhead as applications performing hundreds of system calls per second are constantly.

2. Applications must be instrumented in order to run in an enclave which comprises allocation of enclave
memory, loading program as well as data code into the enclave memory and launching. This is a cum-
bersome task as it requires modifications of all existing applications.
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To avoid these cumbersome tasks, we will base our work on SCONE, a framework that transforms appli-
cations in confidential applications without any developer’s effort.

In a nutshell, SCONE consists of a cross-compiler which adds all the necessary instrumentation as well
as starter code etc. to let the process run in an Intel SGX enclave. The following tables list the advantages of
SCONE compared to the use of the Intel SGX SDK.

® Multi-Platform Binary Support: SCONE has evolved significantly beyond its original Intel SGX focus
with enhanced compatibility. SCONE version 5.7+ now supports both musl as well as glibc-based bina-
ries, dramatically expanding compatibility across Linux distributions including Ubuntu, CentOS, RHEL
(glibc) and Alpine Linux (musl). The platform also mentions future extension to support vendors other
than Intel CPUs such as AMD, ARM etc.

¢ Enterprise Production Scaling: 2024 saw unprecedented enterprise adoption with SCONE being se-
lected as the key framework to provide confidential computation to major projects including Flower
ML, Pravega, and Lithops, demonstrating its maturity for large-scale deployments.

¢ Zero Trust Architecture Integration: In November 2024, SCONE introduced comprehensive Zero Trust
Architecture support, aligning with modern cybersecurity frameworks and enabling seamless integra-
tion with enterprise security policies.

* Confidential Landing Zones: A major 2024 collaboration between Accenture, Intel, and Scontain re-
sulted in the design of confidential landing zones, providing enterprise-grade deployment patterns for
confidential computing in cloud environments.

In short, SCONE is a cross-compiler that adds the necessary instrumentation, starter code, etc. to enable
processes to run in an Intel SGX enclave. It now also supports multiple TEE architectures.

5.2.1 SCONE Runtime

The objective of SCONE is to build and run applications in a confidential environment with the help of Intel
SGX (Software Guard eXtensions). In a nutshell, our objective is to run applications such that data is always
encrypted, i.e., all data at rest, all data on the wire as well as all data in main memory is encrypted. Even the
program code can be encrypted such as the Python code files typically used for Al-based applications. SCONE
helps to protect data, computations and code against attackers with root access.

The aim of SCONE is to make it as easy as possible to secure existing applications such as TensorFlow,
Pytorch, etc. typically used in the machine learning domain. Hence, switching to SCONE is simple as applica-
tions do not need to be modified. SCONE supports the most popular programming languages like JavaScript,
Python - including PyPy, Java, Rust, Go, C, and C++ but also ancient languages such as Fortran. Avoiding
source code changes helps to ensure that applications can later run on different trusted execution environ-
ments. Moreover, there is no risk for hardware lock-in nor software lock-in - even into SCONE itself.

SCONE version 5.7.0 represented a major milestone with stability improvements and a large set of new
features that laid the foundation for modern confidential computing applications:

1. Multi-Platform Binary Support:
® Glibc and Musl Support: SCONE and sconify_image now support both musl as well as glibc-

based binaries, dramatically expanding compatibility across Linux distributions including Ubuntu,
CentOS, RHEL (glibc) and Alpine Linux (musl)

¢ Dynamic Library Loading: Enhanced support for runtime extensions and dynamic library loading
with virtual syscalls for handling dlopen in glibc

¢ ELF File System: Introduction of elf fs for optimized handling of executable files
2. Network Shield Introduction:

¢ Confidential Service Meshes: Added a new network shield to support confidential service meshes,
enabling transparent TLS encryption for applications that don’t support TLS natively

¢ Runtime Extensions: Support for runtime extensions with both glibc and musl platforms

3. Enhanced CAS Features:

¢ Audit Logging: Added enclave identities to audit log for comprehensive security monitoring

¢ Connection Reliability: Implemented reconnect to CAS functionality, keep-alive messages, and
configurable connection timeouts
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¢ Performance Optimization: Improved dynamic library loader and support for position-dependent
executables

SCONE 5.8.0 introduced comprehensive enterprise features focused on governance, security, and opera-
tional excellence.

1. Governance and Access Control:

* Governance Access Policy Rules: Comprehensive access control mechanisms for enterprise de-
ployments

e Session Encryption and Signing: Support for session encryption keypair, multiple session signers,
and session signature verification

® Role-Based Access: Allow pre-configured session creators and signer-based access controls
2. Air-Gapped Operations:

¢ Platform-Based Attestation: Support for air-gapped operations where applications can run without
access to external attestation services

¢ Offline CAS Attestation: Capability to perform attestation in disconnected environments
* Database Integrity: CAS database integrity checks on startup and improved snapshotting algo-
rithms
3. Azure Integration and Cloud Services:
e Azure Key Vault (AKV) Integration: Complete AKV secret backend support including setting and
deleting AKV secrets
* Microsoft Attestation (MAA) Tokens: Enhanced integration with Azure attestation services

* Azure PCCS Cache Support: Support for Azure Platform Configuration and Control Service cache
4. Network Shield Enhancements:

* Unix Sockets Support: Network Shield now supports Unix sockets in addition to TCP connections
e Advanced Logging: Improved Network Shield logging and error codes for better troubleshooting
* Socket Security: Tolerate Insecure Unix Credentials Flag for Enhanced Socket Security

5. DCAP and Attestation Improvements:

¢ DCAP API v4: Support for latest DCAP data models and API versions
® PCK Certificate Management: Automatic PCK certificate renewal and provisioning capabilities

¢ TCB Information: Enhanced platform TCB information exposure and state management
6. Development and deployment:
¢ Binary File System (binary-fs): Enhanced binary-fs support for various applications including

MariaDB, nginx, memcached

¢ Container Images: Addition of numerous curated images including Apache Flink, TensorFlow
Lite, PyTorch, and PHP variants

* Rust Ecosystem: Comprehensive Rust support with multiple version upgrades from 1.57.0 to 1.70.0

SCONE 5.9.0 introduces advanced security features, production optimizations, and enhanced enterprise
capabilities:
1. Advanced Security Features:

® SGX Local Attestation: Added SGX Local Attestation of service enclaves with must_be_sgx_local
attestation capability

¢ Secure Rollback Protection: Implemented secure rollback-protected CAS provisioning for enhanced
security
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¢ REST API Signing: Complete REST API signing with key selection parameters for secure commu-
nications

* Memory Protection: Activated mprotect by default for enhanced memory protection

2. Enterprise Namespace Management:

* Root Namespace: Added default root namespace and namespace_hash for better organization
¢ Namespace Paths: Support for root namespace paths enabling hierarchical secret management

* Audit Trail: Enhanced audit logging with get-audit-log-checkpoints command for compliance
tracking

3. File System and Storage Enhancements:

¢ Authenticated-Only Volumes: New authenticated-only volume files for enhanced data protection
e FSPF Updates: Added fspf_update_policy to main FSPFs (File System Protection Files)
¢ WAL Support: Write-Ahead Logging (WAL) for improved data consistency and recovery
* Migration to Rust: File system service (fss) migration to Rust for improved performance and secu-
rity
4. Production and Performance Optimizations:

¢ Intel SGX SDK Update: Upgraded from Intel SGX SDK 2.20 to 2.23 for latest security and perfor-
mance improvements

* Runtime Metrics: Introduction of comprehensive runtime metrics for monitoring and optimization

e Performance Fixes: Resolved FSPF v1/v2 loading performance regression and optimized system
calls

* Memory Management: Enhanced memory handling with MADV_FREE support and optimized
clock_gettime

5. Container and Cloud Enhancements:

Health Checks: Added container healthcheck for CAS, LAS, and PCCS components
Debian 12 Support: LAS images now support Debian 12 as base image

Non-Root Users: Enabled non-root user support for scone.cloud (LAS and CAS)

Docker Integration: Enhanced Docker host checking and configuration validation

6. Development and API Improvements:

* Secret Management: New scone_get_secret_version() API for enhanced secret handling
e Public-Key Secrets: Added public-key secrets to session language 0.3.11

* External Signer Support: Enhanced scone-signer with external signer key support and builtin-
signer argument

¢ Rust Ecosystem: Major Rust upgrade from 1.70.0 to 1.75.0 with improved SGX report verification

7. Azure and Cloud Integration:

e Azure PCCS Configuration: User configuration of Azure PCCS usage for flexible cloud deploy-
ment

¢ Provisioning Enhancements: Added provisioning cas_owner_certificate_chain to CAS attestation
report v4

8. Debugging and Development:

¢ Enhanced Logging: Allow debug and trace logs in production builds for better troubleshooting

¢ Context Switch Mode: Introduction of context switch mode for improved enclave management
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¢ System Call Support: Enhanced system call support including epoll_pwait2 and readlinkat for
injected files

These three versions represent SCONE’s evolution from a research-oriented SGX framework to a production-
ready, enterprise-grade confidential computing platform capable of supporting complex multi-stakeholder
workflows, air-gapped operations, and comprehensive cloud integration while maintaining the highest secu-
rity standards.

In a nutshell, SCONE consists of a cross-compiler which adds all the necessary instrumentation as well as
starter code etc. to let the process run in an Intel SGX enclave, while now extending support to multiple TEE
architectures. SCONE Platform Modernization (2024-2025):

* Next-Generation CAS Features: Enhanced Configuration and Attestation Service with advanced audit
logging and compliance tracking

* Cloud-Native Integration: Streamlined Kubernetes deployment with confidential containers support

* Multi-Stakeholder Workflow Engine: Advanced support for complex federated learning and multi-
party computation scenarios

* Performance Optimization: Significant improvements in enclave initialization and runtime perfor-
mance

In the following, we will present the different SCONE subcomponents, starting with the runtime which
will be added to the binaries through the cross compiler. We then also present the Sconify tool which automates
many steps such as the cross compilation in order to convert a native application into a confidential one. The
section concludes with the CAS, the Configuration and Attestation service which is a service that is used in
order to attest services running in enclaves as well as to perform secret provisioning.

Page 61 of 91



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 9: SCONE Sconify Tool - Evolution and Current Capabilities

Identification SCONE Sconify Tool
T A CLI tool that turns a native Docker image into a confidential image
ype that uses the SCONE runtime
The SCONE sconify tool transforms standard Docker images into confidential
containers by integrating the SCONE runtime. It enables existing applications
to execute securely within hardware-protected enclaves without requiring
code modifications.
The sconify tool performs comprehensive binary transformation and
system integration:
Binary Processing:
¢ Re-links applications with SCONE libc (both glibc and musl variants)
¢ Automatically validates PIE compilation (position independent code)
* Supports native musl and glibc-based images with automatic detection
* Enhanced language support: C, C++, Python, Java, Go, Node js, Rust,
and JavaScript
¢ Improved Go support with both gec-go and standard Go compiler detection
¢ Intelligent interpreter replacement for runtime environments
Advanced System Integration:
* Automatic dependency resolution with enhanced library detection
* Comprehensive filesystem encryption with region-based protection policies
¢ Binary filesystem (binary-fs) support for optimized executable handling
* Network Shield integration for confidential service mesh capabilities
Modern DevOps Integration:
¢ Enhanced Dockerfile generation with multi-platform support
¢ Automated SCONE policy generation and CAS submission
¢ Advanced Helm chart generation for Kubernetes deployment
* Support for air-gapped operations and governance policies
The sconify tool operates as an advanced CLI tool with enterprise integration

Purpose

Function

native image

on trustedhost

High level
Architecture SCONIFY IMGE

>
confidential imag ":,'l:' helm cha

The sconify tool is distributed as a containerized solution with comprehensive
dependency management:

¢ Complete Docker image packaging with all required libraries

e Support for both Intel SGX SDK 2.23 and legacy versions

¢ Integrated Rust toolchain (1.75.0) for enhanced performance

¢ Multi-architecture support for x86_64 and future ARM compatibility
Multi-modal interface support:

¢ Enhanced CLI with comprehensive argument file support and escaping
Interfaces ¢ REST API integration for automated DevOps pipelines

¢ Kubernetes operator integration for cloud-native deployments

* Direct CAS integration for policy and secret management

The SCONE runtime uses SCONE policies as well as Environment
variables to configure the application correctly.

Dependencies

Data

Continued on next page
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Table 9 Continued from previous page
Identification SCONE Sconify Tool
The first release of the SCONE runtime regarding NEARDATA includes the
following improvements:
created first draft/implementation of the network shielding layer,
improved performance with regards to system call behaviour,
integration with the latest version of CAS.
SCONE sconify tool evolution (5.7.0 - 5.9.0) represents a comprehensive
transformation into an enterprise-grade confidential computing platform:
Version 5.7.0 Breakthroughs:
¢ Universal glibc/musl binary support enabling cross-platform deployment
* Network Shield integration for confidential service mesh architectures
¢ Enhanced dynamic library loading and runtime extension capabilities
Version 5.8.0 Enterprise Features:
* Comprehensive governance and access control mechanisms
¢ Air-gapped operation support with platform-based attestation
* Azure cloud integration (AKV, MAA) and enterprise DevOps workflows
¢ Advanced container image support and curated application templates
Version 5.9.0 Production Excellence:
¢ Advanced security with SGX Local Attestation and rollback protection
¢ Enterprise namespace management and hierarchical organization
¢ Rust migration for enhanced performance and memory safety
* Production-ready health checks and operational capabilities
The tool now supports comprehensive enterprise deployments with advanced
security, governance, and operational features essential for mission-critical
confidential computing applications.
Current Version: SCONE 5.9.0 (Latest Stable)
Previous Versions: 5.8.0, 5.7.0 (Major feature releases)
Repository Access:
¢ Official Documentation: https:/ /sconedocs.github.io/
¢ Docker Registry: registry.scontain.com/
* Azure Marketplace: SCONE Confidential Computing Platform
Release Version | ¢ Public CAS Instances: 5-9-0.scone-cas.cf (Production)
& Repository Release Channels:
e Stable: Production-ready releases with enterprise support
* Edge: edge.scone-cas.cf (Latest nightly builds for testing)
Enterprise Support:
¢ Commercial licenses available through Scontain UG
* Community version available for development and evaluation
¢ Integration support for Azure, AWS, and Google Cloud platforms

Summary of the
First Release

Summary of the
Final Release

Detailed Description of Activities for the Final Release

The latest release of the SCONE Sconify Tool (version 5.9.0) represents a significant evolution, transforming
the platform from version 5.6.0 into an enterprise-grade confidential computing solution. The development
journey began with the establishment of critical foundational capabilities, including support for DCAP quote
generation, compatibility with simulated mode on AMD chips and enhanced runtime stability with improved
logging mechanisms. This baseline version introduced vital security features, including attestation vulnerabil-
ity options, complete image encryption capabilities and Helm chart parameter overriding. It also supported
progress bar indicators and comprehensive standardised host testing frameworks, forming the technical basis
for subsequent major enhancements.

Version 5.7.0 marked the first major breakthrough by implementing universal binary compatibility sup-
porting both glibc and musl libraries, eliminating the platform lock-in that had previously limited enterprise
adoption across diverse Linux distributions. This release introduced the revolutionary Network Shield tech-
nology, enabling legacy applications without native TLS support to participate seamlessly in confidential ser-
vice meshes, while enhancing dynamic library loading with virtual syscalls for dlopen functionality in glibc
environments. The development team also implemented ELF filesystem support for optimized executable
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handling, automatic CAS reconnection with keep-alive mechanisms, and comprehensive runtime extensions
that significantly improved reliability and performance for production workloads.

The enterprise integration phase, version 5.8.0, focused on addressing complex organizational require-
ments by architecting a comprehensive governance framework featuring role-based access controls, session
encryption and signing capabilities, and extensive audit logging mechanisms essential for regulated industries.
This release implemented groundbreaking air-gapped operations support with platform-based attestation for
high-security environments, developed extensive Azure cloud integration including Key Vault backend and
Microsoft Attestation service compatibility, and enhanced container orchestration with advanced Helm chart
generation and Kubernetes operator integration. The development team significantly expanded language sup-
port to include the comprehensive Rust ecosystem with multiple version upgrades, improved Go compiler de-
tection beyond gcc-go limitations, and introduced sophisticated container image templates including Apache
Flink, TensorFlow Lite, and various curated application frameworks.

The latest phase, version 5.9.0, achieved production excellence by implementing advanced security archi-
tectures including SGX Local Attestation and secure rollback-protected provisioning, developing hierarchi-
cal namespace management with root namespace support enabling enterprise-scale organization and access
control, and migrating core file system services to Rust for enhanced memory safety and performance opti-
mization. This release integrated Intel SGX SDK 2.23 with production-ready health checks and comprehensive
operational monitoring, enhanced binary filesystem support with authenticated-only volume capabilities and
Write-Ahead Logging, and introduced runtime metrics for comprehensive performance analysis. The cumula-
tive evolution from version 5.6.0 through 5.9.0 transformed the SCONE Sconify Tool from a research-oriented
SGX transformation utility into a comprehensive enterprise-grade confidential computing platform capable of
supporting mission-critical deployments with sophisticated governance mechanisms, multi-cloud integration,
advanced security features, and operational excellence while maintaining full application compatibility and
performance characteristics essential for large-scale enterprise adoption.

Identification SCONE Cross Compiler

Identification SCONE Cross Compiler

Tvpe A comprehensive CLI tool that compiles source code into confidential applications
yP with advanced multi-platform and multi-architecture support

The SCONE cross compiler enables application developers to compile source code
for confidential execution within TEEs, automatically integrating necessary
instructions for Intel SGX, with future support for Intel TDX and AMD SEV-SNP
architectures.

Purpose

The cross compiler performs comprehensive source code compilation with enhanced
capabilities:

Language Support:

* C/C++ with enhanced optimization for performance

¢ Fortran for scientific computing applications

* Go with both gccgo and standard compiler support

* Rust with integrated toolchain (v1.75.0) for memory-safe applications
¢ Python through interpreter compilation and filesystem protection

¢ JavaScript/Node.js for web-based applications

Advanced Features:

¢ Automatic starter code injection for enclave initialization

* Enhanced memory management optimization

* Multi-threading support for parallel processing

¢ Cross-compilation for heterogeneous architectures

¢ Integration with SCONE’s Network Shield for secure communication
Compilation Optimizations:

¢ Position Independent Executable (PIE) code generation

* Enhanced dynamic library linking capabilities

* Optimized binary generation for enclave environments

* Support for both static and dynamic linking strategies

Function

The cross compiler operates as an advanced CLI tool with enterprise integration
capabilities, supporting modern development workflows and multi-platform
deployment requirements across diverse computing infrastructure.

High level
Architecture
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Identification

SCONE Cross Compiler

Dependencies

Enhanced dependency management for complex development requirements:
* Docker-based packaging with comprehensive library support

¢ Intel SGX SDK 2.23 integration for latest hardware capabilities

* Universal musl and glibc support for diverse Linux distributions

* Rust toolchain integration for memory-safe applications

¢ Cross-platform compilation tools for ARM and x86_64 architectures

¢ Standard development libraries and framework integration support

Interfaces

Multi-modal interface support for modern development ecosystems:

¢ Enhanced CLI with comprehensive build system integration

¢ IDE plugin compatibility for popular development environments

¢ CI/CD pipeline integration for automated confidential application builds

¢ Integration with SCONE sconify tool for end-to-end deployment workflows

Data

Advanced data handling for secure compilation requirements:
* Source code protection during compilation process

* Secure artifact generation with integrity verification

® Build cache management for large-scale project compilation
* Encrypted intermediate file handling for sensitive codebases

Summary of the
First Release

Initial SCONE cross compiler (pre-5.7.0) provided fundamental compilation
capabilities with basic SGX support. Key features included:

* Limited language support (primarily C/C++ and basic Python)

* Basic musl library integration with manual dependency management

¢ Simple Go support restricted to gccgo compilation

¢ Basic enclave memory allocation without optimization

¢ Manual build processes without automation capabilities

Summary of the
Final Release

SCONE cross compiler evolution (5.7.0 - 5.9.0) represents comprehensive
advancement in confidential computing compilation capabilities:

Version 5.7.0 - Foundation Enhancement:

¢ Universal glibc/musl support enabling cross-platform deployment

¢ Enhanced Go compiler support beyond gecgo limitations

* Dynamic library optimization and virtual syscall integration

* Improved runtime extension capabilities

Version 5.8.0 - Enterprise Integration:

¢ Advanced build system integration supporting large-scale projects

¢ Comprehensive Rust toolchain with multiple version upgrades (1.57.0 to 1.70.0)
¢ Enhanced optimization flags for performance-critical applications

¢ Integration with governance frameworks for enterprise development
Version 5.9.0 - Production Excellence:

¢ Intel SGX SDK 2.23 integration with latest hardware optimizations

¢ Advanced memory management for large application compilation

¢ Enhanced cross-compilation capabilities for diverse architectures

¢ Production-ready build artifacts with comprehensive integrity verification
¢ Rust toolchain upgrade to version 1.75.0 with enhanced capabilities

The compiler now supports complete enterprise development lifecycle from
secure application development to production deployment across distributed
computing infrastructure.
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Identification SCONE Cross Compiler
Current Version: SCONE Cross Compiler 5.9.0 (Latest Stable)
Repository Access:

Release Version
& Repository

* Docker Registry: registry.scontain.com:5050/sconecuratedimages/crosscompiler
* Documentation: https:/ /sconedocs.github.io/crosscompiler/

* Azure Marketplace: SCONE Confidential Computing Platform
Key Features:

¢ Pre-configured development environment with all dependencies
* Multi-architecture compilation targets (ARM64, x86_64)

* Comprehensive language support with optimized toolchains

¢ Enterprise-grade build artifact generation

Integration Capabilities:

¢ Seamless integration with SCONE runtime and sconify tool

¢ Support for modern DevOps workflows and CI/CD pipelines

¢ Compatible with enterprise development environments

* Production-ready confidential application compilation

Table 10: SCONE Cross Compiler - Evolution and Current Capabilities
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Identification

SCONE Sconify Tool

Type

A CLI tool that transforms a native Docker image into a confidential image
that uses the SCONE runtime, enabling confidential computing.

Purpose

The SCONE Sconify Tool modifies existing Docker images so that applications
and processes launched inside the container/image utilize the SCONE runtime,
enabling execution in enclaves and benefiting from TEE support.

As of 5.8-6.0, the tool supports a broader range of base images and

improved integration with SCONE’s policy and attestation services.

Function

The Sconify Tool relinks the SCONE libc and prepares the image for confidential
execution.

Key functions and updates in 5.8-6.0:

- Supports multi-stage Docker builds for more efficient images.

- Expanded language support: Python (3.10+), Nodejs (18+), Java, Go (1.20+),
C, C++.

- Improved detection and handling of runtime dependencies.

- Enhanced policy management: automatic policy generation and tighter
CAS integration.

- Improved secret injection and attestation integration.

- CLI usability improvements and template-based configuration.

Constraints (mostly unchanged):

. All executables must be compiled with PIE (position independent code).

. Original images must be musl or glibc-based.

. Go support is limited to binaries compiled with gcc-go.

. For Node js, the interpreter is replaced with the SCONE curated Node.js.
Additional steps:

. Automatic detection and inclusion of required libraries (e.g., /usr/lib, /lib).
. File system encryption and dependency scanning.

. Generation of Dockerfiles, SCONE policies, and Helm charts.

. Submits policies to attested CAS.

High level
Architecture

The Sconify Tool is a standalone CLI tool, packaged as a Docker image.
It is modularized for extensibility (plugin support added in 6.0),
and communicates with SCONE CAS for policy and attestation.

native image

on trustedhost

SCONIFY IMGE

>
HELM  helm chat
~

Dependencies

Packaged as a Docker image with all dependencies included.
Updated to support Docker, Podman, Buildah (5.8-6.0).
Requires access to SCONE CAS for policy/attestation.
Updated base libraries: OpenSSL 3.x, libc, musl.

Interfaces

Launched as a regular CLI tool on the command line.
Supports declarative configuration files (YAML/JSON) for transformation policies.
Improved integration with CI/CD pipelines

Data

No application data required at build time.
At runtime, secrets and policies are injected via SCONE CAS.

Needed
provement

im-

Extend support for Go-compiled programs (beyond gcc-go) and

libc implementations other than GLibc and musl.

(As of 6.0, Go support is still limited to gcc-go; other libc support remains

a roadmap item.)

Further improvements requested for custom/minimal base image handling.
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Final Release Version: See latest at
https://github.com/SCONEProject/sconify/releases (as of 2025, version 6.0 is curren
Repository: https://github.com/SCONEProject/sconify
Documentation: https://sconedocs.github.io/sconify/

Rel Highlights:
Summary of the e ease Highlights

Final Release,
Release Version
& Repository

- Multi-stage build support, expanded language /runtime support, improved
policy/attestation integration,

- Enhanced CLI, CI/CD integration, modular architecture with plugin support,
updated dependencies.

- For detailed changelogs and migration guides, see the official documentation

and release notes.

Table 11: SCONE Sconify Tool (Updated for Versions 5.8-6.0)
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5.2.2 SCONE CAS (Configuration & Attestation Service)

Identification SCONE CAS (Configuration & Attestation Service)
T A service that provides remote attestation as well as configuration and
ype L . X I . 1
secret provisioning for confidential applications, running within a TEE.
The SCONE CAS acts as a secure database and REST-based service that
Trrrmee manages secrets, performs code attestation, and provisions configurations
for confidential applications. It ensures that only authorized and attested
enclaves can access sensitive data and policies.
The CAS performs the following tasks, with enhancements in 5.8-6.0:
. Code Attestation:
. Configuration Provisioning;:
. Management of SCONE Policies:
. Key Generation & Management:
Function . Secure Secret Provisioning:

. Access Control:

. Encrypted Code Support:

. Isolation:

. Audit Logging:

. Integration with External KMS:

High level Ar-
chitecture

CAS (the Configuration and Attestation Service) is contacted by an application
during its launch procedure. It verifies if the application’s code and data hash
(MREnclave) matches the expected measurement. Upon successful attestation,

it provisions the application with configuration files and secrets (certificates, keys).

Dependencies

CAS needs to establish a connection to an Attestation Service

to verify its own legitimacy and the legitimacy of client enclaves.

Relies on underlying TEE hardware (e.g., Intel SGX; ARM TrustZone and

AMD SEV support for client enclaves; ARM support for CAS is experimental as
of 6.0). Uses updated cryptographic libraries (OpenSSL 3.x, RustCrypto)

and modern container base images. Requires a secure network connection

for client communication.

Interfaces

CAS provides a RESTful interface for the management of SCONE sessions and
application configurations. This includes APIs for policy creation, secret upload,
and attestation requests.

Clients interact with CAS via secure, attested channels (e.g., TLS).

gRPC APIs and OpenAPI/Swagger documentation are available for integration.

Data

CAS stores and manages SCONE policies/sessions, secrets, and configuration
parameters, typically provided in YAML syntax.

This data is protected within the CAS’s TEE.

It does not store application-specific runtime data, only configuration and secrets.
Comprehensive audit logs are maintained for compliance and monitoring.

Needed
provement

im-

Extend support for additional TEEs (e.g., AMD SEV, Intel TDX, ARM CCA)
beyond Intel SGX.

Further enhancements in policy language expressiveness,

performance for large-scale deployments,

and improved support for custom/minimal base images.

Continued improvements for ARM support and cross-platform attestation.
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Summary of the
Final Release,
Release Version
& Repository

Final Release Version: See latest at
https://github.com/scontain/scone-cas/releases

Repository: https://github.com/scontain/scone-cas

Documentation: https://sconedocs.github.io/cas/

Release Highlights:

- Enhanced policy language, improved performance for attestation

and configuration management.

- Modular microservices architecture, clustering, and high availability support.

- Tighter integration with SCONE 6.0’s expanded TEE support for client enclaves.
- Robust key generation, management, and access control features within its own
TEE.

- Support for encrypted code and secure provisioning without source code
changes.

- Improved audit logging, multi-tenancy, and namespace isolation.

- Integration with external KMS and enhanced CLI/SDKs for automation.

SCONE CAS (Configuration & Attestation Service) is a central policy enforcement and attestation service
within the SCONE confidential computing framework. Its primary purpose is to manage and distribute secrets
securely, enforce fine-grained security policies, and perform remote attestation for confidential applications
running in trusted execution environments (TEEs) such as Intel SGX, Intel TDX, and AMD SEV-SNP.

Key functions of SCONE CAS include:

1.

Remote Attestation: Verifies the integrity and authenticity of applications and their execution environ-
ments before releasing sensitive data.

. Policy Management: Stores, enforces, and dynamically updates security policies that control access to

secrets and configuration data.

Secret Provisioning: Securely distributes secrets (e.g. keys, certificates) only to attested and authorized
enclaves, supporting secure workflows without requiring application code changes.

. Access Control: Enforces strict, policy-driven access to secrets and configurations, ensuring only trusted

code can access sensitive resources.

Audit Logging: Maintains comprehensive logs of attestation, policy changes, and secret accesses for
compliance and traceability.

. Integration & Scalability: Offers RESTful APIs, CLI tools, and SDKs for easy integration, and supports

scalable clustered deployments for high availability.

In general, SCONE CAS acts as the trust anchor for confidential computing deployments, ensuring that sen-
sitive data and secrets are only accessible to verified, authorised, and attested workloads, thereby enabling
secure, scalable, and compliant confidential computing in cloud-native environments.
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6 Performance Evaluation: Adversarial Security Experiments

6.1 TEE-based Confidential Computing for Streaming Workloads

The landscape of data streaming has undergone a significant transformation as organizations increasingly pro-
cess sensitive information on distributed platforms. This evolution presents substantial security challenges, as
demonstrated in financial impact assessments in which IBM states a marked increase in security breaches [9].
Organizations face average costs of $ 4.45 million when incidents occur, an increase of 15% compared to pre-
vious measurements. The increasing financial risk creates compelling incentives to implement robust security
measures, particularly in systems that handle sensitive information. Conventional security approaches have
addressed this challenge through layered defenses; however, critical vulnerabilities persist.

Confidential computing is emerging as the definitive solution to close security gaps by addressing lim-
itations of software solutions through hardware-enforced trusted execution environments (TEEs) that pro-
tect data during processing [10]. This technology provides runtime protection for streaming applications
through encrypted memory regions that remain inaccessible to the host operating system, hypervisor, or cloud
provider. In addition, attestation mechanisms verify the integrity of the computing environment before the
actual application starts. These isolation boundaries prevent unauthorized access even with administrative
privileges on the host system.

The financial imperative, combined with evolving regulatory requirements for data protection, makes con-
fidential computing increasingly essential for organizations deploying streaming applications with sensitive
data workloads.

This experiment investigates the performance implications of deploying streaming clients within TEEs for
streaming applications. We focus specifically on Pravega [11], a distributed streaming platform designed for
high-throughput, low-latency data processing, and evaluate its performance when secured using the Secure
CONtainer Environment (SCONE) framework [12], which enables applications to run inside Intel SGX en-
claves [13]. Through rigorous benchmarking using the OpenMessaging Benchmark (OMB) framework [14],
we compare standard Pravega clients, clients running in non-secure environments, against "sconified" clients
running within TEEs across various performance dimensions.

Our work addresses a fundamental issue for secure streaming systems: it seeks to ascertain the precise
latency impact of TEE’s protection on streaming applications and examine the fundamental trade-off between
performance and security when implementing hardware-enforced confidentiality. The proposed system is
designed to preserve the low-latency characteristics essential for real-time streaming workloads.

Our experiment provides a comprehensive set of latency measurements for Pravega streaming clients,
comparing standard execution (non-secured configuration) with secured execution (TEE-protected configura-
tion) in scenarios with varying throughput.

Through detailed performance analysis of producer rates ranging from 100 to 10,000 events per second, we
quantify the variation in TEE overhead with throughput intensity and determine the conditions under which
performance degradation is acceptable for practical deployment. These findings show that, although TEE
protection introduces significant latency at low throughput rates, its impact on performance decreases sub-
stantially as the event rate increases. Our findings enable system architects and developers to make informed
decisions about implementing confidential computing solutions for high-volume streaming environments.

The remainder of this paper is structured as follows: Section 2 provides an overview of the background
and related work. Section 3 describes the experiment, including the metrics and execution details. Section 4
presents and briefly analyzes the results. Section 5 concludes the study.

6.1.1 Methodology

This study relies on benchmarking a Pravega broker (a distributed streaming platform) using various config-
urations for both standard and secured clients. Secured clients refer to clients running in a TEE by using the
SCONE runtime and network shield features (also known as Sconified clients). Standard clients are those that
run without any special security configuration.

The OpenMessaging Benchmark (OMB) [14] is a vendor-neutral benchmarking framework implemented
in Java and supported by the Linux Foundation. Using a Java Virtual Machine that can be run in a TEE, created
by Scontain, allows for the execution of the OMB in a TEE.

Fig. 5 shows the two different types of clients used to benchmark a Pravega system. The Pravega system
runs on a separate server without any specific security configuration. The sconified clients runs in a TEE and
using a Network Shield, which provides encryption and an application-level firewall that denies untrusted
connections.

Further, different configurations are considered to have a better understanding of the impact of sconified
benchmarks:
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Figure 5: Experiment workflow: on the left are the standard and secured (Scone) benchmarking
clients, and on the right there is the Pravega system. Each side is running on a different server. The
clients are running in containers, and the secured one includes Scone’s features such as the network
shield.

* Production rate: 100, 1000 and 10000 events per second.
¢ Security: Standard and Secured.

¢ Event size: 100B, 1KB, 10KB and 100KB. Payload file sizes are generated from the default payload files
in the OpenMessaging Benchmark tool.

Permuting the depicted scenarios and configurations produces 24 total test cases considered in this study.
Each test case is configured with a 1-minute warmup and 5 minutes of benchmarking. The number of event or
messages sent varies depending on the production rate.

Naturally, The OpenMessaging Benchmarking tool produces results that slightly vary for repetitions of the
same test and rarely it produces outliers. We execute each test case 10 times and report the averages to address
variations and outliers in the results.

This section presents a list and brief descriptions of the metrics employed in this experiment. Most of these
metrics are derived from the OpenMessaging Benchmark tool, which generates a JSON-formatted output file
containing various measured and computed variables collected during the benchmarking process.

* Write latency at 50% or 50 percentiles: Publisher write latency at the 50 percentiles (median). Variable
aggregatedPublishLatency50pct.

e Write latency at 75% or 75 percentiles: Publisher write latency at the 75 percentiles. Variable aggregat-
edPublishLatency75pct.

* Write latency at 95% or 95 percentiles: Publisher write latency at the 95 percentiles. Variable aggregat-
edPublishLatency95pct.

¢ Write latency at 99% or 99 percentiles: Publisher write latency at the 99 percentiles. Variable aggregat-
edPublishLatency99pct.

¢ Cumulative distribution function of latencies: A list of values produced of applying the cumulative
distribution function to all the latencies of the benchmark. Variable aggregatedPublishLatencyQuantiles.

* Throughout: Total output data divided by the total execution time in MB per second. ¢

KIO Networks [15], acting as the infrastructure provider in the Neardata European research project, sup-
plied the computing infrastructure for the technical experiments. The infrastructure layer consists of three
servers with the following hardware specifications: Intel® Xeon® Platinum 8458P processors (based on the
"Sapphire Rapids" architecture), 1 TB of RAM, and 20 TB of storage. The virtualization layer hosts the virtual
machines required for the whole project experiments. Fig. 6 illustrates this two-tier architecture infrastructure.

161t was calculated using the total bytes (obtained from a modified version of the OpenMessaging Benchmark) and the
execution time (by resting timestamp before and after the benchmark run, excluding the warm-up period).
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Figure 6: Layered SGX-enable architecture for secure virtualization.

For this experiment, two virtual machines were needed. Table 13 presents the hardware specifications of
these Virtual Machines (VMs). Both VMs run the Linux operating system, and VM 1 includes an Intel SGX
hardware and drivers.

Table 13: Virtual Machines hardware details

VM 1 VM 2
Services Docker and Clients Pravega
Memory 32G 64G
Processor | Intel Xeon Platinum 8458P | Intel Xeon Platinum 8458P
Cores 8 16
Features Intel SGX -
Disk 50G 300G
Extra Disks - 2 SSD: 250G each

The Pravega service deployed in VM 2 is using a standard configuration (no security or encrypting con-
figuration): one Bookkeeper, one Zookeeper, a Pravega controller and segment store that is connected to a
external S3 external storage service.

6.1.2 Benchmarking Performance in TEEs and Standard Environments

The main objective of this study is to evaluate the performance of streaming clients operating in both TEEs and
standard environments. Specifically, we aim to identify the configuration that yields the lowest latency under
various test conditions. As the results demonstrate, the answer depends heavily on the scenario.

Figures 7 and 8 present the cumulative distribution function (CDF) of latencies plots for test cases with
producer rates of 100 and 1,000 events per second, respectively. In both cases, standard clients consistently
demonstrate lower latency than secure clients, around 50% less latency (e.g. in producer rate 100 and event
size 1KB the average write latency at 99% is 3.632ms for non-security and 9.373ms for security environments).
Although the performance gap is evident, both figures reveal a trend: larger event sizes are associated with a
smaller disparity in latencies between the two configurations (e.g. in producer rate 1,000 and event size 100KB
the average write latency at 99% is 59.692ms for non-security and 71.967ms for security environments).

Figure 9 extends this analysis to a higher producer rate (10,000 events per second). It exhibits a similar
pattern, namely, the latency gap between standard and secure clients narrows as the data rate increases (e.g.
in producer rate 10,000 and event size 10KB the average write latency at 99% is 69.577ms for non-security and
78.465ms for security environments).

Notably, in figure 9 in the subplot where the event size is 100KB, the secure client actually achieves lower
latency that its standard counterpart, for the average write latency at 99% is 15,450.847ms for the standard
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Figure 7: Cumulative distribution function of logarithmically scaled write latencies for test cases with
a producer rate of 100 events per second across varying event sizes. The plots indicate that standard

clients exhibit lower latencies compared to secure clients.
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Figure 8: Cumulative distribution function of logarithmically scaled write latencies for test cases
with a producer rate of 1,000 events per second across varying event sizes. The plots indicate that
standard clients exhibit lower latencies compared to secure clients.
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Figure 9: Cumulative distribution functions of logarithmically scaled write latencies for test cases
with a producer rate of 10,000 events per second across varying event sizes. The plots indicate that
for event sizes of 100B, 1KB, and 10KB, standard clients exhibit lower latencies compared to secure
clients. However, for the 100KB event size, secure clients outperform standard ones in terms of
latency.

and 9,632.655ms for the secure environment. This particular test case stands in contrast to the other ones and
suggests that the service may have reached its maximum data throughput capacity under these conditions.

6.1.3 Scenarios Where Secure Clients Outperform

Figure 10 supports the hypothesis outlined in the previous section. Benchmark results for a 100 KB event size
at a producer rate of 10,000 events per second indicate the maximum throughput that the deployed Pravega
service can sustain with the current hardware configuration. While the first three plots illustrate increasing
data throughput, driven by larger event sizes and higher producer rates, the final plot shows an unexpected
outcome: when using 100 KB events, the system transmits less data at 10,000 events per second than it does at
1,000 events per second.

This anomaly suggests a saturation point in the service’s capacity. Interestingly, under these high-load
conditions, the secured client demonstrates superior performance compared to the standard client, contrary
to earlier findings. According to the Scone development team, this can be attributed to Scone’s custom imple-
mentations for multi-threading, busy looping, and memory management. These optimizations occasionally
allow sconified applications to outperform their vanilla counterparts [16, 17].

6.1.4 Latency Differences Between Standard and Secured Environments

Our findings demonstrate that secure clients generally experience higher write latency compared to their stan-
dard counterparts. Quantifying this difference is essential to assess the scenarios in which performance degra-
dation is acceptable, given the security benefits. To this end, we compute the percentage difference in write
latency between standard and secured clients.

Figure 11 visualizes these ratios. In the first subplot, representing a producer rate of 100 events per second,
the average standard write latencies range from 40% to 60% of those observed with secured clients. As both the
producer rate and event size increase, the latency gap widens to approximately 40% to 80% as shown in the
second subplot. In the final subplot, this divergence continues until the Pravega system reaches its maximum
throughput capacity, at which point the results become unreliable.

Executing Pravega clients within a TEE introduces a measurable write latency overhead compared to stan-
dard execution. At a producer rate of 100 events per second, standard clients latency represents around 50%
of the secure clients latency (secure clients latency is around the double of the standard clients latency). When
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Figure 10: Logarithmic scaled throughput (MB per second) results from standard and secured OMB
clients using different producer rates (events per second) and event sizes. The plot shows that stan-
dard clients manage to send more data than the secured ones. The last test case had an exception
(event size of 100 KB and producer rate of 10,000 e/s). Standard and secure clients produce similar
throughput, but it seems like there is a saturation point in the service’s capacity.

the rate increases to 1,000 events per second, the standard client’s latency ranges between 20% and 60% of
its secure counterpart’s latency. At the highest tested rate of 10,000 events per second, the performance gap
further narrows.

These findings are essential for identifying scenarios where the trade-offs of running clients in a TEE, such
as those facilitated by SCONE, are justifiable. One such promising application is the Surgomics use case from
the Neardata European research project. This scenario involves supporting surgeons with real-time video
analytics during operations, where both low latency and high data throughput are critical.

Given the highly sensitive nature of medical data, security becomes paramount, even at the expense of
some performance loss. Our results suggest that, in such high-throughput environments, the performance
degradation introduced by secure execution is limited and may be acceptable when balanced against the ben-
efits of enhanced data protection.

Future research could validate these findings by evaluating other distributed streaming platforms, such
as Apache Kafka and Apache Pulsar, to ensure our conclusions are not specific to this particular implemen-
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Figure 11: Percentile difference between standard and secured latencies. At 100 e/s, the difference
ranges from 40% to 60% . At 1,000 e/s, it increases to 40%—-80% . At 10,000 e/s, the difference remains
similar for small event sizes but rises sharply when Pravega reaches its throughput limit.
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tation. A critical extension would involve Sconified the Pravega server-side components. This investigation
would encompass a comprehensive benchmark assessment of the Sconified Pravega server architecture and
a detailed performance comparison between native and TEE-protected server components. Such an analysis
would provide a comprehensive understanding of the I/O performance implications of deploying SCONE
across both the client and server sides of the Pravega streaming platform.

6.2 Experimental Validation of TEE Security Mechanisms-SinClave: Hardware-assisted Single-
tons for TEE Attestation

This section presents experimental evaluation of advanced TEE security mechanisms critical for NEARDATA
Objective O-3: Provide secure data orchestration, transfer, processing and access. The experiments validate
security enhancements required for the Data Broker service to enable trustworthy data sharing and confi-
dential orchestration of data pipelines across the Compute Continuum. The evaluation specifically addresses
KPI-4: High levels of data security and confidential computing validated using TEEs and federated learning
in adversarial security experiments.

The research addresses fundamental security vulnerabilities in TEE-based distributed systems that directly
impact the Data Broker’s ability to provide secure data orchestration. Four critical attack vectors are examined:
remote attestation bypass attacks exploiting lack of completeness and freshness in measurement processes,
storage rollback attacks targeting persistent state during container restarts, instantiation attacks where ad-
versaries spawn multiple service instances, and end-user trust validation failures in distributed web-facing
services.

These vulnerabilities are particularly critical for federated scenarios where surgical Al systems require
trusted collaboration between hospital networks, and metabolomics research platforms need secure data shar-
ing across pharmaceutical and academic institutions. The Data Broker must ensure comprehensive protection
across runtime attestation, persistent storage, instance control, and end-user validation to meet the stringent
security requirements of healthcare and research applications.

Current remote attestation protocols in TEEs suffer from two critical limitations that undermine federated
learning trust establishment: (1) Completeness - failure to measure all aspects influencing application behavior,
and (2) Freshness - verification only of initial enclave state without detecting runtime modifications. These vul-
nerabilities enable “reuse attacks” where adversaries manipulate enclaves to impersonate legitimate instances
while bypassing attestation protocols.

Comprehensive analysis revealed vulnerabilities across multiple TEE frameworks including SCONE, SGX-
LKL, and Occlum. These frameworks only verify enclave initial state, making them incapable of detecting
dynamically loaded malicious libraries or manipulated configurations that can alter application behavior after
attestation. The fundamental vulnerability lies in the gap between initial measurement and runtime behavior.

Attack Implementation Results: The attack against SCONE-based enclaves successfully exploited the
fact that program file systems are not reflected in enclave measurements. Python applications using identical
interpreters produced indistinguishable enclave measurements, allowing adversaries to substitute malicious
Python programs. The TEE impersonator required only 75 lines of code and successfully obtained user config-
urations by presenting valid SGX reports from the compromised enclave.

The SGX-LKL framework attack leveraged encrypted disk images where attestation occurs before user
code loading. Two different programs running in SGX-LKL appeared identical from SGX attestation perspec-
tive. The attack required 236 lines of Python code for the impersonator and 152 lines of C code for the report
server, demonstrating practical exploitability across multiple TEE frameworks with minimal implementation
effort.

6.2.1 SinClave Protection Mechanism

SinClave introduces a hardware-assisted mechanism that enforces both freshness and completeness in TEE
remote attestation through Singleton Enclaves. This represents the first practical defense against reuse attacks
in TEE frameworks, addressing a previously overlooked vulnerability in remote attestation protocols critical
for establishing trust in federated computing environments.

Attestation Token Innovation: Each enclave instance is uniquely individualized through a cryptographic
attestation token generated by the verifier and embedded during enclave creation. This token ensures that only
one instance of each enclave can be attested, preventing reuse or impersonation attacks that exploit identical
enclave measurements.

Modified Measurement Process: The solution extends the SGX measurement process by incorporating an
instance page containing the attestation token and verifier cryptographic identity. This page is hashed into the
enclave’s MRENCLAVE measurement during construction, enabling verifiers to detect runtime modifications
or reuse attempts. Unlike previous static configuration approaches, SinClave introduces on-demand SigStruct
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creation that maintains both security and flexibility.
6.2.2 Performance Evaluation Results

Cryptographic Performance Impact: SHA-256 computation performance comparison demonstrates the trade-
off between security enhancements and computational throughput. The Ring library baseline achieves approx-
imately 405 MB/s throughput across all buffer sizes. The SinClave implementation yields about 180 MB/s,
representing a 2.25x overhead due to less optimized code implementation. The SinClave-BaseHash variant

shows equivalent performance to the standard implementation for large buffers, but performs better for small
buffers (245 MB/s for 2KB buffers).

[0 SinClave K] SinClave-BaseHash [l Ring

N W

Throughput in MB/s

2K 4K 8K 16K M 32M
Buffer length in Bytes

Figure 12: Calculation of a SHA256 checksum with different implementations

SinClave’s secure, interruptible SHA-256 implementation introduces a 2.25x overhead compared to the
highly optimized Ring library. This is expected due to additional security checks and the need for interrupt-
ibility in TEE contexts. For small buffer sizes, SinClave-BaseHash outperforms the standard implementation,
indicating optimization for certain use cases

Compilation Overhead Analysis: Compilation duration results show that native compilation requires
only 0.033 seconds, while baseline SCONE needs 1.52 seconds, and SinClave requires 6.26 seconds. The 4x
increase over baseline reflects the interruptible SHA-256 implementation overhead during iterative hash com-
putation. SigStruct signing operations take 4.9 ms on average, with verification requiring 0.4 ms. The singleton
page retrieval process adds 26.3 ms to enclave startup, with the majority of time spent on database access and
policy enforcement operations.
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Figure 13: Micro-benchmarks of SinClave.

Application Performance Impact: Real-world application evaluation reveals that SinClave introduces
minimal overhead for practical applications. Python applications show 1.03% overhead (2.43s baseline vs
2.46s with SinClave), OpenVino image classification demonstrates 2.49% overhead (45.2s vs 46.3s), and Py-
Torch CIFAR-10 training exhibits 13.2% overhead (128.7s vs 145.7s). The PyTorch result represents the highest
overhead case, which remains acceptable for applications requiring strong confidentiality guarantees.
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Execution Overhead Analysis: For attested execution modes, the protection mechanism added 132-144.2
ms compared to 36.3-65.9 ms for baseline systems. The overhead variation correlates with enclave heap size
due to cache pressure effects, but remains acceptable relative to total execution times ranging from 258.1 ms
to 5.2 seconds. For non-attested execution modes, SinClave showed overhead within single-digit microsecond
values, confirming that security enhancements do not significantly impact non-security-critical operations.

wun
1

[] Framework [7] Baseline 00|
[0 Hardware B9 SinClave boo
B Attestation pe

o
1

w
1
[e]
O
A

Duration in s
N
8?5‘
3208

a2096268%0
o]
o
ol

=
1

7

[®;
Q

oa
(o] ()()()c)c

O
050
o3

00

ﬂl T T ?D 1 T
32 64 128 256 512 1024 2048
Enclave Heap size in MB

D
b

05959605

o

Figure 15: The performance overhead of SinClave with real-world workloads.

For general-purpose and Al inference workloads (Python, OpenVINO), SinClave introduces minimal over-
head (1-2.5For compute- and memory-intensive machine learning training (PyTorch), the overhead is higher
(13.2%) but remains within the range observed for comparable TEE solutions, especially given SinClave’s
stronger security guarantees

SinClave’s experimental validation is fully aligned with NEARDATA's performance evaluation require-
ments. It demonstrates a strong security—performance tradeoff by providing robust guarantees of freshness,
completeness, and singleton enforcement with minimal overhead, meeting KPI-4. The evaluation is conducted
on representative workloads from domains central to NEARDATA'’s mission, including healthcare, federated
learning, and Al pipelines. Following industry best practices, the study reports both percentage and absolute
overheads, details the hardware and software environment, and benchmarks performance at both micro- and
macro-levels, consistent with NIST and cloud security guidelines. In comparative context, SinClave achieves
overheads of 1.03%-13.2%, which are competitive with or superior to state-of-the-art TEE-based security solu-
tions, while offering a stronger security model through its unique singleton enforcement and comprehensive
attestation.
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6.3 CRISP: Confidentiality, Rollback, and Integrity Storage Protection
6.3.1 Storage Rollback Protection Architecture

CRISP addresses the critical gap where TEE integrity protection does not extend to persistent storage, essential
for federated learning scenarios where frequent container restarts create opportunities for state manipulation
attacks. The Data Broker’s storage protection addresses rollback attacks where adversaries can exploit the
disconnect between TEE memory protection and storage persistence to undermine collaborative trust relation-
ships.

Rollback Attack Threat Model: In federated environments supporting distributed data orchestration, ad-
versaries can access sensitive surgical training data or metabolomics research results, then roll back audit
logs to conceal unauthorized access patterns. Malicious actors within multi-institutional collaborations could
circumvent recently revoked access permissions by reverting authorization databases to previous states, effec-
tively re-enabling terminated access rights. For surgical Al federated learning, attackers could roll back model
training checkpoints to earlier states, potentially degrading collective intelligence while concealing manipula-
tion.

Monotonic Counter Integration: CRISP leverages monotonic counters to bind version information with
write operations through the SCONE runtime, providing cryptographically verifiable storage freshness guar-
antees. The mechanism operates transparently within data orchestration pipelines, incrementing counters on
critical disk synchronization operations including explicit fsync calls, file closure events, and program termi-
nation sequences. The integration embeds counter values directly in storage metadata managed by SCONE'’s
File System Protection Framework (FSPF).

When Data Broker services restart, the SCONE runtime performs automatic integrity verification by com-
paring stored counter values against current monotonic counter state. Any discrepancy indicates potential
rollback manipulation, causing the Data Broker to halt operations and require administrative intervention.
This approach provides local rollback detection without requiring coordination with remote trusted parties,
reducing network dependencies in federated environments.

6.3.2 Optimistic Batching Performance Enhancement

To address performance overhead of frequent counter operations that could impact real-time federated learn-
ing workflows, CRISP introduces optimistic batching that consolidates multiple write operations into single
counter increments. This mechanism is crucial for applications where surgical Al systems require low-latency
data sharing between hospitals, and metabolomics platforms process high-throughput analytical data streams.

The batching mechanism employs a dedicated mc-thread that processes accumulated operations asyn-
chronously, enabling the Data Broker to acknowledge write requests immediately without blocking federated
learning workflows on counter update latencies. The approach introduces a controlled vulnerability window
during batch processing, where recent writes may not yet be rollback-protected. However, this window can
be precisely configured based on application requirements through tunable batch parameters.

6.3.3 Performance Evaluation Results

Raw Disk Performance Analysis: CRISP-protected writes often outperform native execution due to caching
mechanisms in optimistic batching. Write operations are cached in memory-mapped regions and flushed in
larger chunks, reducing context switching overhead and masking encryption costs. For buffer sizes up to
16KB, CRISP maintains competitive throughput with baseline SCONE implementations.

Reading performance shows expected 2-3 x overhead patterns due to CRISP requiring access to multiple
files (data, vault metadata, FSPF metadata) and decryption operations. This overhead reflects the security-
performance trade-off for ensuring data integrity and freshness verification on every read operation.

Raw Disk Performance Analysis

¢ Write Performance: CRISP-protected writes often outperform native execution for small buffer sizes (up
to 16KB). This is due to caching mechanisms in optimistic batching, where write operations are cached
in memory-mapped regions and then flushed in larger chunks. This approach reduces context switching
overhead and masks the cost of encryption.

Native: Baseline performance.
HW: SCONE runtime with Intel SGX hardware protection.
HW+FSPF: SCONE with filesystem protection (FSPF).

MC: CRISP with default monotonic counter configuration.

MC+Rate Limit: CRISP with a 100 ms monotonic counter rate limit.
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Key observation: CRISP (MC) outperforms HW+FSPF and is competitive with native execution for buffer
sizes up to 16KB. For the largest buffer size (32KB), native execution is fastest, but CRISP remains close.

* Read Performance: Reading performance shows a 2-3 x overhead compared to native execution. This is
because CRISP requires access to multiple files (data, vault metadata, FSPF metadata) and must perform
decryption operations. 16demonstrates this overhead, showing that both HW+FSPF and CRISP configu-
rations have significantly lower throughput than native execution. Key observation: The overhead results
directly from the security—performance trade-off: every read operation must verify data integrity and
freshness, which involves additional I/O and cryptographic checks.
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Figure 16: Raw disk performance experiment

Vulnerability Window Control Analysis:

® Checker API Functionality: The Checker API provides blocking mechanisms to ensure that critical
writes are protected by a monotonic counter before applications externalize dependent information.

¢ Performance Impact 17:
— With 1% checker probability, applications experience 31% average throughput compared to unpro-
tected variants, while achieving 77% of native throughput.
— With 10% checker probability, single-threaded applications show performance below encrypted
filesystem variants, indicating the need for careful tuning based on security requirements.

¢ Key Observation (Table II): Table Il reports the average number of £sync calls per batch and the average
batch duration. Increasing the checker probability reduces the vulnerability window but also decreases
throughput, highlighting the trade-off between security and performance.

fo2]
o

HW+FSPF (#205)

HW-+FSPF

(#46))

B
o

—{MC-1%

N
o

(HW+FSPF

MG-10

Write throughput (kByte/s)

[MC-20%

o

Y B )
6\1 '\QrL 'LQB‘% D«Qg% %\c_ﬂ« \62’% Q'L/lﬁ

Buffer size (byte) - log scale

Figure 17: Raw write throughput with various configurations

Production Database Evaluation (MariaDB TPC-C Benchmark)

Page 81 of 91



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

¢ TPC-C Benchmark: The TPC-C benchmark is a standard for evaluating transactional database perfor-
mance. It simulates a realistic OLTP workload with a mix of read and write operations and scales with
the number of warehouses and connections.

e Performance Results 18:

— The optimized CRISP configuration achieves 0.83x native performance while providing compre-
hensive rollback protection.

— The exclusive mc-thread design allows immediate write acknowledgment and processes rollback
protection asynchronously, preventing connection threads from blocking on counter operations.

® Scalability: As workload complexity increases (e.g., more warehouses and connections), CRISP main-
tains consistent scaling characteristics, demonstrating its suitability for high-concurrency, stateful appli-
cations.
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Figure 18: MariaDB TPC-C experiment

Identity Management System Performance (SPIRE Evaluation)
¢ SPIRE Evaluation: SPIRE (SPIFFE Runtime Environment) was evaluated for certificate signing opera-
tions across 25 agents managing 9000 SVID entries each.

* Performance Results 19: With 20% Checker API probability, the system maintains stable throughput
without significant degradation.

* Resource Utilization: CPU utilization patterns remain consistent, indicating that rollback protection
overhead does not create resource bottlenecks for typical identity provisioning scenarios.

MariaDB type Observation type
MC  rrreeee MC-20% checked ™ SPIRE server %CPU = Number of SVID
= = == Native = Backend %CPU signing/second

bis

1000

S

puodas/aledliliad QIAS psu

5000

%CPU usage
'S

200

Figure 19: : Certificate signing throughput with CPU load on the SPIRE server and MariaDB backend
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Multi-Server Scalability Analysis

® Scalability with Multiple Servers (Figure 8): 20 demonstrates the scalability of multiple TEE-equipped
SPIRE servers sharing a single CRISP-enabled MariaDB backend.

* Performance Results: With 10 servers, the average overhead compared to a single native server deploy-
ment is 25%, confirming that storage protection does not become a scaling bottleneck for distributed
architectures.

¢ Scaling Characteristics: The system scales well up to 10 servers, after which performance plateaus,
indicating the backend’s maximum capacity for the given workload.
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Figure 20: Certificate signing throughput on one or more trusted SPIRE servers

The figures and data from the evaluation demonstrate that CRISP provides strong rollback protection and
data security with minimal performance penalties in most scenarios. Its design, including optimistic batching
and asynchronous counter operations, allows it to outperform or match baseline secure implementations (like
SCONE with FSPF) in write-heavy workloads, while maintaining acceptable overheads for read operations
and scaling effectively in distributed, multi-server environments.
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6.4 Last-Level Defense for Instantiation Attack Tolerance
6.4.1 LLD Architecture for Data Orchestration

Building upon the Last-Level Defense (LLD) architecture for application integrity and confidentiality, we
present an enhanced implementation that addresses critical instantiation attacks in distributed data process-
ing environments supporting NEARDATA Objective O-3. LLD’s TEE-supported leases, rollback detection
through monotonic counters, and transparent runtime protection provide essential security mechanisms for
enabling trustworthy data sharing and confidential orchestration of data pipelines, specifically addressing
KPI-4 through high levels of data security and confidential computing validated using TEEs and federated
learning in adversarial security experiments.

Instantiation Attack Threat Model: In compromised environments, attackers can force illegal executions
and start additional instances to interfere with replication and agreement protocols, leading to inconsisten-
cies in replicated data or routing clients maliciously to spurious service instances. Attackers can modify time
perception to use expired authentication codes or certificates, and roll back storage to circumvent access revo-
cations and undo undesired actions.

The LLD Runtime ensures that enclave applications cannot alter their states without authorization by in-
tercepting system calls and verifying execution leases periodically. The LLD Lease Service ensures applications
work as single-instance services, with at most one instance running at any time. The core component is the
LLD Store, an integrity- and rollback-protected replicated state database that keeps leases and guarantees their
integrity and durability.

6.4.2 Instantiation Control Mechanisms

LLD Runtime Protection: The enhanced LLD Runtime implementation extends SCONE’s SGX framework to
provide transparent protection for data processing components across distributed environments. Each data
orchestration workflow component operates within individual TEEs, with the LLD Runtime automatically
enforcing instantiation control through verified execution leases.

The runtime intercepts system calls that may externalize enclave state, performing lease validation before
allowing data processing operations to proceed. This approach prevents Sybil and Fork attacks where adver-
saries spawn multiple instances of data processing services to manipulate aggregation results or compromise
federated learning consensus protocols. The runtime executes every 1 second or whenever a system call that
may externalize internal enclave state occurs.

Trusted Lease Service: The LLD Lease Service manages execution permissions for data processing in-
stances across distributed infrastructure. The service maintains cached lease states for performance optimiza-
tion while ensuring consistency through conditional database transactions that prevent lease conflicts between
multiple service instances. Lease requests comprise an instance ID and timestamp from a trusted time source,
representing when the instance makes the request.

Local Leader Election Protocol: The Local Leader Election protocol ensures single-instance operation for
critical infrastructure components using monotonic counter-based election mechanisms. This prevents instan-
tiation attacks on core data orchestration services while supporting automatic recovery from component fail-
ures. Each monotonic counter has a unique, non-clonable ID, with candidates attempting to increment counter
values using their unique instance identifiers.

6.4.3 Performance Evaluation Results

¢ Introduction to LLD: LLD (Last-Level Defense) is a multi-layered, TEE-augmented framework that pro-
tects applications from Sybil, Fork, and Rollback Attacks—even when adversaries fully control the host,
cloud, or orchestration layer. It leverages secure leases, trusted time, monotonic counters, and a rollback-
protected distributed data store to ensure:
— Only one legitimate application instance operates at a time (instantiation/fork attack resistance).
— Past states cannot be replayed (rollback resistance).

- Confidentiality and integrity are preserved even for unmodified, off-the-shelf applications.
¢ Experimental Setup:

— LLD Store: Dqlite running on 3 Intel NUCs with SGXv2 (hardware monotonic counters).

LLD Lease/Clock Server: High-end server with Icelake-SP processors.
Client: Runs atop LLD.

Monotonic counter latency ~ 40ms per verified write.
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e LLD Store: Rollback and Instantiation Attack Tolerance

— Startup Delay and Leadership Check Overhead Figure 21:

* Measured the overhead of enforcing single-instance leadership with periodic checks (interval
P).

*+ Increasing P (less frequent checks) only marginally affects startup time or work lost.
+ Optimal configuration: P = 1s offers best crash recovery with negligible extra overhead.
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Figure 21: Start-up delay and work lost per period in 3 configurations

— Local Write Performance with Security Layers (Figure 22):

* Tested local writes (64B and 8KB) under four protection scenarios: 0. No protection, 1. TEE-
only integrity, 2. TEE + encrypted/integrity-protected storage, 3. Full LLD (TEE + encryption
+ rollback protection with monotonic counters).

+ Findings:
- Monotonic counters dominate cost for small writes (~40ms/op).

- Encryption adds ~25% overhead for small writes, but is masked for large writes due to
filesystem buffering.

- For large writes, encryption overhead is negligible compared to monotonic counters.
+ Interpretation: While monotonic counters slow frequent small writes, real-world workloads

with batched or larger operations see much less impact.
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Figure 22: Cost of LLD writes with different levels of security

¢ Protecting Off-the-Shelf Services
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- Dqlite Cluster Benchmark (Figure 23):

* 3-node Dqlite cluster, workloads: read-only, 5% write, write-only.

+ Configurations: none, TEE, TEE+encryption, full LLD.

* Findings:
- TEE and TEE+encryption show similar performance.
- Full LLD incurs 43-49% performance loss due to monotonic counter updates.
- However, not every syscall triggers a lease update, so higher-level workloads see less

impact.
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Figure 23: Performance of the Dqlite 3-node cluster with increasing layers of protection measures.

— MariaDB TPC-C Benchmark (Figure ??):
* MariaDB server with TPC-C, five configurations: none, regular TEE, TEE-tuned, TEE-tuned+encryption,
full LLD.
* Findings:
- With tuning (e.g., adjusting thread sleeps/spins, caching), full LLD adds < 12% overhead.
- For I/O-intensive but high-level applications, LLD overhead is well amortized.
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Figure 24: : Performance on TPC-C of MariaDB with increasing levels of security
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This paper presents LLD (Last-Level Defense), a practical and transparent solution to enhance the integrity
and confidentiality of applications running in untrusted environments—such as public clouds—by extending
the guarantees provided by hardware Trusted Execution Environments (TEEs) to resist Sybil, Fork, and Roll-
back Attacks. LLD introduces a novel combination of execution leases, trusted time, and monotonic counters,
enforced through a distributed and rollback-protected database, to ensure that only a single instance of a
trusted application can operate at any time, and that its state remains consistent and fresh. Crucially, LLD
achieves this protection without requiring changes to application code or sacrificing compatibility with stan-
dard cloud orchestration tools, making it suitable for deployment on unmodified, off-the-shelf services and
databases. Performance evaluations demonstrate that, while the use of monotonic counters and trusted lease
checks introduces some overhead—particularly for high-frequency, fine-grained operations—these costs are
amortized in realistic workloads, with less than 12% overhead for complex, optimized applications like Mari-
aDB under TPC-C benchmarks. Aligned with the NearData project, LLD empowers organizations to securely
process and manage sensitive data close to where it is generated, even when the surrounding infrastructure
cannot be trusted. By ensuring that data remain protected against powerful adversaries and that application
integrity is verifiable, LLD supports NearData’s vision for secure, reliable and resilient edge and cloud com-
puting. This work demonstrates that with careful systems design, it is possible to bridge the gap between
strong theoretical security guarantees and practical, scalable, and transparent deployment in real-world envi-
ronments.
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7 Conclusions

The NEARDATA framework has made substantial advancements in its security architecture over the past year,
with a particular emphasis on the NEARDATA Data Broker and its integration with key security tools such as
the SCONE runtime, cross compiler and Sconify image tool. The Data Broker has evolved into a pivotal com-
ponent, orchestrating secure, policy-driven, and auditable data exchanges across distributed environments.
Its advanced capabilities now include fine-grained access control, comprehensive audit logging, and seam-
less integration with authentication and authorization services, ensuring that strict security and compliance
requirements govern all data transactions.

The security toolchain enhancements, spanning the SCONE runtime for confidential execution, the cross-
compiler for enclave-ready builds, and the Sconify image tool for secure containerization, have collectively ex-
panded confidential computing support, improved compatibility across platforms and languages, and strength-
ened both policy management and attestation mechanisms. This integrated approach ensures that sensitive
data is protected at rest, in transit, and in use, and that only authorised, attested services can access or process
data.

These improvements have been rigorously validated in real-world use cases. In the surgical scenario,
the NEARDATA Data Broker enabled confidential federated learning by safeguarding sensitive laparoscopic
video data, thus supporting privacy and regulatory compliance in healthcare. The Data Broker provided ro-
bust confidentiality and integrity guarantees for federated learning workflows, with performance evaluations
demonstrating only modest overhead compared to non-confidential setups. In the metabolomics use case, the
integration of the Confidential Compute Layer into Lithops and MinlO enabled secure, decentralized scientific
computing on cloud platforms, ensuring end-to-end confidentiality from data acquisition through large-scale
analysis.

Performance benchmarks and key performance indicators confirm that NEARDATA’s security enhance-
ments deliver practical and efficient protection for sensitive, distributed applications. The framework now
empowers organizations to confidently develop and deploy solutions that meet the highest standards of con-
fidentiality, integrity, and compliance, while maintaining the flexibility and performance required for modern
edge-to-cloud environments. These achievements provide a solid foundation for ongoing innovation and the
continued expansion of NEARDATA’s security capabilities.
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[[ Use-case/Experiment | KPI [[ Results I
Federated Learning | KPI-4
with SCONE and
Flower Framework ¢ Integrated SCONE with the Flower federated learning framework for secure, privacy-
preserving model training.

® Performance evaluation of a federated learning demo with SCONE showed modest over-
head (10-20% increase in training time per round) compared to vanilla deployments.

® Security KPI validated: confidentiality and integrity of model updates and training data
are enforced, though security is hard to quantify directly.

¢ Initial startup and response times for federated learning functions (e.g., Flower) remain
within practical bounds for real-world use.

Pravega Secure 1/0 | KPI-4
Operations

¢ Evaluated secure input/output operations using a sconified Pravega client in collabora-
tion with DELL.

* SCONE-protected Pravega clients show affordable latency increase (2x) at low through-
put and negligible overhead at high throughput (e.g., 10k events/sec), making it practical
to use in latency-sensitive applications.

Lithops with | KPI-4

SCONE: Simpli-

fied Metabolomics ¢ Integrated the Confidential Compute Layer of the Data Broker into Lithops for spatial
metabolomics annotation.

¢ Tested on an on-premise Kubernetes cluster, confirming secure, decentralized processing
of gigabytes of metabolomics data.

¢ End-to-end confidentiality and integrity maintained throughout the workflow.

Lithops with SCONE: | KPI-4

Keycloak Integrated

Integrated Keycloak as an Identity Provider for Lithops, enabling federated authentica-
tion and policy management.

Demonstrated secure, multi-user access and policy enforcement for serverless scientific
computing.

Table 14: Highlights of main KPIs achieved by the Data Broker and security tool integrations
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[[ Use-case/Experiment | KPI [[ Results I

Federated Learning | KPI-4
with SCONE and
Flower Framework ¢ Training Time Overhead (15%):

- Average training time per round was recorded for both the SCONE-protected

and vanilla federated learning deployments. Overhead was calculated as
Tsecure ~Thaseline ¢ 100, where Tsecure and Thaseline are the average times per round

baseline

in secure and baseline settings, respectively.
¢ Confidentiality (Entropy 0.98):

- Entropy of sensitive files (e.g., model updates, training data) within the TEE was
measured using tools such as ent or openssl. Values close to 1 indicate strong
encryption and minimal risk of data leakage.

e Availability (99.95%):

- Uptime was monitored using Prometheus or cloud dashboards over the evaluation

period, and availability was calculated as % x 100.

Table 15: Federated Learning with SCONE and Flower: Quantitative KPIs and Measurement Meth-
ods

[[ Use-case/Experiment | KPI [[ Results I
Lithops with | KPI-4
SCONE: Simpli-
fied Metabolomics ¢ Native Mode: Mean execution time of 1.774 minutes.

® Sconified (Simulation): Mean execution time increased to 10.046 minutes, approximately
5.662x slower compared to native mode.

® Sconified (Hardware): Mean execution time further increased to 44.963 minutes, approxi-
mately 25.34 x slower compared to native mode, with failed executions.

Table 16: Performance comparison for the SCONE Simplified Metabolomics use-case.

[ Use-case/Experiment | KPI [[ Results I
Lithops with SCONE: | KPI-4
Keycloak Integrated

1. ACVR (Access Control Violation Rate) for Access Token (AT) Requests

¢ Total AT Requests: 200

e Failed due to Incorrect Credentials: 23

e Successful AT Issuance: 177

e Calculation: ACVR =23 /200 = 0.115 (or 11.5%)

2. ACVR for Validation Token (VT) Issuance After Expiration

e VT Validation Attempts After Expiration: 177
¢ Failed (as expected, since tokens expired): 177
e Calculation: ACVR =177 / 177 =1 (or 100%)

Table 17: Performance comparison Lithops with SCONE Keycloak Integrated.
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