= Funded by

NEARDATA Foy o the European Union

HORIZON EUROPE FRAMEWORK PROGRAMME

NEARDATA

(grant agreement No 101092644)

Extreme Near-Data Processing Platform

D3.2 XtremeHub Reference Implementation

Due date of deliverable: 31-10-2025
Actual submission date: 31-10-2025

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 108

WP/Task related to this document | WP3 / T3.1, T3.2, T3.3, T3.4, T3.5
WP/Task responsible DELL

Leader Raul Gracia (DELL)

Technical Manager

Daniel Barcelona (URV)

Quality Manager

Aaron Call (BSC)

Author(s)

Raidl Gracia (DELL), Alan Cueva (DELL), Hossam El-
ghamry (DELL), Sean Ahearne (DELL), Ger Hallissey
(DELL), Albert Canadilla (URV), Daniel Barcelona (URV),
Gerard Finol (URV), André Miguel (SCO), Aaron Call (BSC)

Partner(s) Contributing

DELL, URYV, BSC, SCO

Document ID

NEARDATA_D3.2_Public.pdf

Abstract This deliverable includes the final design and reference im-
plementation for all tasks.
Keywords Serverless analytics, data partitioning, data streams, data

connectors, confidential computing, TEEs.

History of changes

Version | Date Author Summary of changes
0.1 30-09-2025 | Raual Gracia- | First complete draft.
Tinedo, Alan
Cueva, Hossam
Elghamry
0.2 17-10-2025 | Raul Gracia- | Review feedback.
Tinedo, Alan
Cueva, Hossam
Elghamry
1.0 31-10-2025 | Raul Gracia- | Final version.
Tinedo, Alan
Cueva, Hossam

Elghamry

HORIZON - 101092644
31/10/2025

Table of Contents

1 Executive summary
2 Introduction
3 XtremeHub Overview

4 XtremeHub Compute: Burst Computing

41 Introduction o L
4.2 Motivation: in search of burstability
421 FaaSisholdingusback
43 BurstComputing
43.1 Worker packing and communication
44 Design and implementation
441 Lifecycleoverview
442 Developing and runningbursts
443 Applicationexample 0L
444 Burst platform implementation L.
445 BCMimplementation
45 BEvaluation o
451 Burstgroupinvocation.
45.2 Burstinter-pack communication
453 Burstgroup collectives
454 Burstapplications
46 Relatedwork. 0.
4.7 Discussion and Conclusions

5 XtremeHub Compute for RAG: Serverless Vector DBs

51 Introduction
511 Motivation. Lo oo
5.1.2 Challenge: Stateless FaaS & Dynamic Data
513 Contributions L.
52 Background L oo
5.2.1 Function-as-a-Service (FaaS)
522 VectorDBs
5.3 Serverless Vector DBs: An Overview
531 Architecture L oL
5.3.2 Vector DB Design: Serverful vs Serverless
5.4 Trade-offs in Data Partitioning
54.1 Clustering-based Data Partitioning
5.4.2 Block-based Data Partitioning
5.5 Experimental Methodology
5.5.1 Prototype Implementation.
552 Setup
5.6 Clustering vs Block-based Data Partitioning
5.6.1 The Cost of Balanced Data Partitions
5.6.2 The Effect of Vector Redundancy
5.6.3 Clustering vs Blocks: Data Partitioning
5.6.4 Clustering vs Blocks: Query Performance
5.6.5 Clustering vs Blocks: Cost Analysis
5.7 Milvus vs Block-based Serverless Vector DB

NEARDATA
RIA

HORIZON - 101092644 NEARDATA
31/10/2025 RIA
5.7.1 Partitioning and Indexing Performance 40

572 QueryPerformance. L L 41

573 Costanalysis 42

574 Scalability 42

5.8 Related Work e 43
5.9 Discussion and Conclusions e 44
6 XtremeHub Streams and FaaS: FaaStream 45
6.1 Introduction e e e 45
6.1.1 Challenges 45

6.1.2 Contributions e e 46

6.2 Motivation: Stream-based FaaS Pipelines 46
6.2.1 Key Insights: Not All Streams are Created Equal 47

6.3 FaaStream Design L L L 47
6.3.1 FaaStream Architecture and Life-cycle 47

6.3.2 FaaStream Abstractionsand API 48

6.3.3 Serverless Pipeline Auto-Scaling 49

6.3.4 Data Shuffling via Custom EventRouting 50

6.3.5 Consistent Function State under Failures 50

6.4 Evaluation e e 51
6.41 Implementation o 52

6.42 ExperimentalSetup. L o o 52

6.4.3 Unifying Streaming and Batch Data Access 53

6.44 Coordinated Auto-Scaling L. 56

6.4.5 Stream-based Data Shuffling 58

6.4.6 Stateful Pipelines upon Failures 60

6.5 Related Work e 60
6.6 ConcluSionS v o e e 61
7 XtremeHub Security and Streams 62
7.1 Secure Streamingin Action L L oo 62
72 SUMMATY oo e 62
8 XtremeHub Stream Connectors: Nexus 63
8.1 Introduction e 63
8.1.1 Motivation: Beyond Tiered Data Streams 63

8.1.2 Data Management Challenges 64

8.1.3 Contributions e e 64

82 Background 65
8.2.1 EventStreaming Systems 65

8.2.2 The Shift towards Streaming Storage 65

83 NexusDesign e 65
8.3.1 Design Principles and Insights 66

8.3.2 Abstractions e e e 67

8.4 Nexus Architecture e 67
841 SystemMetadata 67

8.4.2 Streamlet Execution 68

8.4.3 StreamletState 68

8.4.4 Mesh-like DataRouting 69

8.4.5 Fault Tolerance and Correctness 70

8.5 Nexusin Action e 70
8.5.1 Streamlet API e 71

ii

HORIZON - 101092644 NEARDATA
31/10/2025 RIA
8.6 Implementation L 71
8.7 Validation e 71
871 ExperimentalSetup. L. 72

8.7.2 Interception Performance 72

8.7.3 Enhancing Event Streaming Systems 74

8.8 Related Work e 76

8.9 ConclusSions e e 77

9 XtremeHub HPC Connectors 78
9.1 Introduction e 78
9.2 The Lithops-HPC framework 79
9.2.1 Architecture Implementation oo 0 0L 81

9.22 Programmingmodel Lo L L oL 82

9.3 Evaluation e 82
931 Setup e 82

932 Complexity 82

9.3.3 Lithops-HPCOverhead 84

934 TimetoService v i i e e e e 84

9.3.5 High-performance 86

93.6 Scaling 87

9.3.7 Resourcemanagement 88

9.3.8 Multi-cluster deployment 88

9.4 Related Work e 88
95 DISCUSSION v v o e e e e e e e 90
9.6 Future Work e 91

10 Conclusions and Next Steps 92

1ii

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

List of Abbreviations and Acronyms

API Application Programming Interface

AWS Amazon Web Services

CAS Configuration and Attestation Service

CC Creative Commons

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CSv Comma-separated values

DAG Directed Acyclic Graph

DOI Digital Object Identifier

FASTQ Text-based format for storing both a biological sequence (usually nucleotide sequence)

and its corresponding quality scores

FLOPS Floating Point Operations Per Second
HPC High Performance Computing

HTTP Hypertext Transfer Protocol

LTS Long-Term Storage

MDR Multifactor Dimensionality Reduction
MPI Message Passing Interface

MPP Massively Parallel Processing

RAG Retrieval-Augmented Generation

S3 Simple Storage Service

SDP Streaming Data Platform

TEE Trusted Execution Environment

VCF Variant Call Format

VM Virtual Machine

WAL Write-Ahead Log

Page 1 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

1 Executive summary

This deliverable presents the reference implementation of XtremeHub, consolidating and extending
the foundational components introduced in D3.1 (i.e., Lithops, Pravega, Scone, and connectors). It
marks a significant step forward in the convergence of compute, stream, and security capabilities
within NEARDATA’s data plane. D3.2 demonstrates several advanced integrations across NEAR-
DATA components, demonstrating how XtremeHub supports dynamic, data-intensive workloads
with elasticity, performance, and simplicity across heterogeneous cloud environments.

Next, we list the software contributions described in D3.2 with some KPIs! that give a sense on
the impact of our research:

¢ Burst Computing for efficient execution of massively parallel jobs with group-aware invocation
and locality-aware communication. KPI-2: It improves throughput by up to 3x and reduces
invocation latency by 11.5x. Published in USENIX ATC"25.

¢ Serverless Vector DBs, enabling scalable AI workloads such as Retrieval-Augmented Gen-
eration (RAG) using stateless cloud functions. KPI-5: Simplifies deployment, reduces oper-
ational overhead, and achieves up to 98% cost reduction compared to Milvus. Published in
ACM SIGMOD'26.

¢ FaaStream, a unified framework for streaming and batch serverless pipelines built on elas-
tic and tiered data streams. KPI-3: FaaStream supports coordinated auto-scaling of server-
less pipelines, adapting to fluctuating workloads and outperforming Kafka-based setups in
throughput and latency. Submitted for publication.

* Secure streaming, combining SCONE and Pravega to enable confidential computing in real-
time data pipelines. KPI-4: SCONE-protected Pravega clients show affordable overhead (2x)
for low latency workloads, making it practical for latency-sensitive applications. Published in
IEEE CEC@ICNP25.

e Nexus, a programmable data management mesh for tiered data streams, supporting user-
defined transformations, such as routing, compression, and Al inference. KPI-1: Achieves
3.9 better compression ratios than built-in mechanisms in Kafka and Pulsar. Submitted for
publication.

¢ HPC Connectors, integrating Lithops with supercomputing environments to support high-
performance workloads. KPI-1: Lithops-HPC achieves up to 3x better compute performance
and efficient data transfer using GKFS-backed parallel storage. Submitted for publication.

Together, these contributions demonstrate how XtremeHub can support dynamic, data-intensive
workloads with elasticity, performance, and simplicity across heterogeneous cloud environments.
The deliverable highlights the convergence of previously proposed components into a cohesive ar-
chitecture, paving the way for their exploitation in NEARDATA's use cases.

IFor a full review of KPIs, please see Section 10. For use-case oriented KPIs, please see D5.2.

Page 2 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

2 Introduction

The NEARDATA project is built upon the near-data processing paradigm, which aims to bring com-
putation closer to data sources across the cloud—edge continuum. This approach enables scalable, se-
cure, and efficient data analytics for heterogeneous infrastructures and dynamic workloads. Within
this vision, XtremeHub serves as the data plane of NEARDATA, orchestrating compute, stream, and
security components to support real-time and batch analytics across diverse domains.

In D3.1, we introduced the initial design of XtremeHub, composed of modular, production-ready
subsystems for serverless compute (Lithops), tiered streaming (Pravega), and confidential execution
(Scone), along with connectors for integrating external systems. These components laid the founda-
tion for a programmable and extensible data plane architecture.

This deliverable, D3.2, presents the reference implementation of XtremeHub and focuses on the
convergence of its core components into a unified runtime. It demonstrates how XtremeHub evolves
to support complex, data-intensive workloads with enhanced elasticity, performance, and programma-
bility. The work reported here is tightly aligned with other Work Packages, particularly:

e WP2, which defines the overall NEARDATA architecture and early prototypes;
* WP4, which develops the Data Broker and connector ecosystem;

e WP5, which validates performance and KPIs across use cases.

The key contributions in D3.2 extend and integrate XtremeHub components in the following
ways:

» XtremeHub Compute - Burst Computing: We propose a novel execution model for massively par-
allel serverless jobs with group-aware invocation and locality-aware communication.

o XtremeHub Compute for RAG - Serverless Vector DBs: We present a novel serverless vector DB
architecture enabling scalable Al workloads such as Retrieval-Augmented Generation (RAG)
using stateless cloud functions.

» XtremeHub Streams and FaaS - FaaStream: We design a unified framework for streaming and
batch serverless pipelines built on elastic and tiered data streams.

o XtremeHub Security and Streams: We summarize the progress in understanding the IO perfor-
mance impact of confidential execution and stream-based workloads.

* XtremeHub Stream Connectors - Nexus: A programmable streamlet-based data management layer
for tiered data streams.

o XtremeHub HPC Connectors: Integration with HPC platforms to support high-performance work-
loads in genomics and other domains.

These components are validated via solid benchmarking methodologies and through NEAR-
DATA’s use cases in healthcare demonstrating how XtremeHub supports real-world scenarios with
dynamic data flows, stringent latency requirements, and secure processing needs.

The deliverable concludes with a summary of KPIs and a roadmap for further integration and
exploitation of XtremeHub, paving the way for its adoption in next-generation data-centric infras-
tructures.

Page 3 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

3 XtremeHub Overview

XtremeHub is the programmable data plane of NEARDATA, designed to orchestrate compute, stream,
and security components across the cloud-edge continuum. It enables scalable, secure, and elastic
data processing for heterogeneous workloads, ranging from real-time analytics to batch processing
and Al inference. In D3.1, XtremeHub was introduced as an architecture composed of (see Fig. 1):

* Lithops-based serverless compute, enabling stateless and parallel execution of Python func-
tions across cloud and edge backends.

¢ Pravega-based tiered streaming, supporting elastic ingestion and processing of time-ordered
data with strong consistency guarantees.

* SCONE-based confidential computing, providing secure enclaves for sensitive workloads us-
ing Intel SGX.

* Connector ecosystem, including Nexus for programmable data management and interfaces to
external systems like HPC platforms and federated learning frameworks.

XtremeHub

Data Processing Platform
!

XtremeHub KPlIs:] <<secures>> XtremeHub Compute
p N
- Throughput Improvements & Spofjgz
Data Reduction LITHOPS
- Data Speed Improvements H .
- Resources Auto-Scaling o e ~ . Use-cases:
- Security & Privacy i XtremeHub °' 1
- Simplicity & Productivity 1 Security : r | - Metabolomics data partitioning
AAAAAAAAAA : : XtremeHub : <<uses=r {77 - Surgery video analytics
i] H - Genomics data management and |
s i Streams 1 i 1 ‘ :
XtremeHub Integrations: : il) SCONE []) 1 | analytics 1
- Completed H 3 i | 1 : | - Federated Leamning
. P e e e e - s Z
= L!lhops & Pravega : 1 Pr 5‘/92‘5’6 1
- Lithops & SCONE H | = I'
i S
- Not completed:
- Pravega & SCONE
|— ------------------ 1
1 XtremeHub Data Connectors !
L 1
Object Storage . Data Sources

Figure 1: High-level overview of XtremeHub.

In D3.2, we show how these building blocks converge into a unified runtime that supports ad-
vanced data-centric workloads. The reference implementation demonstrates how XtremeHub evolves
from a modular prototype into a cohesive system capable of powering real-world applications.

XtremeHub Compute extends the serverless paradigm with Burst Computing, a novel execution
model that enables group-aware invocation and locality-optimized communication. This allows mas-
sively parallel jobs to be launched with minimal coordination overhead, improving throughput and
responsiveness. Additionally, XtremeHub Compute introduces a serverless vector database architec-
ture tailored for Retrieval-Augmented Generation (RAG) workloads, enabling scalable Al inference
and search using stateless cloud functions. These innovations position XtremeHub as a powerful
engine for elastic, Al-driven compute across cloud and edge environments.

XtremeHub Streams unify batch and streaming pipelines through FaaStream, a framework that
leverages Pravega’s tiered storage and FaaS platforms elastic compute to support dynamic work-
loads with varying latency and durability requirements. FaaStream demonstrates how XtremeHub
can handle content-aware, low-latency processing with strong consistency and scalability.

Page 4 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

XtremeHub Security explores the integration of confidential computing with streaming work-
loads, validating the use of SCONE-protected Pravega clients in real-time scenarios. The implemen-
tation shows that secure enclaves can be used effectively with acceptable performance impact. This
work reinforces NEARDATA’s commitment to privacy-preserving analytics, especially in sensitive
domains like healthcare and federated learning.

XtremeHub Connectors evolve into a programmable data management layer through Nexus,
which introduces streamlets and swarmlets for fine-grained control over data routing, transforma-
tion, and compression. This abstraction enables transparent and location-aware data operations
across the cloud—edge continuum. Moreover, XtremeHub integrates with HPC platforms to support
genomics and other high-performance domains, bridging cloud-native and supercomputing work-
flows. These connectors ensure that XtremeHub remains extensible and interoperable, ready to adapt
to diverse infrastructure and application needs.

Together, these advancements position XtremeHub as a mature and versatile data plane capable
of supporting NEARDATA's vision of near-data processing. The reference implementation presented
in this deliverable validates the system’s scalability, elasticity, and security across multiple use cases.
The following sections detail each subsystem, its integration, and its validation, paving the way for
future exploitation and adoption in next-generation data-centric infrastructures.

Page 5 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

4 XtremeHub Compute: Burst Computing
4.1 Introduction

The cloud offers compute infrastructure on demand, but provisioning, adjusting, and managing these
resources for large-scale data processing applications is an arduous task, especially for non-experts.
Furthermore, when the load is unpredictable, dynamic, with varying volumes of data, user-driven,
and sometimes interactive, finding the right scale to avoid misprovisioning [1, 2, 3] becomes very
complex.

Function-as-a-Service (FaaS) has gained traction as a solution to the resource provisioning prob-
lem as it offers rapid, on-demand, no-ops scaling and a pay-as-you-go billing model at very fine
granularity (MB per ms). Users do not need to set up a cluster, but the service simply accepts func-
tion invocations and fully manages the rest. Moreover, its resource burstability has set FaaS aside
from traditional engines like Spark or Dask, allowing to start thousands of short-lived functions in
seconds instead of minutes (see Table 1). Several research works [4, 5, 6, 7] have used FaaS for a
myriad of data- and compute-intensive tasks.

This has brought a new concept in cloud computing that refers to the ability to quickly respond
to sudden, parallel workloads without provisioning a cluster in advance. Authors in [5] talk about a
“burstable supercomputer-on-demand” and a “burst-parallel swarm of thousands of cloud functions,
all working on the same job.” However, literature admits that the current FaaS model is too narrow
and precluding for Massively Parallel Processing (MPP) programs [8].

Table 1: Time to provision cloud compute resources on
different services and technologies.

Technology Total vCPUs Nodes?® Start-up time
6 296 seconds
EMR Spark % 24 431 seconds
6 95 seconds
Dataproc %6 24 113 seconds
8 184 seconds
Dask 128 64 253 seconds
8 187 seconds
Ray 128 64 229 seconds
Knative (Kubernetes) 960 960 54 seconds
OpenWhisk 960 960 21 seconds
AWS Lambda (2 GB) 960 960 6 seconds
Burst Computing 960 960 1.7 seconds

2 AWS EMR Spark and GCP Dataproc use m5 and E2-standard
VM families, respectively. Dask and Ray are deployed on user-
managed mé6i family EC2 VMs. Knative, OpenWhisk, and Burst
deployed on 20 c7i.12xlalrge VMs but start 960 functions /work-
ers.

In NEARDATA, we highlight that the key issue of FaaS hindering burst-parallel jobs is its lack
of group awareness. Indeed, FaaS users need multiple independent service calls to spawn a fleet
of workers, which become strongly isolated from each other. We note that such fine-grained isola-
tion is damaging and unnecessary for collaborative jobs, and thus propose to raise the multi-tenant
boundaries to the job level.

We present burst computing, a new cloud computing model to deal with quick, sudden, mas-
sively parallel workloads, which we call bursts. To this end, we offer a group invocation primitive
to handle the whole job as a unit. To the best of our knowledge, we are the first to implement this
feature in a FaaS platform, clearly differing from all other research efforts that suffer the burden of

IThe content of this section maps to tasks T3.1 and T3.2 and is related to the paper “Burst Computing: Quick, Sudden,
Massively Parrallel Processing on Serverless Resources”, published in USENIX ATC’25.

Page 6 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

handling and orchestrating individual function invocations. A group invocation allows to optimize
resource allocation, ensure worker parallelism, and perform packing: running multiple workers co-
located in the same environment. In addition to speed up worker start-up latency, this enables worker
locality and simultaneity, which can be exploited to improve code and data loading, and to aid pow-
erful worker-to-worker communication patterns (e.g., broadcast, all-to-all) that seamlessly leverage
shared memory channels with zero-copy mechanisms.

From the user side, a burst spawns a fleet of workers that communicate with message-passing,

a simple but very powerful abstraction that creates a novel serverless substrate versatile to many
applications beyond what is feasible in FaaS. This gives extensive control of the job to advanced
users and allows to design compute engines or frameworks on top (e.g., DAG-based) to simplify
development, manage the execution, and handle failures. Massively parallel computations are prime
burst applications, especially when sudden, unpredictable, and user-driven in nature. Batch-like jobs
are also good candidates when run interactively. Some examples are data processing, analytics, and
machine learning workloads like exploratory model tuning, SQL, k-means, and large-scale sorting.
Bursts may be stateless (e.g., grid search or Monte Carlo simulations) or stateful (e.g., table joins and
aggregations).

We make the following contributions:

¢ We present burst computing, a novel cloud service model for short, sudden, massively parallel
jobs (bursts). We believe that no cloud vendor or research effort has created the necessary
substrate to support them.

* Burst computing evolves FaaS with a key novel group invocation primitive (a flare) that raises
multi-tenant isolation from a single function invocation to the whole job. In consequence, the
system launches massive process groups faster, with guaranteed parallelism, and packs work-
ers together to exploit locality.

* We implement a burst computing platform by extending OpenWhisk, a state-of-the-art FaaS
system. Our implementation includes a specialized Rust worker runtime and a burst communi-
cation middleware that seamlessly leverage worker locality with collective code/data loading
and zero-copy messaging.

¢ Under evaluation on several burst-parallel workloads against FaaS, burst computing improves
job invocation latency (up to 11.5x faster), worker simultaneity (up to 26.5x lower median
absolute deviation), and group communication (up to 98% in a broadcast), for a speed-up of
13x in PageRank and 2 x in TeraSort.

4.2 Motivation: in search of burstability

Many works are leveraging serverless services for massive data processing [5, 7, 4, 9, 10, 11, 12,
13] despite current (FaaS) hindrances [8, 14, 15] due to the resource burstability of this model [16,
17]. Applications benefit from quick, on-demand, no-ops resources at very fine granularity, and pay
precisely for what they need, when they need it.

This has brought what we call bursts, massively parallel processing (MPP) workloads that ap-
pear suddenly and process large, variable volumes of data in a very short time (under 1 or 2 min-
utes). Such applications have dynamic resource needs that cannot be predicted easily, thus serverless
burstability becomes essential [18, 19, 20, 21]. Consider, e.g., an interactive, scientist-driven workflow
in a Jupyter Notebook, where the user dynamically explores large datasets and modifies parameters
that significantly impact the workload size. Although they may resemble batch jobs, they are char-
acterized by their sudden, sporadic occurrence, highly dynamic and unpredictable data volumes,
and the expectation of low-latency execution. Representative use cases include interactive model
tuning via grid search, exploratory data analysis with SQL queries and algorithms such as logistic
regression, and data preparation operations like filtering and sorting.

The MilliSort and MilliQuery benchmarks [22] exemplify such short-running workloads. Addi-
tional scenarios include real-time data stream or video feed processing, where both data volume and
analytical complexity may fluctuate dramatically over time.

Current data processing solutions such as Spark, Dask, Flink, or Ray fail to support bursts. A

Page 7 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
=100 x 256 MiB **="- 1000 x 256 MiB
===100 x 10 GiB =+=1000 x 10 GiB
1.0 - ; s ,-' "“.*'
LS) /./ ’t"'
QO'5 - 'l - » o
, +’ ‘C“‘
0.0r -—-"‘-r,‘/ (e i i 1
0 2 4 6 8 10
Time (s)

Figure 2: Start-up time (cold start) of 100 and 1000 Faa$S functions in AWS Lambda for two memory
sizes.

long-lived deployment of these engines is impractical, as it would easily become misprovisioned.
They are not offered as a service by any cloud either, which could palliate the issue by multiplexing
jobs from multiple tenants, and thus forces per-user deployments that are too slow to set up [17],
even on cloud-managed offerings (e.g., Amazon EMR).

Table 1 shows that starting one of these technologies is intolerable for critical sporadic or dynam-
ically sized applications.

In contrast, FaaS services provide a large-scale compute substrate much faster. Fig. 2 shows that
AWS Lambda may spawn a fleet of 1000 functions in 6 seconds; a much more appropriate time range
for bursts.? FaaS is also more attractive than Container-as-a-Service (CaaS) or managed Kubernetes
services due to simpler abstractions [23] and quicker resource allocation. For example, Knative, a
Kubernetes-based FaaS-like implementation, is noticeably slower in spawning workers than dedi-
cated FaaS platforms (Table 1).

4.2.1 FaaS is holding us back

A review of the literature will show us that running bursts atop FaaS brings many challenges [14, §,
17]. We highlight three friction points: (F1) worker isolation, (F2) job fragmentation with complex
orchestration, and (F3) huge data movement.

To illustrate them, Fig. 3 follows the execution of a parallel job on a FaaS platform. It shows
a parallel job with 6 workers. The job could be embarrassingly parallel (stateless) such as a data
filtering, or require the workers to coordinate at some point (stateful) such as a table join or, more
intensively due to its iterative nature, PageRank.

F1 appears because multi-tenant isolation is at the level of a function invocation. FaaS spawns

function instances independently, one at a time, requiring multiple HTTP requests to obtain the
6 workers. Besides the added latency of several requests, this is an issue for parallel jobs because
the platform is not aware of these workers being collaborators, and thus cannot guarantee their par-
allelism. This creates delays or skews between workers that potentially harm job execution. Take,
for instance, Fig. 2, where the last function starts up to 6 seconds after the first one.? Even more, the

platform populates identical environments (instances) for each invocation , which stresses the

system with code, dependency, and data* loading that creates memory duplication [24, 25].

F2 occurs when workers need to coordinate. For instance, TeraSort a la MapReduce includes a
data shuffle amidst the job, and PageRank iteratively globally aggregates a vector. Workers cannot
communicate effectively because they may not exist at the same time (F1). Instead, workers read and
write intermediate data asynchronously through an external storage solution. This pattern (depicted
in Fig. 4) creates job fragmentation (function stages) and complicates its orchestration, especially in

2Note that small functions (256 MB) incur higher invocation latency than large ones (10 GB). Also found on other
providers (e.g., GCP), it is likely due to the overhead of scheduling finer-grained resources.

3Further evaluation (not shown in the plot) reveals that this dispersity may increase to 44 seconds in GCP, or 20 seconds
in an OpenWhisk deployment.

4For instance, hyperparameter tuning uses the same data in all workers.

Page 8 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

FaaS Platform (L7 L7 v

Instance 0 Instance 1 Instance 2

|W'0rker 0| |W0rker 1| |W0rker 2|
Invoke (x6)

— AN ZAN 2L

Al) Controller—< A2 External Comms. Server :

Cient I7AN AN '
|Worker 3| |Worker 4| |Worker 5|

Instance 3 Instance 4 Instance 5

\ A A A
Burst Platform (. v
Pack 0

|Worker OI(-)|Worker 1|()|Worker 2|
B2 ___________ T ___________

%COHUOH&I% 1 External Comms. Server B3
B1 g=3 ~TTTTTTTToo l ________
Client
|Worker 3|()|Worker 4|(-)|Worker 5|
T B B N T A
Worker communication: Pack 1
<—» Remote indirect S A

<€ - » Shared memory

Figure 3: Running a data processing job of 6 workers in FaaS and burst computing with granularity

&) 3.

iterative algorithms like PageRank (unfeasible with this approach [26]). First, it increases data move-
ment and requires worker recreation at each stage (adding code and data loading overhead). Second,
it needs an active workflow orchestration process to monitor the state of workers and oversee the
overall job progress.> Centralized solutions add a mostly-idle driver component while decentral-
ized task scheduling adds a layer of complexity to applications [11, 27, 28]. Neither can solve the
underlying problem of worker isolation.

These issues are emphasized by F3. With so many tiny isolated workers, most communication

patterns (e.g., a shuffle) require numerous remote connections . In data processing workloads,

this may result in very large data transfers, precluded by the (FaaS) lack of direct communication [29,
30].

4.3 Burst Computing

Burst computing is a novel paradigm for running bursts in the cloud. It overcomes the above frictions
with two key principles that evolve FaaS: group awareness and locality exploitation. Fig. 3 shows
how this changes job invocation.

Faa$S hinders worker collaboration because multi-tenant isolation is at the level of a single func-
tion (F1). Because a job belongs to a single tenant, it makes sense to raise isolation to the job level and
handle all its workers as a group. To this end, burst computing provides a group invocation primi-

tive, which we call flare , to instantly launch massive process groups with guaranteed parallelism.
To the best of our knowledge, we are the first to implement this kind of primitive in a serverless sys-

tem. Flares bring group awareness to the service, which is key to perform worker packing , ie.,
running multiple workers of a job in the same isolated environment. Packing establishes worker
locality and enables several optimizations discussed below.

5This can be painful since FaaS does not provide monitoring mechanisms.

Page 9 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Code/data get/send [Compute [Communication

Service delay

A

Flare

Client/Trigger
Burst

Figure 4: Timeline comparison of a parallel job with FaaS and burst computing.

In a flare, all workers have guaranteed parallelism and access to the job context (e.g., the burst
size, IDs, or locality), which allows them to communicate synchronously in patterns unfeasible in
Faa$, such as worker-to-worker message passing and collectives, that simplify job orchestration and

avoid F2. This difference is depicted in Fig. 4. F3 is addressed because communication can
seamlessly exploit locality and use shared memory mechanisms between workers in the same pack,
which reduces remote transfers.

4.3.1 Worker packing and communication

Worker packing To run a flare, the burst platform allocates n workers into m packs; we say that
n is the burst size. The number of workers per pack is the burst’s granularity (§ = n/m). Thus,
Fig. 3 shows a burst of size n = 6 where, by setting ¢ = 3, the platform only spawns 2 packs,
each with 3 workers. The higher g, the lower m, reducing the number of environment creations,
which is a critical part of function invocation time in FaaS. Then, worker code and dependencies are
loaded only once per pack and shared by all co-located workers. This further helps with initialization
time (especially when dependencies are large) and optimizes resource usage (e.g., avoiding memory
duplication [24]). A similar reasoning applies for data loading: workers processing the same data
(like in hyperparameter tuning) download it just once per pack and utilize their aggregated resources
to speed up the transfer (i.e., with parallel downloads).

Choosing g is a trade-off between ease of system management and locality maximization. To il-
lustrate that, we identify three strategies® for worker packing: (i) heterogeneous, where workers are
placed in containers as big as possible in the underlying system machines; (ii) homogeneous, where
workers are placed in fixed-size containers; and (iii) mixed, where workers are put in fixed-size packs,
but if multiple packs fall onto the same machine, they are merged into a single container. The first
approach maximizes locality, but it can become a resource scheduling problem, as it is prone to frag-
mentation. The homogeneous packing mitigates that issue, but it restricts worker locality. The third
strategy is the compromise that allows a fast and flexible management while still maximizing locality
(see Section 9.3). Given this complexity, we argue that the responsibility for setting the granularity
should lie with the platform rather than the user, enabling better control over resource scheduling
and providing a more streamlined and user-friendly service.

Worker communication Burst applications are elastically distributed and collaborative. They are
coded as a single function run by all workers that accepts any worker multiplicity transparently.

®Strategies must consider how many resources we assign to each worker. For simplicity, in NEARDATA we consider
only vCPUs and applies 1 vCPU per worker, but the strategies work for any such assignment.

Page 10 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
Burst platform E
&
@ deploy() = —2
5 —> = @5 2
% —> '§ (another | | § ; >l S
= > 8 S | burst) g g
@ flare() \ ¢ E
74 3
- Burst definitions 9
@ - Results g
- Metadata o

Burst communication middleware

"% Shared memory

Figure 5: Burst computing platform overview.

Then, because workers are guaranteed to be parallel, they may coordinate synchronously by sending
messages and with common communication patterns.

To simplify this, burst computing includes a worker-to-worker, message-passing communication
middleware readily available to workers. The middleware seamlessly identifies messages between
workers placed in the same pack for local communication (zero-copy). Only messages between packs
are transferred remotely, and the middleware optimizes these connections (e.g., a broadcast only
sends one message per pack). Remote delivery may be implemented with several technologies. Our
contributions are independent of this choice because burst computing reduces any remote commu-
nication through packing. In NEARDATA, we follow the usual approach in FaaS and only consider

indirect solutions using an external communication server .

4.4 Design and implementation

We put the above ideas into a prototype burst computing platform and communication middleware.
Here we provide the design details and implementation. Fig. 5 shows an overview of the main
components and their interactions.

The burst platform extends the design of a FaaS platform to implement group invocation and
worker packing. Built atop Apache OpenWhisk, our platform shares its components with important
modifications (see Section 4.4.4). The controller manages user interaction with the platform, it han-
dles inbound HTTP requests to deploy and invoke bursts, oversees system resources, and performs
worker packing. A database stores the burst definitions and configuration, as well as the results and
execution metadata. Computational resources in the platform are provided by the invokers, a set of
machines with capacity for burst packs. Packs are run in containers that isolate a custom runtime
environment to run workers.

Our burst communication middleware (BCM) has two main components: the core communica-
tion library and the remote backends. The library exposes message-based communication to workers,
and it is extensible with backends to use different remote message delivery solutions.

4.4.1 Life cycle overview

Fig. 5 depicts the life cycle of the system. To deploy a new burst definition, the user first sends
(D a deploy HTTP request. The controller receives it and registers (2) the new definition in the
database. Later, when the user desires to trigger the execution of the burst, they send (3) a flare
HTTP request with specific parameters. The controller handles the invocation and decides worker
allocation (4) based on the current state of the invoker machines. The affected invokers receive the
task to spawn the required runtime environments (packs) with space for as many workers as needed.
When the environments boot, their host invoker tells them which burst definition and parameters to
load (5) from the database. Then, each pack spawns its workers internally, which will execute the

Page 11 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 2: Burst computing abstractions and APIL

Interface Functions

Burst deploy(defName, package, conf)
Service upload and deploy a burst definition
flare(defName, [inputParams])
invokes a burst

Burst abstract work(inputParams, burstContext)

Function function to run on each worker

Burst workerID — unique ID of this worker within the flare
Context burstSize — number of total workers in the flare

packID — unique ID of the current pack
packSize — number of workers in the current pack
numPacks — number of packs within the flare
belongToPack(workerID) — packID

returns the pack ID to which a worker belongs to
isPackLeader() — bool

returns true if this worker is its pack’s leader

Comm. send(data, dest) — none

Primitives recv(source) — data
broadcast(data, root) — data
allToAll([data]) — [data]
reduce(data, f(data, data) — data) — data

user-defined function (work in Table 2) in parallel. Workers may use the BCM to coordinate and
share data. This seamlessly uses shared memory or remote connections to communicate workers (6)
in the same or a different pack, respectively. Additionally, workers may read or write data to external
storage systems (e.g., object storage) or produce a result that is stored back to the database, where it
may be retrieved later by users through another HTTP request.

4.4.2 Developing and running bursts

User experience is key for burst computing. As a serverless service, all resource management remains
hidden. Users interact with the service through a simple interface that allows to define bursts with
resource-agnostic code and to schedule their execution. This is similar to FaaS services that allow
users to upload their function definitions and then set up triggers or invoke them as needed. The
interface and abstractions are summarized in Table 2.

Deployment Similar to functions in FaaS, developers package and upload their burst definitions
(code) to the cloud, giving them a name and configuration. The configuration includes runtime
parameters and worker characteristics (such as language and memory size).

Invocation Burst definitions are triggered for execution like functions in FaaS: an event or HTTP
request notifies the intent to execute a burst with specific input parameters. We call each burst in-
vocation a burst flare (Table 2). The main difference with FaaS is that a flare will spawn a group
of parallel workers (instead of a single function instance). The service ensures that all workers run
simultaneously and applies packing. In our prototype, the burst size is explicit on the size of the
inputParams array. Hence, users have direct control over it. We believe this to be important because
parallelism is strictly application-specific and depends on data volume (e.g., ETL tasks), data content
(e.g., dimensionality or sparsity), or algorithm configuration (e.g., the number of clusters in k-means).
Smart burst sizing is left for future work, i.e., the platform may automatically calculate the number
of workers based on application and data information.

Coding Burst definitions are coded as a single function that is run by each worker in the burst (work
in Table 2). This function must be programmed elastically so that it accepts and runs correctly for
any burst size. The code is also agnostic to the packing performed by the service.

Page 12 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

To that end, the work function receives a burst context object through which each worker may
obtain information about the worker distribution within the particular flare. For example, a worker
can query its own unique ID, the burst size, granularity, or which workers belong to each pack (Burst
Context in Table 2). With this information (provided by the platform invoker), the code can implement
logic to apply locality optimizations at the pack and burst levels (see an example in Section 4.5.4).
This context object also gives access to the BCM.

Communication interface The BCM offers simple yet powerful worker-to-worker communication
through message passing similar to MPIL. The abstractions are elastic (adapt to the burst size) and
available through the burst context. Burst computing programs make use of two basic primitives to
connect workers: send and receive. These primitives enable point-to-point communication between
workers and are designed to send arbitrary volumes of data efficiently within the burst. To facilitate
common communication patterns in parallel jobs, bursts may also use group collectives. As listed
in Table 2, our prototype implements broadcast, all-to-all, and reduce. Primitives and collectives
are locality-aware, although the programs remain agnostic to it, i.e., co-located workers (same pack)
communicate on shared memory and only remote workers hit the network.

4.4.3 Application example

Fig. 6 shows an example in Rust code (simplified) of the work function that implements the PageRank
application. The algorithm consists of an iterative process in which each worker holds a portion of
the adjacency graph (relating links between web pages). In each iteration, the new global ranks are
computed in parallel, aggregated, and reduced in a tree structure, then broadcasted from the root
worker to the rest of them. The algorithm runs until it converges past a threshold or reaches a limit
of iterations.

Similarly to the MPI computing model, all workers execute the same code but perform different
logic based on the worker ID (the rank in MPI). The example highlights the worker accesses to the
BurstContext object to perform collectives and obtain information about the current flare. For exam-
ple, it is used to perform a collective broadcast to share the updated ranks vector, and later a reduce to
aggregate the partial ranks computed among the workers. It also shows how a worker checks its ID
when it needs to calculate the convergence, since this is only done by the root worker after collecting
the aggregated vector in the reduce.

4.44 Burst platform implementation

The prototype implementation is built on top of the popular Apache OpenWhisk platform (v1.0.0).
We used OpenWhisk as the basis because it is a well-known, open-source, production-tested FaaS
implementation and provides higher burstability than other platforms like Knative (Table 1). Our
changes amount to approximately 2 kSLOC. They affect the main components of the platform, in-
cluding the controller, the invoker, and the runtime environment.

The controller now supports two new HTTP endpoints for bursts: deploy and flare. It also
implements the logic to handle them (Section 4.4.1). This includes the packing strategy in the three
flavors (Section 4.3): heterogeneous, homogeneous, and mixed. Granularity can be configured. In
any case, the controller calculates the number and size of the packs based on the specific burst size
and the resources available in the invokers.

Invokers run a new monitoring logic that can be adjusted to report their load to the controller
based on CPU instead of RAM. Our prototype is set to assign 1 vCPU per worker because bursts
tend to be compute-intensive jobs and we do not consider parallelism within a worker,” but other
configurations are possible. Invokers also implement new logic to support the creation and execution
of packs, spawning Docker containers of the appropriate size for each burst (by specifying resource
limits) and telling each container/runtime the number of workers to run, plus their IDs and context.
Containers are currently not reused across bursts.

For the runtime, we adapted the official OpenWhisk Rust environment, but it is possible to sup-
port others. The new logic allows to spawn multiple workers within it as requested by its host in-

"The burst size (number of workers) determines total job parallelism.

Page 13 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

fn work(params: Input, burst: &BurstContext) -> Output {
let num_nodes = params.num_nodes;
let mut page_ranks = vec![1.0 / num_nodes; num_nodes];
let mut sum = vec![0.0; num_nodes];
let adjacency_matrix = get_adjacency_matrix(¶ms) ;
while err < ERROR_THRESHOLD {
page_ranks = burst. broadcast (page_ranks, ROOT_WORKER) ;
for (node, links) in graph {
for link in links {
sum[*1ink] += page_ranks[*node] / out_links(*node);
}
}
let reduced_ranks = burst . reduce (sum, |vecl, vec2| {
vecl.zip(vec2).map(|(a, b)| a + b).collect()
b
if burst.worker_id == ROOT_WORKER {
err = calculate_error(&page_ranks, &reduced_ranks) ;
page_ranks = reduced_ranks;
}
err = burst . broadcast (err, ROOT_WORKER) ;
reset_sums (&mut sum) ;
}
Output { page_ranks }
}

Figure 6: Simplified source code of the PageRank work function for burst computing. The accesses to
the burst context to obtain the worker ID or communicate are highlighted.

voker. In particular, the Rust runtime spawns one thread per worker to provide parallelism. Finally,
the runtime also includes our BCM built-in.

44.5 BCM implementation

The burst communication middleware (BCM) is coded in Rust in about 5 kSLOC.

It is readily available for our custom Rust runtime and we are working on a binding for Python.®
It enables the transmission of intra-pack (zero-copy) and inter-pack (via remote backend) messages.

The BCM is instantiated by the runtime (once per pack) and made available to workers as a
parameter (in the work function as shown in Table 2).

For local communication, BCM uses in-memory queues to send and receive data between workers
in the same pack. In the Rust runtime, workers are threads and reside in the same memory space,
so shared memory mechanisms are not necessary (e.g., shm_open or mmap). Instead, workers just pass
memory pointers between them. Thanks to Rust’s memory safety guarantees, access to shared data is
thread-safe. Rust also provides a reference-counting mechanism for immutable data, so shared data
is released when it is no longer used at runtime. For example, the root worker in a broadcast sends a
read-only memory pointer to its local workers, and they safely access the message concurrently. To
modify the data, one may use mechanisms such as copy-on-write.

For remote communication, each pack has a shared connection pool to the remote backend, which
allows each worker within the pack to send and receive messages concurrently, with the goal of max-
imizing the container’s bandwidth. This is especially useful in primitives like all-to-all, where all
workers must open channels with all the others. For large messages, the data is split into smaller
chunks that are sent and received concurrently. This maximizes network utilization and allows read-
ers to start receiving data from the first chunk, instead of waiting for the full message to be available
at the backend.

The BCM is extensible, allowing the implementation of more remote backends. Currently, we
support Redis, DragonflyDB, RabbitMQ), and S3. The backend interface differentiates between send-
ing direct messages (one-to-one) and broadcast messages (one-to-many). The reason is that direct
messages are read only once, while broadcast messages multiple times, so we want to optimize this

80ther languages may be supported through bindings (Java, C++, Go...).

Page 14 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
43 | 48 |
.*? 24 | 24 |
= 12 | 12 9
= 6 | 6 &
! 4 A 4 B
i 2 i A | |
O FaaS —H— FaaS —I— —
0 5 10 15 20 0 5 10 15 20

Start-up time (s)

Figure 7: Worker start-up latency distribution within one job for burst computing with different
packing granularity and FaaS (equivalent to ¢ = 1). Left and right show, respectively, burst sizes of
48 and 960.

particular case. For instance, in RabbitMQ, one-to-one messages use direct brokers, while one-to-
many use fan-out brokers.

To ensure that no messages are lost (at-least-once delivery semantics), the BCM relies first on the
backend delivery guarantees (e.g., RabbitMQ uses durable queues to avoid dropping messages).
Additionally, the BCM keeps a count of direct messages sent between each pair of workers, and for
each collective operation. The middleware handles duplicate and/or out-of-order messages. For
that, messages include a header with the source and destination worker, collective type, counter,
and, if chunked, the number of chunks and chunk number. Messages with a counter lower than the
expected value are ignored and assumed as already processed. Those with a counter greater than
expected are cached locally until needed.

For chunked messages received out-of-order, a memory region is reserved for the total payload
and chunks are written to their respective offset as they come in.

4.5 Evaluation

Our evaluation aims to assess burst computing against current FaaS on the three friction points de-
scribed in Section 4.2.1. Importantly, we show and analyze the effects of worker packing and locality.
All experiments run on Amazon Web Services (AWS) in the us-east-1 region.

4.5.1 Burst group invocation

Group invocation is the key element against friction F1. Here we evaluate how job-level isolation im-
proves worker readiness time (invocation latency), ensures their simultaneity, and provides locality
for collaborative code and data loading.

Setup: The burst platform runs on an Amazon EKS cluster, with the control plane on a t4i.xlarge
VM (4 vCPUs and 16 GB RAM), and the invokers on up to 20 c7i.12xlarge VMs (48 vCPUs and
96 GB RAM). This gives us space to accommodate up to 960 workers with 1 vCPU each.

Impact on burst invocation latency First, we use the homogeneous packing policy to evaluate
how assigning different granularity (g) affects burst invocation latency. The exploration is depicted
in Fig. 7 for two bursts of sizes 48 (left) and 960 (right).” It is quickly apparent that as g increases
(up to 48 in both cases), the start-up time decreases, and generally becomes more consistent across
workers for all burst sizes. For instance, the latency of having all workers ready in a burst of size 960
reduces by 11.5x from ¢ = 1 (FaaS) to g = 48. We found that container creation dominates invocation
latency, hence higher g performs best. This proves that creating the biggest possible containers, and
thus the less amount of them (heterogeneous packing), achieves the best start-up latency, since it
creates a single container per invoker per flare. By extension, the mixed packing strategy exhibits
the same results, but allows the system to manage resources more effectively in small portions to
facilitate allocation and avoid resource fragmentation. To assess the impact of granularity, the rest of
the evaluation uses homogeneous packing.

9We conducted experiments with similar results for burst sizes in-between.

Page 15 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
€ Last worker init — Simultaneity Worker life-time
1000 1000
[=]
S 750 750
=
£ 500 500
©
9 250 250
* 0 0
0 5 10 15 20 25 0 5 10 15 20 25
Time (s)

Figure 8: Simultaneity (number of workers running at an instant) in Faa$S (left) and Burst with ¢ = 48
(right). Each bar represents the life-time of a worker.

48 []
2]
5 12 I
B 6 §
g5 ¢ 3
3 2 0

Faa$ —
100GB 50GB 0 5s 10s 15s 20s
Download size Download time

Figure 9: A burst of 96 workers loading the same 1 GB object from S3 with different granularity.

Impact on worker simultaneity We run a burst with size 960 on FaaS against burst computing
with ¢ = 48. For demonstration purposes, each worker performs a 5-second sleep and we plot
their execution timeline in Fig. 8. The plot shows that burst computing achieves faster resource
allocation and quicker readiness of workers. This ensures worker parallelism. Analyzing dispersity
of worker start-up time (also in Fig. 7), the FaaS execution evinces a range of 18.8 seconds between
the start of the first worker and that of the last one, with a median absolute deviation (MAD) of
2.65 seconds. In contrast, the range with ¢ = 48 is just 0.44 seconds (MAD is 0.1 seconds). Compared,
the range is 43x lower in burst computing, with MAD showing 26.5x lower dispersity than FaaS.
Dispersity in worker start-up latency precludes FaaS to achieve full parallelism (all workers running
simultaneously from start to finish), while burst guarantees it.

Impact on data loading Burst computing mitigates the FaaS problem of loading the same data on
all functions (Section 4.2.1), e.g., in a grid search.

We can leverage worker access to locality information to optimize this problem and download
the data only once per pack, trivially reducing data ingestion. Specifically, each worker in a pack
retrieves a part of the data based on calculations from pack information in the burst context (Table 2).
Then they recreate the full data in a local shared memory region. This allows to parallelize the
download and complete the process faster than choosing a leader to perform it (also possible through
the isPackLeader function in the context, which returns true for the worker with lowest ID within
its pack).

We evaluate this approach on multiple ¢ and present it in Fig. 9. Burst optimizations achieve a
download time speed-up of 32.6 x with ¢ = 48 compared to FaaS.

Takeaway Flares eliminate friction F1 through faster worker group initialization (11.5x) and en-
sured simultaneity (43 x less dispersed workers) that enables locality with packing. In turn, locality
may accelerate data download in applications (32.6 x), tackling friction F3.

Page 16 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
B RabbitMQ EHRedis Stream
N Redis List EEDragonflyDB Stream
200 Il DragonflyDB List Bs3

Throughput (MiB/s)
)
=]
s S
I I

T

64 KiB 1 MiB 64 MiB 128 MiB 256 MiB
Chunk Size

(a) Throughput between two remote workers sending a 1 GB payload chunked in different sizes.

Aggregated
Throughput (GiB/s
O O = = NN
o o ;o w»m
| | | | |

8 16 32 96 192 384
Burst Size

(b) Aggregate throughput of two remote packs, A and B, of varying size (§ =burst size/2), where each worker
from pack A sends a 256 MB payload to another worker from remote pack B.

Figure 10: Throughput experiments for the different BCM backends. Median values with standard
deviation (10 runs).

4.5.2 Burst inter-pack communication

Before we evaluate the effects of the BCM on frictions F2 and F3, we want to ensure that an indirect
communication model is feasible and to find a backend that sustains the load of bursts at scale. For
this, we measure the throughput of several indirect communication backends. Specifically, we test
Redis, DragonflyDB (a Redis-compatible multi-threaded alternative), RabbitMQ, and S3. Redis and
DragonflyDB evaluate two flavors: using lists or streams.

Message chunk size The BCM chunks messages into several blocks to optimize network utiliza-
tion and allow parallel read/write. The optimal chunk size is a trade-off between latency to first
byte and operation overhead, and it varies for each communication backend. To find the optimal
configuration, we measure the throughput of sending a 1 GB message between two remote workers.
The workers run on two c7i.large machines (4 vCPUs, 8 GB) and we deploy a c7i.16xlarge (64
vCPUs, 128 GB) for the intermediate server. Fig. 10a plots the results. RabbitMQ offers a constant
throughput for larger chunk sizes, but does not allow payloads larger than 128 MB due to AMQP
protocol limitations. Redis and DragonflyDB work best at 1 MB, the latter being slightly superior.
S3 offers the lowest throughput because object stores are not designed for small files (1 MB or less
exceeds the allowed service request rate limits).

Maximum throughput To understand how the different backends scale under parallel load, we
measure the aggregated throughput between several pairs of workers communicating simultane-
ously. In this experiment, we launch a group of workers (burst size from 8 to 384) split into two
remote groups. Each worker in a group A sends a fixed message (256 MB) to a worker in the other,
remote group B. As the burst size increases, so does the total data volume sent. Each backend uses
the optimal chunk size assessed in the micro-benchmark above. Workers run on two VMs scaled
to the burst size (from c7i.xlarge for 8 workers to c7i.48xlarge for 384), and the communication

Page 17 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Burst Size

—F— 48 —F-96 -§- 192

—

]

o
1

* ...
hg -o-..,.“.
=50 - *

s)

compared to
Granularity 1 (%)
©
ot
tte
compared to
Granularity 1 (%)
[}
<)

Latenc

©
o
1

| | I 0= & & 7 "9 1 1
1 6 12 24 48 6 12 24 48 1 6 12 24 48 6 12 24 48
Granularity Granularity Granularity Granularity

(a) Broadcast (b) All-to-All

Latency Reduction
o

Latency (s)
b
S
»
Latency Reduction

Figure 11: Latency and its reduction percentage with respect to ¢ = 1 of two collectives, for varying
g and burst size.

server runs on one c7i.48xlarge instance. The results are shown in Fig. 10b. We observe that Rab-
bitMQ does not scale beyond 1. For the in-memory stores, the approach with lists performs better
than streams. Like RabbitMQ), Redis does not scale with parallelism because it is single-threaded. In
contrast, DragonflyDB does scale and achieves the highest throughput, surpassing 2.5 for large burst
sizes. S3 also scales with parallelism but remains slower.

Takeaway The BCM achieves high throughput even with indirect communication, and some back-
ends sustain up to the evaluated 384 workers with individual connections, suggesting a feasible
approach. In view of the results, the rest of the evaluation uses DragonflyDB List with 1 MB chunks.

4.5.3 Burst group collectives

We assess the impact of locality on group collectives as a means to face friction F3. We measure end-
to-end latency, i.e., the total time it takes for all workers to complete the collective, as we vary g. We
present results for broadcast and all-to-all. Reduce behaves similar to broadcast because they follow the
same data movement pattern.10

Setup: We employ one, two and four c71i.12xlarge VMs (48 vCPUs, 96 GB) for bursts of sizes 48,
96 and 192, respectively. g varies from 1 to 48. Each worker uses 256 MB of data for each collective
call. The backend server runs on one c7i.48xlarge (192 vCPUs, 384 GB).

Overall, Fig. 11 shows that latency decreases as the granularity increases. This is because remote
communication is the main bottleneck of collective operations and its volume decreases as g increases
and more data movement becomes local.

The cost of local communication is insignificant compared to the remote one. Broadcast sends the
message once, but reads it once per pack, i.e., remote data movement is directly proportional to the
number of packs: if we halve the packs, we move half the data. Thus, latency quickly decreases as
we increase g; near 98% reduction with ¢ = 48 (Fig. 11a). All-to-all is more intensive in data traffic
because all workers have a message of 256 MB for each of the other workers (48 GB total with 192
workers). This means that even if we only have two packs, half the data traffic is remote. This is
clearly evident in Fig. 11b. Considering ¢ = 48, burst sizes 48, 96, and 192 create one, two, and four
packs; thus latency reduction is ca. 100%, 50%, and 25%, respectively.

Takeaway Locality-aware group collectives heavily mitigate friction F3 by seamlessly reducing re-
mote data traffic.

4.5.4 Burst applications

We evaluate three real-world bursts: hyperparameter tuning, PageRank, and TeraSort. These (or
similar) applications are commonly used in the literature to assess the performance and show the

100ther collectives like gather and scatter are similar to all-to-all.

Page 18 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 3: Time to start 96 workers and gather input data in hyperparameter tuning for different gran-
ularity.

Granularity 1 (FaaS) 6 12 24 48 96
Ready time (s) 17.51 5.65 3.64 318 296 257

limitations of FaaS platforms for parallel jobs and serverless data analytics [12, 31, 5, 7, 32].1' These
applications clearly show all friction points while providing an overall view of the effects of burst
computing compared to FaaS-based implementations. Further, they are representatives of short jobs
a scientist may want to run interactively in a dynamic analysis session: sudden and quick (under 2
min).

Our baseline for comparison is thus the current FaaS paradigm available in public clouds as used
in the serverless data analytics literature. Since MPI-like communication is not supported on any
serverless service, we opt to use unmodified OpenWhisk and AWS Lambda as our baselines, em-
ploying external storage for communication and data sharing to align with the state of practice.

Hyperparameter tuning Grid search is a machine learning technique in which a set of hyperpa-
rameter values are evaluated to find the combination that yields the best performance for a given
model. This evaluation is done in parallel, with each worker processing a full copy of the training
dataset. Since there are no dependencies between parallel tasks, FaaS seems suitable for this job.
However, each function would download a copy of the data, regardless of whether there are func-
tions co-located on the same node. This results in a waste of bandwidth and memory due to duplicate
data downloads. Burst computing provides an optimization opportunity by exploiting locality (see
impact on data loading in Section 4.5.1).

Setup: The grid search is applied to a stochastic gradient descent model in a sklearn Python ap-
plication and distributed to 96 workers. We use a 500 MB Amazon reviews dataset (CSV), available
at Kaggle12 and stored in an S3 bucket. AWS Lambda is the baseline (denoted as ¢ = 1), with a mem-
ory configuration of 1769 MB, which provides a full vCPU. The burst platform uses a c7i.24xlarge
instance.

Table 3 collects the “ready time”, meaning the time elapsed from client-side job invocation until
the input data is available to all workers and they are ready to compute. We see how burst computing
quickly reduces this time as g increases. This effect has two causes. First, the group invocation
primitive speeds up invocation time compared to FaaS, from approx. 4 to 1.5 seconds with g = 96.
Second, data download can be optimized as assessed in Fig. 9. While FaaS has to download a copy
of the data on each worker, workers co-located in a pack collaborate in downloading the input in
parallel. Hence, as g increases, the input download time decreases, going from 14 seconds in FaaS to
1 seconds with g > 48.

PageRank PageRank is a well-known data analytics workload with intensive worker coordination.
It involves iterative and heavy data aggregation for large datasets, which is of interest for bench-
marking worker communication in burst computing. We adapted PageRank for burst computing
from the Hi-Bench suite [34] (MapReduce approach). The implementation is detailed in Section 4.4.3.
In this case it is not possible to make optimizations regarding data ingestion (like in Section 4.5.4),
since each worker takes a different partition of the dataset. We skip reporting the MapReduce version
atop FaaS because the number of (short) stages necessary to perform the iterative aggregations make
it obviously slower. Spark has a similar problem [12]; evaluation on AWS EMR with an equal-sized
deployment (needing 5 to start up) shows that this application takes over an hour.

Setup: This experiment uses four c7i.16xlarge VMs (64 vCPU, 128 GB). The graph dataset is
generated with Hi-Bench consisting of 50 million nodes (ca. 30 GB) in 256 partitions. The algorithm

"'We do not use FaaS benchmarks (e.g., FunctionBench [33]) because they focus on applications where Faa$S already does
a good job (independent function invocations and stateless or embarrassingly parallel workloads).
Phttps://wuw.kaggle.com/bittlingmayer/amazonreviews

Page 19 of 108

 https://www.kaggle.com/bittlingmayer/amazonreviews

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
| | | | | | |
800 — B Data download
— B Computation
% 700 - Hll Communication
o & - -
LB
= § 200— -
EE
< ez
Al vz ez ezl
1 2 4 8 16 32 64
Granularity

Figure 12: PageRank execution time by phase, varying g.

Table 4: Aggregated network traffic volume and percentage of traffic reduction compared to g = 1,
varying ¢ in PageRank.

Granularity 1 2 4 8 16 32 64
Traffic (GiB) | 3068 1532 764 380 188 92 44
% Reduction | n/a 50.0 75.0 876 938 970 985

runs over 10 iterations, with a burst size of 256, varying the granularity between 1 and 64.

Fig. 12 shows the total execution time of all iterations split into phases: the time dedicated to
download input data (from S3), compute the ranking, and communicate (collectives) between work-
ers. Times for each phase are averaged across workers, and all iterations added. Table 4 shows the
network traffic and % of reduction compared to g = 1. Communication accounts for the majority
of the execution time because the rank vector must be aggregated and shared at each iteration. Our
configuration uses a vector of 40 MB that is sent, received, and aggregated in a tree pattern across
the workers, and then broadcast from the root worker to the rest of them. As g increases, the remote
portion of this movement decreases. For example, with ¢ = 2, only the first level of the (binary) re-
duction tree is local (the leaves), and the rest communicate remotely. With ¢ = 64, there are 4 packs,
so remote communication occurs only in the last 2 tree levels. With this setup, we achieve a 98.5%
reduction in data traffic and a 13 x speed-up compared to g = 1.

TeraSort We have implemented TeraSort based on the MapReduce version in Hi-Bench suite [34].
TeraSort is of particular interest because it involves a heavy data shuffle phase. We want to com-
pare a TeraSort following the serverless MapReduce approach [13, 35, 36], with a single-stage burst
computing version where we exploit locality for the shuffle phase. The main advantages of burst
are: (i) the MapReduce version requires two rounds of function invocations (map and reduce), while
the burst model requires a single flare, and (ii) the MapReduce version shuffles data through object
storage, while burst employs the (locality-aware) all-to-all collective.

Setup: This experiment sorts a 100 GB dataset generated with Hi-Bench with 192 partitions. The
burst platform runs on EKS with two m71.24x1arge (96 vCPUs, 384 GB) invokers and a c7i.xlarge
controller. The input data is in an Amazon S3 bucket located in the same region. For reference, an
equal-sized Spark deployment solves this problem in 106 seconds average but needs 5 to start up the
cluster.

Fig. 13 shows the timeline of two executions comparing serverless MapReduce and burst. The
execution time of each worker is shown in horizontal black bars, stacked by Worker ID on the vertical
axis. Superimposed in red, we see the time elapsed for the shuffle phase of the TeraSort algorithm.
In the MapReduce version (Fig. 13a), we highlight (i) the dispersity in function start-up time, as we
have seen in Fig. 8; (ii) a gap where no functions are running, caused by splitting the workload into
two phases (map and reduce), with an externally-managed synchronization phase between them,
adding further overhead; and (iii) an outlier in the map phase (worker #121), which slows down the

Page 20 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

— Running worker Shuffle

192
160

—_
o © N
S

Worker ID
S

32
0 | | | |
0 25 50 75 100 125 1 0 25 50 75 100 125 150
Wallclock Time (s) Wallclock Time (s)
(a) Serverless MapReduce (b) Burst computing

Figure 13: TeraSort timeline comparison between (13a) serverless MapReduce and (13b) burst com-
puting. MapReduce comprises two function rounds (map and reduce), with data exchange via object
storage. Burst uses a single flare, exchanging data through the all-to-all collective.

entire workflow.

All these points are addressed in burst computing (Fig. 13b). First, the group invocation packs all
workers into two containers of 96 workers, making start-up faster, and ensuring parallelism, which
eliminates (latency-induced) outliers. Second, worker-to-worker collectives avoid splitting the job
into two phases. Finally, remote communication is reduced thanks to locality (see Section 4.5.3). To
wit, we achieve a 2x speed-up for this particular execution—1.91 x mean across six executions.

For completeness, we also run TeraSort on Spark using AWS EMR on a cluster of equivalent re-
sources. Best results are achieved with 74 executors of 4 GB of memory each. The total run time
ranges between 100 and 110 seconds, placing it between the FaaS and Burst implementations. Al-
though the execution times are relatively close, there are substantial differences that make a compar-
ison and analysis of results complex. To start, the programming language changes (Scala to Rust),
and Spark’s execution model and its peer-to-peer communication capability impact application per-
formance in different ways: Rust may be more performant, the burst execution model simpler and
more effective, but Spark’s direct communication is faster. Moreover, it is worth noting that clus-
ter creation time on AWS EMR took over 5 minutes, adding additional overhead for an sporadic
workload. Neither FaaS nor Burst require the user to set up a cluster.

Takeaway Frictions F1, F2, and F3 appear in real-world applications. Hyperparameter tuning
shows duplication in worker initialization due to friction F1, which also slows down worker start-up
in PageRank and TeraSort. PageRank and TeraSort evidence the issues of friction F2: the iterative
nature of PageRank makes it unfeasible in FaaS due to excessive stages, and TeraSort is hindered
considerably due to slower coordination. Burst computing mitigates this by allowing workers to co-
ordinate and share data in a single stage, instead of requiring multiple stages orchestrated externally
that communicate asynchronously through storage. PageRank and TeraSort also emphasize friction
F3: Page-Rank with iterative, large communication to aggregate the vector and TeraSort with a single,
large data shuffle.

4.6 Related work

The concept of resource burstability has already been discussed in the serverless literature. FaaS
has been referred to as a “burstable supercomputer-on-demand” [5] for “burst-parallel serverless ap-
plications” [37], albeit with limitations. “Flash bursts” in HPC [22] explore the feasibility of 1 jobs
spanning a large number of servers, which is attractive but unfeasible with existing technologies in
public clouds. Granular computing [38, 39, 40] explores very similar ideas to improve cluster utiliza-
tion. [17] pursue serverless burstability for batch jobs, highlighting that functions are too limited for
the job.

Page 21 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Burst computing goes a step further in defining a new way of running burst-parallel jobs in the
cloud. It evolves from Faa$S to exploit serverless burstability, but it unlocks the limitations of working
with functions to provide a compute environment tailored for massively parallel collaborative jobs.
Recent works also promote the need to evolve the FaaS model to overcome important challenges [41,
42]. To our knowledge, we are the first ones to raise the unit of management from a function to the
job level in a serverless service with a group invocation abstraction to pack workers together and
enable locality within the job.

Several papers [43, 44, 45] tackle handling function invocations faster. They aim to respond to
thousands of function calls with very low latency. Others relax function isolation to handle multiple
invocations together and cut on start-up and data sharing overhead [46, 19]. Similarly, some works
perform opportunistic function packing, placing multiple function invocations from the same user on
the same container to improve invocation latency and resource usage [25, 47, 48, 49, 50]. This shows
that burst jobs are becoming widely accepted in FaaS settings, and locality is a key enabler. All these
works only consider individual function invocations and are thus limited. Burst computing further
optimizes job execution thanks to group invocations and guaranteed worker parallelism. Still, the
mentioned works may be combined with burst computing to accelerate resource allocation.

A different line of work handles complex computations atop FaaS through higher-level function
orchestration, task schedulers, or workflow optimizers [51, 11, 52, 27, 28, 53, 54, 55]. Since they
operate with individual function invocations, they cannot be compared with burst computing, but
benefit from it to guarantee task parallelism and fast start-up time. Orchestration techniques may
be applied atop burst computing, e.g., to coordinate multiple bursts, manage data dependencies
between them, optimize task parallelism, and handle faults.

Other works explore a hybrid approach where traditional compute engines (e.g., Spark or Flink)
offload computation spikes to serverless functions [56, 57, 58] to achieve faster adaptation to dynamic
loads. This requires the deployment and management of the traditional compute engine, which is
not ideal to achieve serverless execution of parallel jobs. Burst computing fully hides infrastructure:
users only deploy their code and run jobs, while the cloud handles the rest.

Communication and state sharing in FaaS has been widely explored. Some works combine a data
store and a Faa$S platform into the same system to optimize data access by placing functions where the
data they use is kept [18]. This is a fundamentally different kind of locality than in burst computing
as it does not support any function grouping semantics and may present resource contention prob-
lems [59]. Other solutions [32, 13, 26, 31] target applications that require function coordination and
communication, close to the objectives of burst computing. However, they employ a disaggregated
storage solution to relay data between stateless functions and cannot exploit any form of locality.

Boxer [60] explores direct communication, and FMI [30] builds a library of collectives between
groups of Faa$S functions (with NAT traversal). They only tackle current FaaS platforms and do not
provide any locality optimizations (in contrast to burst computing). These solutions are orthogonal
to our contributions. For instance, FMI may be used as a BCM remote backend to accelerate pack-to-
pack transfers, but burst computing still contributes zero-copy communication between workers in
the same pack.

Finally, we highlight a clear trend in FaaS that is aligned with burst computing: the emergence
of “Big Lambdas” with multiple CPU cores (currently up to 6 vCPUs in AWS). Jobs may leverage
function intra-parallelism and, similar to burst computing, worker locality becomes relevant and
improves the execution of parallel applications. these high-capacity functions still lack group-aware
mechanisms and parallel guarantees, requiring complex user-side handling.

4.7 Discussion and Conclusions

Burst as a cloud service One potential concern regarding the adoption of burst computing as a
public cloud service is the added scheduling complexity of packing multiple workers, along with
its implications for billing. Giving burst granularity control to the provider addresses this by en-
abling more effective resource management. The mixed packing policy we propose further enhances
scheduling efficiency by targeting small resource gaps and maximizing locality through co-located

Page 22 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

resource consolidation. Burst computing aligns with the trend toward “Big Lambda” architectures,
seen in platforms such as AWS Lambda, Google Cloud Functions, and CaaS offerings like IBM Code
Engine. For example, AWS already supports functions with up to 6 vCPUs, indicating that its infras-
tructure can already schedule resource bundles at this scale. Setting a burst granularity of 6 would
thus mirror current AWS capabilities. Implementing burst computing requires the concurrent allo-
cation of multiple such high-capacity functions, similar to existing multi-invocation FaaS handling,
while optimizing locality. Though this may introduce slightly higher latency than a single function
invocation, it remains more efficient than coordinating numerous remote HTTP calls. Our evaluation
on OpenWhisk confirms the viability of this model, demonstrating that it preserves internal resource
management and auto-scaling typical of FaaS. We see burst computing as a natural evolution of FaaS:
despite the constraint of parallel provisioning, bursts are ephemeral and may be bounded in time or
concurrency, clearly distinct from long-running serverful processes. Thus, we argue that burst sup-
port in public clouds is not prohibitively complex and can follow FaaS-like billing models. Moreover,
there is clear evidence that users are already willing to pay for “Big Lambdas” or containers when
the workloads justify it [14].

Burst applications The suitability of burst computing versus traditional FaaS depends on an ap-
plication’s communication patterns, performance demands, and tolerance to execution imbalances.
Burst computing is designed for massively parallel workloads with collaborating workers, enabling
co-location and synchronized execution. Applications with strong locality requirements and inten-
sive data sharing—such as PageRank, SQL queries, or large-scale sorting—are prime candidates.
However, even loosely coupled workloads like grid search or Monte Carlo simulations can benefit
from shared data downloads (see Section 4.5.4), faster initialization, and coordinated result aggrega-
tion. Burst computing also facilitates optimizations such as function fusion, where stateless functions
within a dataflow are merged into a single, stateful burst to reduce communication overhead and im-
prove locality [61]. Interactive workloads or those requiring synchronized responses across workers
similarly gain from burst simultaneity. In contrast, those with minimal data sharing or high variance
in execution time across workers are typically better served by conventional FaaS. While our current
prototype reclaims resources per pack—leading to potential idle resources when worker durations
differ—it targets short-lived, coordinated workloads (i.e., workers typically progress in lockstep)
where imbalance is rare, as seen in PageRank and MilliSort/MilliQuery [22]. Addressing this lim-
itation via dynamically sized packs is a path for future work. Ultimately, choosing between burst
and FaaS depends on locality needs, parallelism requirements, and the importance of coordinated
execution.

Coding limitations While burst computing introduces new capabilities for expressing parallel and
stateful workloads, it also imposes certain programming constraints that must be acknowledged.
The model is designed as a low-level primitive, offering developers greater flexibility rather than
prescribing orchestration logic. Similar to MP], it executes the same code across all workers while
assigning each a unique identity, enabling divergence in behavior. However, unlike MPI, bursts are
triggered with FaaS-like simplicity, abstracting away explicit resource management. The primary
coding complexity introduced lies in inter-worker communication, yet this is mitigated by using
programming primitives that are agnostic to worker count and locality, thereby simplifying devel-
opment. Although multi-burst orchestration—e.g., for full DAG-based workflows—remains future
work, it can leverage well-established techniques such as dependency persistence in object storage or
worker reuse across flares. A higher-level framework could encapsulate this coordination, offering
abstractions for DAG scheduling and state propagation across bursts [62, 11, 51]. Many real-world
applications (e.g., clustering, gradient descent, aggregation queries, N-body simulations) can already
be implemented within a single burst, avoiding orchestration overhead altogether. Furthermore, li-
braries could expose common distributed patterns (e.g., a distributed sort) via simple APIs, hiding
burst-level details from end users. Thus, while the model lacks full orchestration capabilities out of
the box, it provides foundational support for powerful abstractions and ensures parallel execution—a
property often missing in existing FaaS-based solutions, where developers must manually coordinate

Page 23 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

parallelism without system-level guarantees [11, 15, 5].

Serverless clusters Burst computing poses a step towards redefining the boundary between server-
less architectures and traditional cluster-based systems [16, 17]. Recent work has explored how to
emulate cluster-like capabilities atop existing FaaS platforms [11, 63]. However, our approach takes a
fundamentally different perspective: rather than adapting conventional cluster technologies to work
around the limitations of current FaaS substrates, burst computing seeks to evolve serverless ser-
vices themselves, introducing native abstractions and execution models that offer the parallelism,
coordination, and locality benefits traditionally associated with clusters—yet within a fully server-
less paradigm. This opens the door to realizing truly serverless versions of platforms like Spark,
Dask, or Flink, moving beyond the managed, but still serverful, offerings available today.

Conclusions In NEARDATA, we have presented burst computing, a novel cloud computing model
designed to address the growing demand to run sudden, variable, burst-parallel workloads without
provisioning resources in advance. We have reviewed the challenges and shortcomings of current
technologies (i.e., FaaS), and we have demonstrated the effectiveness and versatility of our proposed
solution.

Burst computing offers several key advantages over existing FaaS technologies, primarily the
addition of a group invocation primitive that allows the platform to manage jobs as a unit, instead of
independent function invocations. This raises tenant isolation to the job level and allows to allocate
resources en masse and apply worker packing, which in turn enables powerful locality between
workers. Our experiments and performance evaluations have shown that our platform achieves
significant improvements by exploiting this locality in job invocation latency, worker simultaneity,
code and data loading, and worker-to-worker communication with group collectives. Further, we
demonstrated speed-ups of 13X, and 2x in PageRank, and TeraSort, respectively, thereby validating
efficacy in real-world scenarios.

In conclusion, burst computing represents a significant advancement for serverless data process-
ing in the cloud, with potential to become a new paradigm of cloud services. It unlocks key limi-
tations of FaaS, becoming the next step forward to support applications previously stymied by its
restrictive model [14]. We believe that our contributions are just the substrate for further innovation
such as new workflow definition tools and orchestration engines that leverage burst computing jobs
and strive towards a simplified dynamic utilization of cloud resources.

Page 24 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

5 XtremeHub Compute for RAG: Serverless Vector DBs
51 Introduction

The exponential growth of unstructured data has created a pressing need to leverage Al and ma-
chine learning (ML) techniques to unlock its potential. Modern Al workloads, such as those using
Retrieval-Augmented Generation (RAG) models, rely heavily on generating vector embeddings [64]
from unstructured data (e.g., text, images, and audio) to enable efficient and meaningful analysis.
These embeddings convert complex, high-dimensional data into lower-dimensional vectors that pre-
serve semantic relationships, facilitating advanced tasks like natural language processing [65], image
recognition [66], and recommendation systems [67]. Consequently, the ability to manage vector em-
beddings is key for extracting value from unstructured data in AI/ML applications.

The need for managing vector embeddings has led to the rising popularity of vector databases
(vector DBs) [68, 69, 70, 71]. Vector DBs are specialized systems designed to store and retrieve high-
dimensional vectors efficiently [72]. They enable fast and accurate similarity search, making them
essential for Al and ML applications. In this sense, Pinecone [68], Weaviate [69], and Milvus [70, 71]
are, among others, examples of popular vector DBs used at scale in production analytics pipelines.

5.1.1 Motivation

Despite the specialization of their search and indexing algorithms, most distributed vector DBs rely
on a traditional cluster or serverful'® architecture [72, 73]. This requires that administrators carefully
manage the resources of the vector DB deployment. Under fluctuating or sparse query workloads,
this architecture can result in periods of over-provisioning —leading to higher cost— and under-
provisioning —causing saturation. Likewise, adapting such an architecture to handle high workload
burstiness is challenging.

In response to such architectural limitations, there is an emerging trend for porting vector DBs
to the serverless paradigm. In the industry, the main objective seems to be simplifying the provision-
ing of vector DBs and offering them “as-a-service” —and, in some cases, applying a pay-per-query
model. Instantiations of this trend include Weaviate Serverless Cloud [69], Upstash [74], and Amazon
OpenSearch Service as a Vector DB [75], to name a few.

However, the true realization of a serverless vector DB architecture goes far beyond simplified
provisioning: it lies in distributing the vector DB engine across cloud functions. Function-as-a-Service
(FaaS) providers, such as AWS Lambda [76], Azure Functions [77], or Google Cloud Functions [78],
deliver a powerful substrate for executing embarrassingly parallel workloads. Crucially, such a de-
sign has the potential to overcome the elasticity and burstiness challenges that serverful vector DB
architectures typically face.

Serverless vector DBs must distribute tasks across parallel cloud functions that are normally exe-
cuted on compute nodes in serverful vector DBs. These tasks include:

i) data ingestion, which consists in adding new vector embeddings to the system; ii) data parti-
tioning, which involves distributing a collection of vector embeddings into smaller pieces (e.g., data
objects in AWS S3); iii) data indexing, which generates indexes for efficient vector lookups within
dataset partitions; and iv) querying, which performs similarity searches on vectors across dataset par-
titions. While promising, building a serverless vector DB presents unique challenges from a design
perspective compared to serverful vector DBs (see Section 5.3).

5.1.2 Challenge: Stateless FaaS & Dynamic Data

The concept of a serverless vector DB is still in its early stages. Vexless [79] stands out as the pioneer-
ing work, demonstrating the potential of using cloud functions to parallelize vector search work-
loads. However, the design space for serverless vector DBs remains largely unexplored, particularly
when considering the challenges introduced by stateless FaaS platforms and dynamic datasets:

12The content of this section maps to tasks T3.1 and T3.2 and is related to the paper “Building Stateless Serverless Vector
DBs via Block-based Data Partitioning”, published in ACM SIGMOD"26.

1BWe use the term serverful for architectures built for a traditional cluster of servers.

Page 25 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Stateless FaaS: A key dimension in this space is the nature of the FaaS platform itself. The most
popular FaaS offerings —such as AWS Lambda [76], Azure Functions [77], and Google Cloud Func-
tions [78]— are inherently stateless. This means that functions cannot retain state across invocations
and cannot directly communicate with one another. In contrast, Vexless is built on Azure Durable
Functions [80], a stateful FaaS platform that supports direct message passing and persistent work-
flows. This model is hard to compare or port to stateless FaaS environments. While statelessness
imposes certain limitations, it also offers a highly elastic and cost-efficient execution model for em-
barrassingly parallel workloads that we aim to explore.

Dynamic Datasets: Another critical dimension is data management, particularly in the context
of dynamic datasets that evolve over time. A practical serverless vector DB must support efficient
ingestion, partitioning, indexing, and querying of data that grows continuously. In NEARDATA,
we evaluate the trade-offs of clustering-based (e.g., K-means) data partitioning strategies used in the
state-of-the-art [79] when applied to a stateless FaaS setting.

5.1.3 Contributions

This project aims to empirically explore the feasibility of building serverless vector DBs!* atop state-
less Faa$S platforms from two angles: data partitioning and comparison with serverful vector DBs. First, a
core contribution is to identify the key limitations of clustering-based data partitioning for dynamic
datasets and evaluate a block-based data partitioning alternative. Second, we empirically show that
block-based data partitioning in serverless vector DBs enables competitive system designs compared
to a serverful one. In summary, our contributions are:

* We present an overview of serverless vector DBs, highlighting their key components and design
trade-offs. Given their recent emergence, this project is the first to offer a timely overview of
this new family of systems (see Section 5.3).

¢ We identify the main limitations of using a clustering-based data partitioning scheme for server-
less vector DBs, as it is the approach used in the state-of-the-art [79] (see Section 5.4).

* We provide an experimental comparison of clustering-based data partitioning with a simple,
yet practical, block-based data partitioning scheme for serverless vector DBs (see Section 5.6).

¢ We show through experimentation that a serverless vector DB using block-based data partition-
ing is competitive with a serverful vector DB (Milvus) in terms of indexing time, query latency,
recall, and economic cost (see Section 5.7).

We have built a serverless vector DB prototype on AWS Lambda. Our experiments show that a
block-based data partitioning outperforms a clustering-based scheme in terms of partitioning perfor-
mance (3.5x to 5.8x) and cost (56% to 63%), while querying times vary from 29.9% faster to 31.2%
slower based on the configuration. Also, we find that techniques proposed to enhance clustering-
based partitioning [79], such as balancing data partitions and vector redundancy, may not offer clear
benefits overall. Finally, when comparing our prototype with Milvus, we achieve better partitioning
time (9.2x to 65.6x), similar query recall, and an acceptable overhead in querying in exchange of
cost reduction (66% to 99%).

5.2 Background

In this section, we provide the necessary background to understand the remainder of the section:
Faa$S and vector DBs.

5.2.1 Function-as-a-Service (FaaS)

The serverless computing paradigm is a cloud execution model where developers build and deploy
applications without managing the underlying infrastructure [81]. Instead, cloud providers dynami-
cally handle provisioning, scaling, and maintenance. This enhances agility, reduces operational com-
plexity, and optimizes resource utilization by charging only for actual code execution.

14The term “serverless vector DB” in this project refers to systems built on stateless FaaS.

Page 26 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

The most prominent form of serverless computing is Function-as-a-Service (FaaS) [76, 77], which
allows developers to write modular functions triggered by specific events, such as HTTP requests,
database updates, or message queues. FaaS follows an event-driven programming model, where each
invocation is ephemeral, stateless, and performs a single task. This allows fine-grained, pay-per-use
billing, based on the number and duration of invocations, typically measured in milliseconds. Unlike
traditional server-based pricing models that incur costs for idle resources, FaaS promotes automatic
scaling and efficient utilization. Developers can focus entirely on business logic, which is key for
improving developer productivity and democratizes access to cloud platforms.

Importantly, most FaaS services are stateless. This statelessness has limitations, such as cold start
latency (i.e., start-up delay after a period of inactivity) [82, 83], lack of persistent state, and barriers
to inter-function communication [84]. Note that Microsoft offers stateful FaaS extensions like Azure
Durable Functions [80] and Durable Entities, enabling persistent state and workflow orchestration.
However, these solutions are still niche and tightly coupled to a specific vendor, limiting the general-
izability of the applications that use them. Building a serverless vector DB on top of a stateless FaaS
introduces unique challenges that we explore in NEARDATA.

5.2.2 Vector DBs

Typical database operations consists of two main phases: (i) Data ingestion and storage, which uses
different schemas and generates indexes for fast retrieval; (i) Querying, where the database performs
efficient lookups on the stored data. The architecture of vector DBs is similar to general-purpose
ones. However, vector DBs store and index high-dimensional vectors, using nearest neighbor search
with similarity metrics (e.g., cosine similarity, dot product, or Euclidean distance). Due to the high
computational cost of exact nearest neighbor search, vector DBs employ approximate nearest neigh-
bor (ANN) algorithms with specialized index structures (e.g., HNSW, IVE, PQ) to balance recall and
latency [85].

When the collection of stored vector embeddings grows, vector DBs face two main scalability-
related challenges: (i) the index(es) must often be recomputed when the stored data changes, and
(ii) as the number of vectors grows, searching becomes slow. For this reason, in recent years, a new
generation of vector DBs have emerged to address these challenges via a distributed architecture and
parallel data management. In a distributed vector DB, the different tasks are performed by individual
services that can be scaled independently. Moreover, a vector dataset is split into chunks, so vector
DB tasks can be executed in parallel. Interestingly, this architecture shift introduces a new dimension
to the vector DB operation that is the primary focus in NEARDATA: data partitioning.

One instance of distributed vector DB is Milvus [70, 71]. It scales each process independently as
services, with nodes (servers or VMs) assigned to specific roles: Data, Index, or Query. Data nodes are
responsible for ingestion, partitioning, and storage management. Index nodes create indexes for data
chunks, while Query nodes load these indexes and data into memory to respond to queries. Addi-
tionally, specialized nodes such as Query Coordinators and Data Coordinators aggregate results and
manage data flows, including load balancing. Although services are scaled independently, the state-
ful nature of this cluster architecture can be rigid and difficult to adapt to rapid workload changes.
It also requires an administrator to carefully right-size the deployment. Solving such elasticity and
provisioning issues is a key goal of serverless vector DBs.

5.3 Serverless Vector DBs: An Overview

Building a vector DB on top a FaaS service is an emerging trend. In this section, we contribute
a general description of the architecture and design trade-offs of this new family of systems (see
Fig. 14).

5.3.1 Architecture

A serverless vector DB retains the core components of a serverful vector DB but leverages serverless
compute services for elasticity and cost efficiency. A serverless vector DB consists of two service
types: data services for ingestion and storage, and compute services for partitioning, indexing, and

Page 27 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Y

Vectors Ingestion R EEEE RN o~ A
H Compute services Storage service
'
'
'
'
T
'

\
'
'
Data streaming : S
services ' Partitions
'
'
'
'
'
'

' J
‘
] | e }H—]
| N
‘
<
\

Figure 14: Key processes of a serverless vector DB.

Indexes

’
M e eeeeeeaeoe- . v

querying. The data ingestion component handles vector inserts, supporting both batch and streaming
data [86] through event brokers (e.g., Kafka [87], AWS Kinesis) or event-driven pipelines (e.g., AWS
Lambda with S3 triggers). After ingestion, vectors undergo partitioning and preprocessing (e.g., K-
means clustering) before being stored in object storage (e.g., AWS S3) for long-term retention.

Data partition indexing is a crucial process performed by index generator functions, which trans-
form vector partitions into efficient approximate nearest neighbor (ANN) search structures. Common
indexing techniques include tree-based (KD-Tree), graph-based (HNSW), and quantization-based
(IVE-PQ) approaches, enabling fast vector retrieval. These indexes, along with the raw vector data,
are stored in scalable object storage systems, ensuring durability and high availability. Since indexing
workloads are intermittent, FaaS services are well-suited for dynamically executing index generation
without maintaining persistent compute resources.

Query execution in a serverless vector DB is distributed and parallelized across multiple par-
titions. Typically, a query coordinator orchestrates the execution of serverless functions responsible
for retrieving candidate vectors from different partitions. These functions compute similarity scores
(e.g., cosine similarity, Euclidean distance) and return partial results that are then aggregated using
a reduce function. Given the stateless nature of cloud functions, query coordination mechanisms (e.g.,
Step Functions) are essential for synchronizing results. The final ranked vectors are returned to the
user and functions terminate their execution.

By combining cloud functions with scalable storage, a serverless vector DB eliminates the need
for persistent infrastructure while maintaining high-performance search capabilities. Compared to
serverful architectures, this approach automatically scales with workload demands, optimizes cost
through pay-as-you-go billing, and reduces operational overhead. This makes serverless vector
databases a compelling choice for applications requiring efficient and scalable similarity search, such
as recommendation systems, image retrieval, and Al-powered analytics.

5.3.2 Vector DB Design: Serverful vs Serverless

Next, we discuss the architectural differences between a popular serverful vector DB (Milvus) and
existing serverless counterparts (Vexless, this project). In Table 5, the systems compared represent
different architectural approaches to vector DB management.

Milvus is a popular example of a serverful vector DB architecture designed to manage vector
embeddings as a service. One of the primary advantages of its design is its ability to scale both
horizontally and vertically, allowing the addition of more resources per node to handle increasing
workloads. This makes it particularly well-suited for handling continuous query workloads with
moderate fluctuations, as it provides fast interactive queries. In a typical deployment, Milvus uses
event streaming systems (e.g., Kafka, Pulsar) to achieve high-performance data ingestion. The low
latency and high performance of service nodes are key advantages of the serverful architecture over
serverless counterparts, making it an attractive option for applications that require low-latency guar-
antees on vector search.

Page 28 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA
Table 5: Comparison of Vector DB architectures.

Dimension Milvus [70, 71] Vexless [79] This project

Architecture

Communication

Serverful

Distributed coordination (gRPC)

Serverless (Stateful, Azure Durable
Functions)

Stateful functions with message
passing

Serverless (Stateless, AWS Lambda)

Object storage-based communica-
tion

Elasticity Horizontal node scaling Automatic function scaling Automatic function scaling

Operation Node management/maintenance Automatic function provisioning Automatic function provisioning

Billing Node/hour based Pay per function invocation Pay per function invocation

Data Ingestion Data nodes (streaming-based) Not supported (static datasets) Supported (data object ingestion)

Data Partition- Shard-based (dynamic sharding Clustering-based (balanced K- Block-based (fixed-size parallel

ing with load balancing) means with redundancy) blocks)

Data Indexing Per shard segment on Index nodes Per cluster on cloud functions* Per block on cloud functions (IVF)
(multi-algorithm) (HNSW)

Querying Query nodes (similarity/multi- Cloud functions on partition subsets ~ Cloud functions on entire dataset

vector search) - interactive /batch

(similarity search) - interactive

(similarity search) - batch

*Vexless actually performs indexing in a centralized VM, but as we show in Section 5.6 this phase can be parallelized.

However, a serverful vector DB deployment may be cumbersome to manage under high work-
load fluctuations and burstiness. This is because this architecture introduces additional complexity
and operational burden to adapt the service to the workload needs. Furthermore, workload sparsity
can lead to low cost-effectiveness for a serverful vector DB, as resources can be underutilized dur-
ing periods of low activity. In such scenarios, serverless vector DBs have emerged as an interesting
alternative, building on top of FaaS offerings (e.g., Azure Functions). By automatically provision-
ing cloud functions and billing them on a per-execution basis, serverless vector DBs can minimize
operational overhead and reduce cost. As a result, serverful and serverless vector DB architectures
provide trade-offs that make them ideal for different scenarios, thus requiring careful consideration
of the specific use case at hand.

When focusing on serverless vector DBs, there are fundamental differences between Vexless and
this project. Vexless leverages a stateful FaaS platform (Azure Durable Functions) for keeping data in
memory and enabling direct function re-invocation, thus avoiding cold starts. These properties allow
Vexless to maintain low query times in interactive mode, as previously loaded data can be reused across
queries without repeated access to external storage. However, Azure Durable Functions represents a
niche FaaS model that is not widely adopted across cloud providers. In contrast, our work explores
stateless Faa$S platforms —such as AWS Lambda, Azure Functions, and Google Cloud Functions—
which represent the mainstream model today. Stateless FaaS functions are ephemeral and cannot
retain state between invocations, which means that each query must fetch data from external storage
(e.g., object stores), introducing additional latency that can impact interactive performance. While
this model imposes certain trade-offs, our experiments show that we can amortize statelessness costs
via query batching (see §5.5). Importantly, the fundamental differences between stateful and stateless
FaaS platforms make it difficult to directly compare serverless vector DBs built on top of different
platforms. As such, this project evaluates exclusively stateless FaaS as a widely available foundation
for serverless vector DBs.

Crucially, the design of Vexless cannot handle continuous data ingestion as it assumes static
datasets. Vexless performs a clustering-based data partitioning and indexing approach that must
be executed in advance, limiting its ability to handle dynamic datasets. In contrast, we propose a
block-based data partitioning approach that enables continuous data ingestion to the system, pro-
viding greater flexibility and scalability. In the next section, we analyze in depth the trade-offs of
data partitioning between Vexless and this project.

5.4 Trade-offs in Data Partitioning

We have overviewed the architecture of serverless vector DBs. Next, we focus on a critical aspect
when distributing a vector DB engine across stateless cloud functions: data partitioning. Concretely,
we compare the state-of-the-art clustering-based data partitioning [79] with our block-based data

Page 29 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

partitioning scheme (see Fig. 15) regarding three dimensions relevant in a serverless scenario: i)
partitioning complexity, ii) load balancing, and iii) query performance.

Block-based £ o H i
I Partitioning § | Indexing ! Querying
I 1 1 1 :
1 Byte-range | | 1 1 ' ngry Search query
Data f—— reads I—) Bt —)I I—) Indexes E Coordinator
1 / 1 1 H 1 '
| stream 1 - 1 H
segments
1 58 1 NN i EX
~--- L 8
-- = 1 .a
. >
Clustering-based l’]islﬁblﬂe‘ . ! D
Data S Vectors : |, Indexing | :
'
v r @ r @ - @
¢ Crucering | 1 D J !
Clustering —> ata —> —> Indexes
|| | 1 ! 1 Partitions 1 1 ' G a a
| || 3 T rfo ' :
1 *| Centroids | 1 1 1 | a
S ’ A v S / H

Figure 15: Life cycle of a serverless vector DB comparing block-based and clustering-based data
partitioning. Querying is similar architecture-wise in both cases. Still, while the block-based scheme
must query on all partitions, clustering-based partitioning allows the query coordinator to filter data
based on the distance between the query vector and a partition’s centroid.

5.4.1 Clustering-based Data Partitioning

Partitioning complexity: This partitioning method creates clusters of nearby vectors aiming to accel-
erate queries by filtering out unrelated data partitions. To this end, it uses a three-step indexing
pipeline. First, an unsupervised clustering algorithm, such as K-means, is implemented to cluster
nearby vectors. It is important to note that clustering algorithms like K-means, hierarchical, or spec-
tral clustering are computationally complex and require the entire dataset to operate. In practice, while
distributed versions of K-means have been investigated [88], it seems inefficient to implement it on
top of cloud functions. For this reason, we found that resorting to a virtual machine for executing the
clustering algorithm is a feasible alternative. Once the clustering algorithm completes, the dataset
is partitioned and distributed among multiple cloud functions, along with the centroids, to classify
the vectors to their clusters/partitions. Finally, multiple parallel cloud functions index the dataset
partitions containing nearby vectors.

Load balancing: Clustering algorithms like K-means can lead to unbalanced dataset partitions,
where some clusters may contain significantly more vectors than others. To address this issue, bal-
anced versions of K-means have been developed, which ensure equal partitioning of datasets across
clusters. As pointed out in Vexless [79], producing balanced data partitions is crucial in a serverless
setting to avoid straggler cloud functions. Stragglers can delay query responses due to uneven data
distribution. However, the balanced version of K-means incurs a higher computational cost com-
pared to the standard algorithm, making it impractical for large datasets [89, 90] under a continuous
ingestion workload.

Query performance: This method groups vectors based on their closeness, enabling users to discard
partitions with vectors far from the query input. Upon receiving a query, a clustering-based data par-
titioning system identifies the centroids closest to the query vector. Based on a data discard parameter,
only the closest centroids are returned. The similarity search is then performed exclusively on data
partition indexes associated with these nearby centroids. However, querying fewer centroids reduces
query recall, as it increases the likelihood of missing the actual closest vectors. Users must understand
the trade-off between data filtering and query recall, which can be challenging since many applica-
tions require high recall (e.g., > 90%). To address this, Vexless [79] incorporates a data redundancy
mechanism that replicates vectors near partition boundaries into adjacent partitions. In Section 5.6,
we evaluate the behavior of vector redundancy for clustering-based partitioning.

Page 30 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

5.4.2 Block-based Data Partitioning

Partitioning complexity: In a block-based scheme, the complexity of data partitioning is significantly
reduced by not requiring a view of the entire dataset. This approach creates equal-sized data parti-
tions, which simplifies the process and ensures uniform distribution of data. Additionally, the ability
to partition these chunks in parallel improves scalability, as multiple chunks can be processed simul-
taneously without dependencies on other parts of the dataset.

Load balancing: By creating equal-sized chunks, the scheme ensures that each cloud function han-
dles a uniform amount of data, thus preventing straggler functions. Moreover, the ability to partition
chunks in parallel allows multiple cloud functions to operate simultaneously, maximizing resource
utilization.

Query performance: A block-based data partitioning scheme does not consider vector relationships,
requiring all partitions to be queried for similarity searches. This results in fast and simple parti-
tioning and indexing phases, avoiding the complexity of analyzing vector relationships. However,
the querying phase becomes more computationally expensive, as it must query all partitions with-
out discarding initially dissimilar vectors. Consequently, all vectors are downloaded and queried
across indexes, increasing computational requirements and potentially lengthening query times. This
trade-off highlights the balance between efficient indexing and comprehensive querying for accurate
results.

5.5 Experimental Methodology

In this section, we provide details on our serverless vector DB implementation, as well as the experi-
mentation setup and methodology.

5.5.1 Prototype Implementation

We have developed a serverless vector DB prototype that leverages cloud functions (AWS Lambda) to
parallelize the execution of vector DB compute services [91]. Our prototype orchestrates the invoca-
tion of stateless cloud functions and transfers data through object storage. The implementation uses
Lithops [92], a serverless framework for running cloud functions in parallel in map-reduce fashion.
Lithops simplifies Python cloud function development and allows seamless execution on multiple
Faa$S services, Kubernetes clusters, or VMs. Our prototype is highly configurable with many pa-
rameters such as the number of partitions, cloud functions for each phase, index parameters, etc. A
complete list is available in the prototype repository and documentation.

Partitioning workflow The main goal of our prototype is to evaluate different data partitioning
schemes in serverless vector DBs. Irrespective of the scheme, the data partitioning process reads
a dataset from and stores N partitions to object storage. To generate indexes, the data partitions
are distributed across a set of functions using a Lithops map operation. Each function creates the
corresponding index (or indexes) using Faiss [93] and uploads it to object storage. We use an Inverted
File (IVF) configuration of k = 512 and multi-probe at 32. After extensive testing, this proved to give
the best results overall for the datasets explored in this evaluation.

Query workflow When querying the data, our prototype acts as a query coordinator and uses two
Lithops maps to perform a map-reduce operation. Due to the statelessness of cloud functions, queries
are processed in batches, with each Lithops operation (a set of cloud functions) handling a full batch.
The map phase distributes the data partitions among parallel functions, each of which runs all queries
on the corresponding index (or indexes) and generates partial similarity responses. If a function
processes multiple partitions, it combines the partial results before passing them to the reduce phase.
The reduce phase aggregates the map responses and produces the overall top-k similarity results.
Finally, our prototype collects the results and computes their accuracy. This process enables efficient
and scalable similarity search, leveraging the power of distributed computing and object storage.

Block-based approach Data partitioning is applied directly on the indexing functions. Since this
approach simply splits the data into chunks, the functions read the dataset from object storage with

Page 31 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Algorithm 1 Vector distribution for clustering-based partitioning.

1: Input: Database D of m vectors in R". Clusters cj, ¢y, ...,cn with centroids Cq, Gy, ..., Cy, and
labels for each vector in D. Percentage of redundancy threshold r.

2: Initialize: For each cluster c;, initialize indexing partition I;.

3: for all vector vin D do

4: cy < label from clustering assignment of v.
5: Add v to I,
6: fori =1,k wherei # h do
7: ifd(v,C;) < (1+r)d(v,Cp,) then
8: Add v to I;.
9: end if
10: end for

11: end for

byte-range requests to get a specific partition. Indexing is then applied to each partition. For query-
ing, the full batch of queries is sent to all parallel functions and applied to all N partitions.

Clustering-based approach Clustering-based partitioning requires three additional steps: 1. dataset
clustering, 2. vector distribution with redundancy, and 3. partition filtering in querying.

First, clustering is executed on a VM and produces a set of N clusters ¢y, ¢, ..., cy with centroids
C1,Cy, ..., Cy, and a label for each vector in the database that assigns it to a cluster. The baseline
clustering algorithm is the Faiss K-means implementation. We also explore the balanced version [94]
proposed in Vexless [79]. Using a VM for computing the clustering is the strategy also followed in
Vexless and it is a favorable configuration, as it is faster and more practical than implementing this
phase in a distributed approach on top of cloud functions.

After clustering, we must distribute the vectors to their corresponding partition. While Vexless
does this on the same VM where clustering happens, we parallelize this step with a Lithops map oper-
ation on cloud functions to speed up the process. Each function reads a part of the input dataset from
storage using byte ranges (like the blocks implementation) and applies the distribution logic layout
in Algorithm 1. This logic includes vector redundancy, which adds boundary vectors to multiple
partitions to improve search accuracy. We develop our own redundancy logic for vector redundancy
because Vexless does not offer specific guidelines or code for this purpose. Our solution is based on a
redundancy percentage!® r that acts as threshold on how close a second centroid must be compared
to the closest for that vector to also be included in the second partition. Initially, vectors are added
to the partition that K-means assigns them to.!® Then the vector is added to other partitions if the
distance to their centroid is lower than to the first one extended by r. For instance, if the clustering
assigns a vector v to a cluster ¢, with its centroid Cj, at distance d(v,Cj,) = 1, with r = 5% we will
add v to any partition whose centroid C; is at d(v, C;) < 1.05.

To optimize queries, we employ a data partition filtering technique that selectively discards par-
titions. We can configure the system to search only on Ngearen partitions, given as a number or as a
percentage of the total number of partitions N. During query coordination, we rank partitions based
on the proximity of their centroid to the query vector and select the top Ngearch for searching. This
process generates a mapping that determines which partitions to search for each vector in the query
batch, which is then sent to the query functions for execution. Querying is aware of vector redun-
dancy and checks for potential duplicates. Although all functions are typically spawned for each
batch, the search computation is reduced by 100 — Nearch %, resulting in improved efficiency.

15 As opposed to Vexless, which uses an arbitrary distance value.
16This is the closest centroid for the baseline K-means, but it could be another one in the balanced version of the algo-
rithm.

Page 32 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

5.5.2 Setup

Deployment All experiments are run on Amazon Web Services (AWS) using a combination of AWS
Lambda, EC2, and S3. In the case of our serverless prototype, the coordination runs on a c71i.xlarge
EC2 instance. All data is stored in S3, including the datasets and the intermediate results of the
processes. AWS Lambda functions are configured with 10 GB of memory for indexing and 8 GB
for querying, which gives them 6 and 4 vCPUs, respectively, according to service documentation.!”
The indexing process is parallelized on 16 functions for all configurations, splitting partitions evenly
among them. Querying uses 4 functions (or 8 in Fig. 24) in the map phase (also splitting partitions
evenly) and a single one for the reduce phase. The block-based approach does not need any ad-
ditional resources. For the clustering-based approach, K-means clustering runs on a c7i.12xlarge
instance, which also acts as coordinator in these executions. Vector distribution uses 16 parallel func-
tions (10 GB). Datasets must be stored in an S3 bucket, while query files must be uploaded to the
client EC2 instance.

The architecture of Milvus makes it impossible to run on cloud functions without considerable
modifications. FaaS cannot be used to host a serverful technology due to its statelessness and a
single function cannot fit a Milvus deployment capable of handling our selected datasets. There-
fore, we deploy Milvus on c7i.4xlarge and c7i.8xlarge VMs.!® This setup matches the CPU and
memory resources of our serverless vector DB prototype, ensuring a fair and comparable evaluation.
Milvus is set to use the same IVF configuration for indexing as our prototype. These experiments
also use a c7i.xlarge instance as a client running the vectordbbench tool [96], developed by the
same team as Milvus (Zilliztech). Specifically, we use a custom docker container image that includes
the vectordbbench tool, all its requirements, and both the datasets and query vectors in the specific
format.

Methodology Datasets containing collections of vectors are initially stored in object storage as a
single object each. All processes of a vector DB are evaluated on different number of partitions
N = {16,32,64,128}, and use equivalent resources in all systems, either with cloud functions or
VMs. Data ingestion, partitioning, and indexing are reported aggregated as “data partitioning time”
because it is the most significant part and the focus of our evaluation. All times reported include
the corresponding cloud function invocation latency. Ingestion is always from object storage and
equivalent for all systems. Indexing is an independent, stateless process that only depends on the
size of the partitions, not the partitioning scheme. We did not find significant variation between the
evaluated approaches. Reported results are averaged across > 5 executions, and whiskers in plots
denote standard deviation ().

We evaluate search accuracy using the recall metric, which measures the proximity of the re-
sponse to the true neighbors of the query vector, with 100% recall indicating a perfect score. To
calculate recall, we first identify the true neighbors of all query vectors using a Flat Index on the
entire dataset and store them in object storage. During evaluation, each query execution is compared
to these pre-computed true results to assess accuracy. For querying evaluation, we utilize a batch
of 1000 queries extracted from the original query file accompanying each dataset, with each query
requesting the top-10 nearest vectors.

We calculate cost based on the processing time of the experiments and the resources being utilized
at each moment. We use current AWS pricing as of March 2025. For the serverless implementation,
cost is the sum of the running time of all cloud functions plus invocation fees. We account the cost
of VMs as the fraction corresponding to the seconds they are actively used in the experiments. Later,
we also show the cost of having a serverful system running for longer periods of time, even if idle,
as in a real scenario.

Datasets We use three publicly available datasets that are commonly employed to evaluate the
quality of approximate nearest neighbors search algorithms in vector DBs: (i) DEEP [97], which we

7Functions have one vCPU per 1769 MB and scale both resources proportionally [95].
18Experiments with larger VMs for Milvus (e.g., c7i.24x1arge to match serverless indexing resources) suggest it under-
utilizes resources during indexing.

Page 33 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Il Unbalanced Bl%lanced

1000

—_
(=
(=]

IIIIIII‘ IIIIIIIII 1

Vectors per
Partition (x103
o
1

(=]
|

. PR

Partitioning Time (s)
[
=]
|

o nln R

16 32 64 32 64
Num. Partitions (N) Num. Partitions (N)

[u—
[o

Figure 16: Partitioning time and vector dispersion across partitions for the two K-means versions
(DEEP100k dataset).

use in subsets of 100k, 1 million, 10 million, and 100 million embeddings of the Deep1B with 96 di-
mensions normalized with L2 distance extracted from the last fully-connected layer of a GoogLeNet [98]
model trained with the ImageNet [99] dataset; (ii) SIFT [100], which consists of 10 million embed-
dings with 128 dimensions, the Scale Invariant Feature Transform (SIFT) transforms the image data
into a large number of features (scale invariant coordinates) that densely cover the image features;
and (iii) GIST [101], which consists of 1 million embeddings with 960 dimensions, a gist represents
an image scene as a low-dimensional vector.

5.6 Clustering vs Block-based Data Partitioning

In the first experimental section, we aim to answer the following questions regarding data partition-
ing in serverless vector DBs:

(1) What is the cost of achieving balanced data partitions in the clustering-based approach? (Sec-
tion 5.6.1)

(2) How do query recall and storage overhead trade off with vector redundancy in clustering-based
partitioning? (Section 5.6.2)

(3) How do clustering-based and block-based partitioning compare in terms of data partitioning and
indexing performance? (Section 5.6.3)

(4) What are the query performance differences between clustering-based and block-based data par-
titioning? (Section 5.6.4)

(5) Does clustering-based partitioning amortize partitioning costs via query filtering, compared to a
block-based scheme? (Section 5.6.5)

5.6.1 The Cost of Balanced Data Partitions

As a representative of clustering-based data partitioning for serverless vector DBs, Vexless empha-
sizes the need for balanced data partitions to prevent straggler cloud functions. To this end, it pro-
poses a balanced K-means algorithm that maintains near-equally-sized vector partitions. We analyze
the cost of keeping balanced data partitions by deploying two clustering algorithms in our proto-
type: unbalanced K-means (Faiss default implementation) and balanced K-means [94]. The latter
formulates the cluster assignment step as a Minimum Cost Flow linear network optimization prob-
lem [102].

First, we focus on the data partitioning and indexing cost for both K-means versions. Fig. 16
(right) shows the number of vectors per partition in both cases. Naturally, the balanced K-means
exhibits a significantly lower dispersion of vectors per partition (e.g., ¢ = 0.541 x 10° for 16 parti-
tions) compared to unbalanced K-means (e.g., ¢ = 1.778 x 10° for 16 partitions). However, Fig. 16
(left) also shows the differences in computational complexity related to partitioning and indexing the
DEEP100k dataset for unbalanced (O(nc)) and balanced K-means (O((n3c + n%c¢? 4 nc®) log(n +¢)))

Page 34 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 6: Query performance comparison or the two K-means versions on DEEP100k dataset (single
batch of 1000 queries).

Params Balanced Unbalanced
N Ngearch Time (s) +0 Recall Time (s) +0 Recall
16 1 7103 0924 71.30 7491 1.791 70.68
16 4 6.716 0.031 9255 6.742 0.026 9297
16 8 6.712 0.026 95.01 6.789 0.048 95.37
16 12 6.771 0.026 9549 6.779 0.066 95.64
16 16 6.761 0.048 9552 6.825 0.077 95.65
32 1 7.095 0.874 63.54 7118 0923 65.59
32 8 6.766 0.049 94.35 6.750 0.031 94.75
32 16 6.772 0.036 95.64 6.823 0.036 95.90
32 24 6.856 0.027 95.81 6.860 0.062 96.05
32 32 6.934 0.048 95.82 7128 0.343 96.05
64 1 7127 0904 60.54 6.708 0.029 60.43
64 16 6.815 0.065 96.44 7247 0.888 96.34
64 32 7.699 0.993 97.03 8315 0.976 96.97
64 48 8.811 0480 97.12 9371 1.706 97.03
64 64 9.061 0.425 97.13 10.287 2.169 97.06
Redundancy: ——0% 1% 2% e 5%
N =32 N =64 N =128
100 - 100 - 100

Figure 17: Effect of redundancy () and Nsearch On recall depending on the total number of partitions
(N).

algorithms. Visibly, using the balanced version of K-means incurs from 35x up to 96x higher par-
titioning time, mostly due to the computation of centroids. We could not experiment with larger
datasets using the balanced K-means version due to the growing clustering times.

One could think that higher partitioning and indexing cost may be linked to significant advan-
tages in query performance. In Table 6, we observe that the balanced K-means algorithm outper-
forms the unbalanced version in terms of query time, with an average reduction of 2.6% across all
experiments, and a maximum reduction of 13.5% for N = 64 and Ny, = 64. In terms of recall,
the balanced K-means algorithm achieves an average increase of 0.3% across all experiments, with
a maximum increase of 0.8% for N = 16 and N4, = 1. The standard deviation of query times is
also halved on average for the balanced K-means algorithm, indicating more consistent performance.
However, such advantages seem modest compared to the cost related to data partitioning and index-
ing. This is especially true when considering large and/or dynamic datasets that require continuous
indexing activity.

Conclusion. Balanced clustering algorithms are costly to compute and offer modest query gains,
making them unsuitable for efficient dynamic dataset partitioning in serverless vector DBs.

Page 35 of 108

90 - 90 —- 90 -
Zoom: 95-99 Zoom: 95-99 Zoom: 95-99
9 : 99 = 99 4
80~ 98 = e 80 - 98 = i 80_ 08 -
97— =7 97 - 97 -
70~ 96~ 3 70 - 9%6- — 70 - ORI
BT BT N 95T 1
60 = I |1 8 1|6 24 32| 60 - I |1 16 3|2 8 6% 60 - I |1 32 6|4 % 12|8
1 8 16 24 32 1 16 32 48 64 1 32 64 96 128
Nsearch Nsearch Ngearch

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 7: Impact of vector redundancy () on the vectors per data partition standard deviation (¢) for
DEEP100k dataset.

Vector redundancy (r) Standard deviation ()
N=16 N=32 N=64

r = 0% (Unbalanced K-means) 1778 903 378

r = 0% (Balanced K-means) 541 264 138

r = 5% (Balanced K-means) 1491 1792 660

Redundancy: 1% 2% 5%

9 w
g E20-] I g5
2 ' I 1 P
< o T < > 50
&g 10+ g%
Q O Q
kBRI O <
5 0
A~ | | ! i Z OJI .I ll II
16 32 64 128 16 32 64 128
Num. Partitions (N) Num. Partitions (N)
QL - w
gE” I 2 8100~
&= 3]
2w 3.0
< g L < >
g2 I L%
o 3 o ° 50-
E=p= P & 3 Eg
SERIES S S 0
~ I l l I o= .| i i
16 32 64 128 16 32 64 128
Num. Partitions (N) Num. Partitions (N)

Figure 18: Percentage of increase in partitioning time and stored vectors for different r values with
respect to no redundancy. DEEP10M dataset on top, GIST1M dataset on bottom.

5.6.2 The Effect of Vector Redundancy

Vexless contributes a vector redundancy mechanism to mitigate loss in query recall when filtering
data partitions according to the input vector distance to centroids. Next, we provide an evaluation
of the effect of incorporating vector redundancy. The vector redundancy implementation details can
be found in Section 8.6.

Retaking the discussion on partition load balancing, Table 7 shows the impact of vector redun-
dancy (r) on the dispersion of vectors per data partition (¢). Visibly, adding vector redundancy to
the balanced K-means version re-introduces load imbalance across partitions. For example, in the
DEEP dataset, setting r = 5% makes the dispersion of vectors per data partition (¢) to be up to 1.98x
worse than the unbalanced K-means version (N = 32). This insight is important, as Vexless proposes
using two techniques that seem to have conflicting outcomes. Note that given the previous results,
the remainder of our analysis uses the unbalanced version of K-means.

Fig. 17 shows the recall of search queries based on the number of partitions available (N) and
searched (Njecp). Vector redundancy exhibits a 3% to 16% improvement in query recall compared to
the baseline (i.e., no redundancy) when searching in the closest data partition (Ns.,., = 1). However,
for Ngesren = 1, we also observe that query recall is relatively low (< 90%), which may not be precise
enough for many applications. At the same time, the recall improvements of vector redundancy
become less evident (< 2%) as Narei, increases.

Interestingly, vector redundancy has additional cost in terms of data partitioning and indexing
time, as well as storage overhead. Fig. 18 (left) shows the relative increment in data partitioning
and indexing time depending on the vector redundancy level for DEEP10M and GIST1M datasets.

Page 36 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

M Blocks Clustering

= N =16 DEEP1M

o 400~ x =

£ ok x

Sl I = =

o

£ 200~

g 25~

8

D —em N

A~ 100k 1M 10M 16 32 64 128
Dataset Size (DEEP) Num. Partitions (&)

Figure 19: Partitioning time comparison for different data volume and number of partitions (N).

Table 8: Partition size (in MiB) balance for a clustering-based approach when using the entire
DEEP10M dataset (Full) or only the first 1000 vectors (1k).

16 Clusters 32 Clusters 64 Clusters
Statistic Full 1k Full 1k Full 1k

Min 90.00 61.00 52.00 1.30 27.00 1.00
Max 300.00 603.00 171.00 263.00 142.00 177.00
Mean 233.62 233.64 11697 11688 5852 59.29
o 5194 8718 2849 6187 21.19 39.22

CcvV 0.22 0.37 0.24 0.53 0.36 0.66

In case of DEEP, redundancy seems affordable up to r = 2% if N < 64 (< 5%). However, higher
r or N configurations increase processing time between 9% to 19% on average. Storage overhead
(right of Fig. 18) also grows from 9% up to 80% depending on r and N. GIST, which has a higher
dimensionality, suffers even more from this cost growth, reaching a 40% overhead in processing time
and more than doubling stored vectors for r = 5% and N = 64.

Conclusion. The benefits of vector redundancy are limited to searching very few partitions (e.g.,
Nsearen = 1) and still result in low query recalls (< 90%) that may not meet the needs of many
applications. Considering the load balancing, indexing, and storage costs, the general applicability
of vector redundancy is unclear.

5.6.3 Clustering vs Blocks: Data Partitioning

Next, we compare the proposed block-based data partitioning with the clustering-based counterpart
(unbalanced, no redundancy) in terms of data partitioning and indexing time (see Fig. 19). As de-
scribed in Section 5.5.2, we use 16 cloud functions for indexing data partitions in both cases, whereas
the clustering-based data partitioning uses an additional c7i.12xlarge VM for computing the cen-
troids.

As expected, for a fixed dataset size (DEEP1M), the block-based partitioning is not sensitive to the
number of partitions (see Fig. 19, right). The main reason is that block-based partitioning executes in
an embarrassingly parallel fashion and can be performed with parallel byte-range reads from storage.
On the other hand, the stateful nature of clustering-based data partitioning requires a complete view
of the dataset and its complexity increases with the number of data partitions (i.e., clusters).

However, the real limitation of clustering-based data partitioning is rendered when scaling the
dataset size for the same amount of resources (Fig. 19, left). Visibly, increasing the dataset size from
100k to 1M and from 1M to 10M leads to data partitioning times 3.6 x and 8.6 x higher, respectively.
The main reason is that the K-means clustering stage needs to load the full dataset in a single VM —
not in parallel— and perform an increasingly expensive computation with dataset size. Conversely,
for block-based data partitioning, partitioning time scales linearly with data volume for the same
amount of resources. This is because each cloud function has more data to index in each block.

Lastly, we want to reinforce the observation that clustering-based partitioning is inherently un-

Page 37 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 9: Query recall comparison of block-based (B) versus clustering-based (C) data partitioning
(DEEP10M dataset).

Num. Partitions (N)

16 32 64 128
Ngearchn B C B C B C B C
25% 96.13 96.67 96.25 95.40
50% 97.69 97.16 96.43 95.47
75% 0 2% o784 9920 9703 P9 9645 9930 9548
100% 97.84 97.23 96.45 95.48
I Blocks Clustering 75% Clustering 25%
Clustering 100% Clustering 50%
Invoke Data Load
@ ook Li il I
Q
=
128 128
Index Search Total
5_
<
E
"Il | I | | | |
128
Num. Partltlons (N) Num, Partltlons (N)

Figure 20: Querying time comparison of block-based versus clustering-based data partitioning for
different number of partitions (N) and Ngearch at 100%, 75%, 50%, and 25%. Besides the three phases
shown, the total time includes function invocation overhead and the reduce operation, which vary
minimally and, aggregated, add ~6 seconds on average.

suitable for dynamic data ingestion. Clustering algorithms operate on a static dataset to generate
partitions. When new data arrives after the initial clustering, there are only two options: i) recom-
pute the clustering to include the new data, or ii) continue using the existing partitioning. The former
is computationally expensive, as it requires reprocessing the entire dataset and temporarily halting
database operations. The latter leads to increasingly unbalanced partitions over time, degrading
both performance and accuracy. Table 8 illustrates the latter issue using the DEEP10M dataset. We
compare partition balance when clustering is computed on the full dataset versus only the first 1000
vectors. The results show that using a small subset for clustering significantly increases imbalance,
raising the coefficient of variation by 1.7x to 2.2x. This negatively impacts query latency and re-
call. In contrast, block-based partitioning is well-suited for dynamic ingestion. New data can be
incrementally added by splitting it into fixed-size blocks, without requiring global reorganization.

Conclusion. Block-based data partitioning is more efficient and scalable than clustering-based
partitioning, especially as dataset size and number of partitions increase.

5.6.4 Clustering vs Blocks: Query Performance

In this section, we compare the implications of data partitioning on query performance: query recall
(Table 9) and query times (Fig. 20).

Table 9 shows the query recall comparison between block-based and clustering-based data par-
titioning. We observe that the recall of the block-based scheme consistently outperforms clustering-

Page 38 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

I Blocks Clustering 25%

Query Preparation Data Load
. P P S
— 10
Z0.5- =
3} _ =
£ .
=
st il WU IE
100 500 1k 2.5k 5k 100 500 1k 2.5k 5k
Index Search Total
<10
9 - - - z =
5l o
o = H-He 0
100 500 1k 2.5k 5k 100 500 1k 2.5k 5k
Query Batch Size Query Batch Size

Figure 21: Querying time comparison of block-based versus clustering-based (Nscarch = 25%) data
partitioning for different query batch sizes, using DEEP10M with 32 partitions. Besides the three
phases shown, the total time includes function invocation overhead and the reduction operation,
which vary minimally and, aggregated, add ~6 seconds on average.

based partitioning by 1.4% to 3.9% for different values of N and Ngerch. However, these query recall
differences are not very significant, even for low values of Ngearen. This indicates that data filter-
ing in queries can be effectively leveraged while maintaining acceptable query recall. Interestingly,
when N = Ngearch, the query recall of clustering-based data partitioning is slightly lower than the
block-based scheme. This may be due to the interplay of vector distribution with IVF indexes in
our prototype. To inspect this, we reproduced the experiment with HNSW indexes (as in Vexless)
obtaining similar results (i.e., block-based partitioning shows better recall than the clustering-based
scheme by 0.09% to 3.25%).

Fig. 20 provides a breakdown of query latency in our prototype for both clustering-based and
block-based data partitioning schemes. Interestingly, data partitioning has an impact on the query
phases of a serverless vector DB.

The preparation phase sets up the job, which for clustering-based partitioning involves selecting
the right partitions to query based on the input vectors, which adds overhead. The search phase exe-
cutes vector search in the cloud functions for each data partition. The data filtering in the clustering-
based approach has the largest impact here. The data load phase retrieves data partitions and the
query batch file. This is constant in all cases because all partitions are required for any query batch.
The times to invoke functions and execute the reduce operation are not differentiated in the plot, but
contribute to the total time. These times are constant in all configurations. In this experiment, loading
the data dominates the total time, resulting in similar performance for both approaches. Specifically,
our prototype exhibits query times up to 16% faster using block-based compared to clustering-based
partitioning. The results are best for clustering when using 32 partitions, where it improves block-
based query times by 9.47%.

The advantages of clustering-based partitioning primarily impact index search time. Query per-
formance improvements are visible only when this phase dominates querying times. To illustrate
this, we evaluated query batches ranging from 100 to 5000 vectors. Fig. 21 shows that clustering
increases preparation time with larger batches, while data loading remains stable. Although search
time grows in both approaches due to higher workload, clustering benefits more from partition fil-
tering, yielding an overall performance gain of 31.18% over block-based partitioning at 5k vectors.
However, such large batches may be impractical in real-world scenarios.

Conclusion. The execution complexity in clustering-based partitioning prevents it to reduce query
times in a serverless vector DB, even with query filtering, unless using large query batches.

Page 39 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
1.00 =
F Partitioning;:
a 0.50 I Blocks
4 r Clusterin
2 0.20 - &
€ 0.10 - Querying;:
© E l B I ______ —e—Blocks
0.05- ' Clustering 100%
Clustering 50%
16 32 64 128 Clustering 25%

Num. Partitions (&)

Figure 22: Total indexing and querying costs of clustering-based and block-based data partitioning
with 10 batches of 5000 queries (DEEP10M dataset).

5.6.5 Clustering vs Blocks: Cost Analysis

Next, we focus on understanding the partitioning and querying costs related to applying clustering-
based and block-based data partitioning in a serverless vector DB. It is important to note that, due to
using stateless FaaS, queries are executed in batches. Thus, query costs are calculated per batch (not
individual queries).

In terms of data partitioning and indexing, Fig. 22 shows that the longer processing times of
K-means clustering, plus the additional VM needed, incur a 2.82x to 3.44 x increase in partitioning
cost.’ Note that we evaluate the partitioning and indexing of a static dataset. If we consider dynamic
data, clustering-based partitioning cost would increase due to the re-processing of existing data.

Notably, our prototype reveals that query cost depends on the batch size. For batches of < 1000
vectors, clustering-based data partitioning does not offset its own overhead, even with per-query
data filtering. This aligns with previous results (Section 5.6.4). Fig. 22 shows the cost for batches of
5000 vectors, where the effect of partition filtering is most pronounced (1.6 x improvement with 32
partitions and Nyearch = 25%). Interestingly, the cost reduction from clustering becomes less signifi-
cant compared to the block-based approach as the number of partitions increases. This observation
highlights the trade-off between query cost, data filtering, and query latency in a serverless vector
DB.

Conclusion. Clustering-based partitioning incurs significantly higher indexing cost than the block-
based scheme. It offers no query cost benefits for small batches (< 1000 vectors), even with data
filtering. For large batches, it can reduce search cost through partition filtering, but gains depend on
batch size and configuration.

5.7 Milvus vs Block-based Serverless Vector DB

In this section, we compare our proposed serverless vector DB prototype (“SVDB” for short) with
block-based data partitioning against a popular serverful vector DB system: Milvus. In particular,
the following experiments aim to answer the following questions:

(1) How does vector indexing with SVDB compare to Milvus? (Section 5.7.1)
(2) How does querying with SVDB compare to Milvus? (Section 5.7.2)

(3) How does SVDB improve cost compared to Milvus? (Section 5.7.3)

(4) How does SVDB scale with data volume? (Section 5.7.4)

5.7.1 Partitioning and Indexing Performance

Next, we compare the data partitioning/indexing performance in Milvus and SVDB. To this end,

Fig. 23 shows the processing time of both systems for multiple datasets and partition numbers (N).
Visibly, SVDB indexes all three datasets 9.2x to 65.6x faster than Milvus. This is because SVDB

fully exploits the parallelism of cloud functions. In contrast, Milvus does not parallelize the ingestion

Based on on-demand pricing; spot instance rates still lead to similar conclusions.

Page 40 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

M Milvus SVDB

Tg _ DEEP10M SIFT10M GISTIM
by

£ 10

H

&

E 10° d il
= 16 32 64128 32 64 128 16 32 64128

Num. Partitions (N

Figure 23: Partitioning and indexing time for different datasets on Milvus and SVDB.

Il Milvus SVDB: [@Invoke [1Data Load [JIndex Search Config: [J4xlarge /4 CFs [Z48xlarge /8 CFs
DEEP10M SIFT10M GIST1M

> I d& & B 1 0 0 0B
\QET 15- 20 - 15-

R L - || || n
£ = BB :
107) ’ 4 ; 10- g 5’

= 10~

. / é sLpm |0 / ‘1 L
= || L L

& I =8 NeiR Nedl iR | g a 7

0- I l [I 0- l [I 0- I l [I
16 32 64 128 32 64 128 16 32 64 128

Num. Partitions (N)

Figure 24: Querying times for 3 datasets on Milvus and SVDB. The plot splits the time of SVDB into
cloud function invocation overhead (Invoke), index downloading (Data Load), and query execution
(Index Search). Milvus has the query node running with the data loaded.

of a static dataset, resulting in under-utilization of available resources. Note that we experimented
with deploying Milvus on different VM sizes (e.g., 8x1arge, 4xlarge), but observed similar partition-
ing performance results. This may indicate some internal limitation in the indexing implementation
of the system. Moreover, SVDB partitioning time is not sensitive to the number of partitions. Instead,
Milvus processing time increases with the number of partitions.

Conclusion. SVDB achieves faster vector partitioning and indexing compared to Milvus for an
equivalent amount of resources.

5.7.2 Query Performance

In this section, we evaluate the query performance of Milvus and SVDB in terms of querying time
(Fig. 24) and recall (Table 10). As in the previous section, we evaluate query performance executing
query batches (1000 vector queries/batch). For context, querying time reported for Milvus implies
that the deployment is already set up and the data loaded into memory. However, reaching this state
takes Milvus over 45 seconds which are not accounted in our results.

Fig. 24 compares the querying time in Milvus and SVDB for two equivalent resource configura-
tions (i.e., 4xlarge/8xlarge VMs and 4/8 cloud functions). As expected, Milvus offers times 1.22x to
3.38 x faster than SVDB. That is, Milvus is continuously running as a serverful service with the data
loaded in memory, whereas SVDB requires to start the functions and load data on each query batch.
We also observe that, in both systems, adding more resources reduces querying time. This implies
that they are able to parallelize the execution of queries and fully utilize the underlying resources.

Inspecting the latency breakdown, the index search phase of querying in SVDB is faster than
Milvus. However, querying also requires coordinating cloud functions, which is part of the invoke
phase overhead. While part of this overhead is also present in Milvus for coordinating the queries,
SVDB introduces additional function invocation latency. The data load phase is exclusive to SVDB.
This overhead can be improved with stateful FaaS services, as proposed in Vexless [79]. Finally,

Page 41 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Table 10: Recall of top-10 similarity searches for a batch of 1000 queries in Milvus and SVDB.

Num. Partitions 16 32 64 128
Milvus 9927 9943 99.38 99.28

DEEP SVDB 99.24 99.26 9944 99.30
SIFT Milvus - 99.80 99.70 99.60

SVDB - 99.37 9941 99.50
GIST Milvus 9840 98.70 99.20 99.70

SVDB 98.56 98.64 98.92 99.33

Table 11: Total cost of indexing and querying on Milvus and SVDB for the DEEP10M dataset across
varying partition counts (N = {16,32, 64,128}, aggregated). Results for SIFT10M and GIST1M are
similar. Q-Dense denotes 10 consecutive batches of 1000 queries; Q-Sparse-1 and Q-Sparse-24 spread
the same batches over 1 hour and 24 hours, respectively.

Indexing Q-Dense Q-Sparse-1 Q-Sparse-24

Milvus $10.71 $0.07 $1.43 $34.39
SVDB $0.66 $0.48 $0.48 $0.48

Table 10 shows that query recall is equivalent in both systems,?” ensuring accurate vector searches.

Conclusion. Querying time in SVDB is slower than Milvus due to the expected overhead in func-
tion invocation and data loading. Query recall is virtually the same in both systems.

5.7.3 Cost analysis

Next, we focus on the economic cost of Milvus and SVDB. Table 11 shows that the indexing of the
DEEP10M dataset is 16.2x cheaper in SVDB ($0.66) compared to Milvus ($10.71). A reason is that
Milvus does not parallelize data indexing irrespective of the VM size. This induces longer processing
time that translates into monetary cost.

Querying is more cost-effective on Milvus only if queries are executed as a dense workload ($0.07
versus $0.48 for running 10 batches of 1000 queries back to back). However, a serverful vector DB
must always be running, leading to higher cost than a serverless solution for sparse workloads. For
instance, if the 10 batches of queries are spread over an hour (Q-Sparse-1 in Table 11), Milvus costs
$1.43, while SVDB remains at $0.48. This cost difference increases with even sparser workloads. Also,
the startup time for a Milvus deployment is much longer than for cloud functions (=~ 45 seconds
versus ~ 2 seconds), making it impractical to start dynamically like SVDB, as it would severely
impact query latency:.

Conclusion. Compared to Milvus, SVDB enables faster indexing and on-demand query function
allocation. This results in better cost-effectiveness, especially for sparse workloads.

5.7.4 Scalability

Finally, we aim to evaluate the scalability of SVDB, both in terms of data partitioning and as a system.
To this end, we run both indexing and querying for two subsets of the DEEP1B dataset, containing
10 million and 100 million vectors. Accordingly, we also increase the amount of resources by 10x
to process the latter. Specifically, we create 32 and 320 data partitions, indexed on 16 and 160 cloud
functions, and use 8 and 80 functions for querying. Therefore, each partition is the same size in both
configurations, and each function processes the same amount of data.

As expected, partitioning time is equal in both cases (=~ 55 seconds) because it is an embarrass-
ingly parallel process. Specifically, partitioning and indexing the DEEP100M dataset is about a sec-

20Note that SIFT has higher dimensionality compared to DEEP and cannot be processed with 16 partitions, so the exper-
iments start at 32 for this dataset.

Page 42 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
15~
t
2 10~ M Invoke
S Data Load
S Index Search
g Reduce
5
[
O —
DEEP10M DEEP100M

Figure 25: Querying time breakdown for DEEP10M (32 partitions in 8 CFs) and DEEP100M (320
partitions in 80 CFs).

Table 12: Cost comparison for DEEP10M and DEEP100M for total partitioning and querying with 10
batches of 1000 queries.

Dataset Size Partitioning Cost Querying Cost
DEEP 10M $0.1477 $0.0527
DEEP 100M $1.50 $0.52

ond slower due to the overhead of invoking more functions. Fig. 25 presents a breakdown for the
querying phase. The plot shows that loading the indexes and searching takes the same time in both
cases, demonstrating the scalability of the task. As expected, the overhead of invoking and manag-
ing more functions is higher (40%) and reduce time for collecting the results also increases (4 x). The
latter aspect can be explained because Lithops by default uses a single reduce function [92]. This
implementation limitation can be solved by using multiple reducers.

Table 12 compares execution costs. The data partitioning process incurs a 10x higher cost due to
identical execution time but a tenfold increase in resource usage. Querying scales similarly, as only
the invocation and reduction phases grow —both of which have minimal impact on overall cost.

Conclusion. Our serverless vector DB with block-based data partitioning can scale the resources
to arbitrarily large dataset sizes.

5.8 Related Work

Vector DBs, such as Pinecone [68], Weaviate [69], and Milvus [70, 71], have gained significant at-
tention in recent years due to the increasing demand for efficient and scalable similarity search in
various applications [103], including natural language processing [65], image recognition [66], and
recommendation systems [67]. Nevertheless, most distributed vector DBs rely on traditional server-
ful architectures, which can be limiting when handling sparse and bursty workloads. The emergence
of serverless vector DBs is a relatively recent development, and as such, none of the recent surveys
in the field have provided specific coverage of this new family of systems [73, 81, 104]. This project
aims to provide a timely and specific overview of the architecture of serverless vector DBs, including
a systematic comparison with serverful counterparts.

The convergence of the serverless paradigm with vector DBs is the primary focus of NEAR-
DATA. Recently, the industry has seen the emergence of vector DB services marketed as “server-
less,” such as Weaviate Serverless Cloud [69], Amazon OpenSearch Service as a Vector DB [75], and
Upstash [74]. However, these services primarily aim to automate the provisioning of vector DB de-
ployments. While simplifying operational complexity, this model only partially realizes the potential
of a serverless architecture. A truly serverless vector DB system involves distributing the vector DB
engine across cloud functions, a concept that has only been explored in Vexless [79]: the first server-
less vector DB of this kind to date.

To our knowledge, this is the first experimental analysis that evaluates in depth the design space
of data management in serverless vector DBs, with especial emphasis on data partitioning. We be-

Page 43 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

lieve that the observations from our analysis can help drive new generations of serverless vector DBs
to achieve better performance, efficiency, and cost-effectiveness.

5.9 Discussion and Conclusions

Our experiments validate the hypothesis that clustering-based data partitioning is generally imprac-
tical in stateless serverless vector DBs. First, data partitioning and indexing is slower compared to our
block-based scheme because it requires a clustering stage, which is stateful and cannot be efficiently
parallelized. Furthermore, when revisiting the state-of-the-art method for performing clustering-
based data partitioning in a serverless vector DB (Vexless [79]), we found interesting insights. For
example, using a balanced K-means clustering for achieving balanced data partitions incurs par-
titioning times that are 35x to 96x higher than unbalanced K-means. We also found that vector
redundancy —a technique to improve query recall when filtering data partitions— has limited ben-
efits (and multiple costs) beyond querying very few data partitions, which generally leads to low
recall. When executing query batches in a stateless FaaS system, clustering-based data partitioning
introduces additional complexity that does not benefit from data filtering —neither in query time
nor cost— unless large batches are used. Based on these observations, we conclude that block-based
data partitioning is a more practical and effective way of managing large and dynamic datasets in
serverless vector DBs.

As a natural next step of our analysis, we compared our serverless vector DB prototype with a
popular serverful vector DB (Milvus). Our results show that our prototype achieves 9.2 x to 65.6 x
faster data partitioning and indexing time than Milvus due to its ability to fully exploit the paral-
lelism of cloud functions. While querying time in our serverless vector DB is slower than Milvus
due to the expected overhead in function invocation and data loading, this has a direct translation
into economic cost. To wit, our serverless vector DB also offers better cost-effectiveness, especially
for sparse workloads, as it does not require a service continuously running like Milvus. Overall,
we believe that a serverless vector DB with block-based data partitioning offers an interesting alter-
native to serverful vector DBs, especially when considering sparse/bursty workloads and reduced
infrastructure/operational cost.

Conclusion Serverless vector DBs are a promising architecture for managing sparse and bursty
vector workloads while reducing operational cost. However, they are still in their infancy. We pro-
vide a timely overview of this new family of systems. Additionally, we analyze a key aspect of
their operation: data partitioning. Through extensive experiments, we demonstrate that the current
state-of-the-art approach for data partitioning (clustering-based) has significant limitations. To ad-
dress them, we propose a simple yet practical block-based data partitioning scheme. Our findings
show that a serverless vector DB with block-based data partitioning is competitive compared to a
serverful vector DB (Milvus) in various aspects (e.g., indexing time, query recall). We hope that the
insights from this project will help driving better performance and efficiency for the next generation
of serverless vector DBs.

Page 44 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

6 XtremeHub Streams and FaaS: FaaStream
6.1 Introduction

Function-as—a-Service (FaaS) serverless platforms provide users with means to run functions at large
scale while being oblivious to the underlying infrastructure [76, 105, 77]. The cost-effectiveness, scal-
ability, and flexibility of the FaaS paradigm makes it a key component of modern application devel-
opment in the cloud. Their popularity growth is undeniable, with services such as AWS Lambda and
Azure Functions being fast-growing offerings in public cloud portfolios [106].

The advantages of FaaS platforms are driving their adoption for building data-centric batch and
streaming serverless pipelines [107, 108]. It is increasingly common to find FaaS pipelines composed of
multiple stages of cloud functions that deliver valuable insights. Ranging from real-time monitoring
in manufacturing to genomics batch processing, serverless pipelines simplify access to large-scale
cloud analytics.

However, despite abundant research in the last years, there is still significant progress to be made
in fully harnessing complex serverless analytics pipelines in public FaaS platforms. Crucially, a key
limitation of public FaaS platforms is the stateless nature of functions and the lack of direct inter-
function communication. Although prior art has proposed custom serverless runtimes that leverage
data locality and direct function communication [109, 110, 111], these solutions are constrained in
their applicability to public FaaS platforms.

In this project, we focus on serverless analytics frameworks that rely on disaggregated storage for
state management and indirect communication [112, 113, 114]. However, these storage services come
with specific semantics (e.g., object storage, in-memory key/value stores, logs) that complicate the
efficient execution of heterogeneous serverless jobs (batch, streaming) within a unified engine. Con-
sequently, while public FaaS frameworks simplify infrastructure provisioning, users are still required
to determine the appropriate storage substrate for their workloads. This complexity undermines the
programming simplicity that FaaS platforms aim to provide.

In a sense, serverless analytics are witnessing their own version of the "Lambda architecture" [115]
problem?!, where each framework relies on different storage substrates for specific workloads. Inter-
estingly, over the past decade, dataflow engines like Apache Flink [116] and Apache Spark [117, 118]
have overcome this problem by providing a unified API for managing both streaming and batch
workloads. These engines offer data primitives for building complex analytics jobs that have been
crucial to their success. We believe that a similar approach can be explored in public FaaS platforms.

6.1.1 Challenges

In NEARDATA, we aim to provide a unified data processing framework for public FaaS that can
efficiently support both streaming and batch serverless jobs. However, due to the limitations of public
Faa$ platforms, this entails challenges:

Identify the right storage abstraction. FaaS analytics frameworks that rely on external storage
choose a specific system with a subset of workloads in mind. However, using some storage systems
certainly restricts the kind of workloads that can be efficiently executed. For example, object storage
(e.g., AWS S3) provides high parallelism and throughput, but it offers sub-optimal performance when
considering small data objects or when the workload at hand is latency sensitive [119]. Similarly,
popular options like in-memory stores (e.g., Redis) enable fast inter-function data sharing at the cost
of data durability and scalability. We believe that there is still research to be done in storage substrates
that support the efficient execution of heterogeneous FaaS pipelines.

Providing a unified set of data primitives. A unified data processing framework for public FaaS
platforms should provide key data primitives to handle heterogeneous jobs. Inspired by cluster
dataflow analytics, we believe that support for inter-function data transfers, data shuffling, and state
consistency are crucial. The framework must build these primitives on top of shared storage and

20The content of this section maps to tasks T3.1 and T3.2 and is related to the paper “FaaStream: Unifying Streaming and
Batch Data Processing in Public FaaS Platforms”, submitted for publication.

2IThe Lambda architecture problem in analytics pipelines refers to the complexity of managing separate systems for
batch and real-time processing.

Page 45 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

expose them to users in a simple manner, abstracting away complexity and storage awareness from
developers. This is non-trivial as the requirements to support such primitives can be disparate.

Faa$S and storage coordination. Unlike cluster dataflow systems, public FaaS platforms are con-
strained by unique limitations, such as strict memory limits and the short-lived nature of tasks. Still,
Faa$S platforms also offer a significant advantage: their extreme elasticity enables them to handle work-
load burstiness and scale more efficiently than traditional cluster-based systems. To effectively sup-
port heterogeneous FaaS pipelines, a data analytics framework must be designed to work with the
storage layer in a way that overcomes the limitations of FaaS, while also scaling storage resources in
accordance with the elastic nature of cloud functions. Addressing this challenge can realize the full
potential of data processing for public Faa$S platforms.

6.1.2 Contributions

In NEARDATA, we introduce FaaStream: a stream-based serverless data processing framework. To
our knowledge, FaaStream is the first serverless framework that builds upon elastic and tiered data
streams —i.e., data streams that change the number of stream partitions and offload cold data to ex-
ternal storage— as the storage substrate for FaaS pipelines. Tiered data streams provide an attractive
latency-throughput trade-off that can meet the requirements of both streaming and batch serverless
jobs. In summary, our contributions are:

* We identify elastic and tiered data streams as a powerful substrate for unifying data processing
when executing heterogeneous pipelines in public FaaS platforms.

* We design FaaStream: a serverless data processing framework that unifies data processing for
streaming and batch jobs. FaaStream builds key primitives on top of streaming storage such as
inter-function data transfers, data shuffling, and consistent function state.

¢ FaaStream coordinates the parallelism between the data stream and the function pipeline, en-
abling transparent adaptation to workload bursts for the user.

The evaluation of FaaStream on AWS shows its effectiveness in achieving low-latency and high-
throughput data processing for streaming and batch serverless pipelines, respectively. To wit, a FaaS-
tream job can be executed in streaming and in batch with no code changes, while outperforming
the analogous job using AWS Kinesis [120] in latency (80.99% lower p95 latency) and Lithops [113]
in throughput (22.5x). FaaStream’s coordinated auto-scaling enables efficient resource utilization
under fluctuating workloads, which is not possible using alternatives like Apache Kafka for AWS
Lambda. The FaaStream data shuffling primitive shows promising results, achieving execution times
up to 25.80% faster than Serverless Spark [117], while outperforming Seer [121] by 20% in speed and
delivering 6.25% better cost-effectiveness. Furthermore, FaaStream’s failure recovery mechanism en-
sures function state consistency under failures. Our results highlight FaaStream’s potential towards
providing unified data primitives for heterogeneous pipelines in public FaaS.

6.2 Motivation: Stream-based Faa$S Pipelines

Cloud functions on public Faa$S platforms typically rely on external storage to manage inter-function
communication and maintain function state (Fig. 37). Object storage has been the traditional choice
for data-intensive serverless pipelines [113, 121] due to its high throughput, simple (and limited)
API, and parallelism, but it struggles with workloads demanding low latency and fine-grained data
access. In contrast, ephemeral or in-memory stores like Redis offer lower latency and have proven
effective for tasks such as data shuffling [122, 111]. However, these systems face scalability challenges
and do not meet the data durability needs of many critical use cases.

Interestingly, event streaming systems, such as Apache Kafka [87, 123], Apache Pulsar [124], and
Redpanda [125], are popular technologies for ingesting and managing data in streaming fashion.
These systems expose the data stream (a.k.a., topic) abstraction for managing data events, internally
composed of partitions or segments that enable parallelism for higher throughput. They offer support

Page 46 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
Object storage In-memory/ephemeral KVs
+ High throughput - High latency + Low Latency - No Durability
+ Parallelism - Coarse-grained access || + Richer API - Limited scale
+ Durability - Limited API + Fine-grained access | - Limited elasticity

O—T—® o

Tiered and elastic data streams

(@

+ High throughput + Low latency
+ Parallelism/elasticity + Fine-grained access
+ Durability + Rich API

O8N0

e00& T

Figure 26: Storage abstractions trade-offs for FaaS pipelines.

for data durability, exactly-once semantics, and low-latency ingestion, while providing a scalable
and fault-tolerant platform for high-volume data streams. Akin to the log abstraction [109, 126, 127],
data streams naturally support inter-function communication. Serverless functions can also process
data in a streaming manner, starting computation without waiting for previous results. Overall, we
believe event streaming systems can be an attractive storage alternative for FaaS pipelines.

6.2.1 Key Insights: Not All Streams are Created Equal

While promising, not all event streaming systems offer the same features. Next, we identify the key
insights that make elastic and tiered data streams ideal for FaaS pipelines (Fig. 37).

The data stream as unifying storage abstraction. To address the growing storage demands of
streaming workloads, modern systems have adopted tiered storage as a key feature [128, 129]. Tiered
data streams offload cold data from high-performance storage (e.g., SSDs, NVMes) to scale-out stor-
age (e.g., object storage), thus bridging the gap between streaming and batch workloads. By lever-
aging a multi-tiered architecture, they offer low-latency access for real-time data processing while
integrating with high-throughput storage for batch jobs. As for dataflow analytics [116, 118], this dual
capability makes tiered data streams a powerful abstraction for efficient execution of heterogeneous
serverless jobs (§6.3.1).

Rich data stream semantics for data primitives. Event streaming systems provide rich semantics
that can be exploited for building data primitives in FaaS pipelines (§6.3.2). First, data streams are a
natural abstraction to build inter-function data transfers. Moreover, most systems guarantee event or-
der in parallel data streams on a per routing key basis. We identify that event routing can be exploited
for custom data shuffling (§6.3.4). Similarly, event streaming systems typically provide transactions
and checkpoints, which are crucial to deliver function state consistency (§6.3.5).

Data elasticity for FaaS pipelines. A unique characteristic of FaaS pipelines is that they are
extremely elastic and exposed to bursty workloads. In this sense, some event streaming systems
provide data stream elasticity —i.e., dynamically change the number of parallel partitions— for han-
dling workload fluctuations [129]. In our view, elastic data streams match the elasticity needs of FaaS
pipelines (§6.3.3).

6.3 FaaStream Design

Next, we introduce FaaStream: the first serverless data processing framework built on top of elastic
and tiered streams.

6.3.1 FaaStream Architecture and Life-cycle

FaaStream’s architecture comprises three main layers: Control, Compute, and Storage. At the Control
layer, the FaaStream Manager orchestrates the pipeline life-cycle. The Compute layer is formed by

Page 47 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
FaaStream -;------ R EEEE LR PP
Mamager <t~ ey
Control, b eeeeenn, Y Do - U
P - Z—
rr _)L Worker Worker |_g

1 Elastic and Elastic and Elastic and Lv
Tiered Stream) (Tiered Stream, (Tiered Stream, @

o

- - Resource aloc. ——DataFlow Write-Ahead
--Controlcmd - Opt. Source/Sink Log
- - Worker stats —Data Writes/Reads >

Figure 27: FaaStream architecture.

1>

plgs

FaaStream workers executing pipeline stages. The Storage relies on FaaStream streams supported
by an elastic and tiered streaming storage service. Figure 39 illustrates FaaStream'’s architecture and
pipeline life-cycle.

The life-cycle of a FaaStream pipeline begins when a user submits a job. The FaaStream Manager
first initializes the required resources in the public FaaS platform and the streaming storage system
(1). For each pipeline stage, the Manager creates the input/output streams, sets the appropriate
number of stream partitions, and sets up the worker coordination channels (e.g., telemetry, worker
management, etc.).

Once the resources are set up, the FaaStream Manager launches the workers (2). Each worker is
assigned a subset of the input stream partitions (3), processes data executing user defined functions
(UDF) (e.g., map, reduce, filter), and writes the results to the output stream (4). These outputs are
then consumed by the subsequent stage of the pipeline.

To adapt resource utilization, the Manager continuously monitors the pipeline workers. Workers
periodically send telemetry data to the Manager (7), which uses it to dynamically adjust the number
of workers per stage and scale the associated stream partitions accordingly (8).

All data in FaaStream streams is tiered for efficiency. Initially, data is written to a Write-Ahead
Log stored on high-performance storage (SSD, NVMe) to enable low-latency inter-function commu-
nication. Then, data is asynchronously flushed to object storage for high-throughput reads (5).

Finally, the workers in the last stage of the pipeline write the results to the designated pipeline
sink (9). Similar to the pipeline source, the sink can be a stream or any other backend supported by
FaaStream (e.g., S3 bucket).

6.3.2 FaaStream Abstractions and API

Inspired by the dataflow analytics model [118, 116], the FaaStream API supports both streaming and
batch FaaS pipelines through a unified set of abstractions (see Table 13).

In FaaStream, the Sources define data ingestion inputs for a pipeline, supporting data streams
(fromStream) or object storage (fromS3File and fromS3Folder), among others.

The Pipeline abstraction defines the sequence of data transformations in a serverless workflow.
It provides core functions such as map, reduce, and filter to define individual stages of the pipeline.
Users can specify the final destination for processed data, such as a stream (writeToStream) or an
object storage (writeToBucket).

Each pipeline worker executes a UDF that processes data. UDFs are implemented by extending
the Transformer interface. The Transformer initializes resources such as connections or internal state

Page 48 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Abstraction Interface

fromStream(stream) -> Source
Source fromBucketFile(bucket, file) -> Source
fromBucketFolder(bucket, folder) -> Source

map(Transformer) | reduce(Transformer) | filter(input -> Boolean)

Pipeline writeToStream(stream) | writeToBucket(bucket, path)

Transformer initialize() | apply(input) -> output | close() | @State

ScalingPolicy addWorkerStats(stats) | getWorkers() | getPartitions()

Manager execute(pipeline, scalingPolicy, exactlyOnce)

Table 13: FaaStream API summary:.

[FaaStream Manager]_‘Stage scale-up

[ScalingPolicy p] |~~~ 7 T 7}
Data events Metrics 4 d = erranan + *‘
A

-~ ".§ E_"‘:_ A}"

I Trrmmmessmmssmennns
. =3 |
partitions -
- >

Pipeline processing Pipeline processing
stage (t=0) stage (t=7)

Figure 28: FaaStream’s auto-scaling coordinates stream partitions and workers on a per pipeline
processing stage basis.

using the initialize method and release them with close. The processing logic is defined in the
apply method. Also, the API provides the @State annotation, which allows users to define the fields
that form the state of the Transformer. This state is automatically managed by FaaStream, ensuring
that it is persisted and recovered in case of failures when exactly-once is enabled (§6.3.5).

Scaling policies extend the ScalingPolicy class, using addWorkerStats to gather runtime data
from each of the workers and getWorkers and getPartitions to determine scaling actions. FaaStream
supports built-in scaling policies for coordinated auto-scaling (§6.3.3) and fixed workers.

Finally, The execute method in Manager submits a pipeline for execution, allowing optional
configurations like scaling policies and function state consistency guarantees.

6.3.3 Serverless Pipeline Auto-Scaling

FaaStream builds a coordinated auto-scaling mechanism to dynamically adjust the number of work-
ers and stream partitions in a pipeline stage based on workload demands (Fig. 28). This mechanism
ensures efficient resource utilization while maintaining high performance under fluctuating work-
loads.

Each pipeline stage has a dedicated telemetry channel for workers to report their load metrics to
the FaaStream Manager. Workers maintain an internal queue to buffer events awaiting processing,
which also serves as an indicator of their load. When a worker reads an event from its assigned
partition, it adds the event to this queue for processing.

Workers periodically report metrics, including queue size, events processed, processing time, and
read time, to the Manager. The Manager aggregates these metrics to assess the overall load across all

Page 49 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
routingKey="Fisilo", event= “Hello=1" | g-rrrnree
i routingKey="Hello”, event= “Hello=1" : ' Hello=2 :
iroutingKey="world”, event= “world=1" world=1 !

“Hello world!” | 7T e e e J

| Hello=2 |
' world=1 |
| are=1
i you=1
i how=1
“Hello! How L e LEENEERRET SRR AR
are you?” routingKey="are"”, event= “are=1" H : _ i
foutingKey="how”, event= “how=1" i you=t
foutingKey="you”, event= “you=1" H i how=1

Figure 29: Data shuffling example via custom event routing. Using the words themselves as routing
keys deterministically assigns them to stream partitions for reducers to read.

workers in the stage. Using this data, the Manager dynamically adjusts the number of workers and
stream partitions, scaling up or down as needed to optimize resource utilization and maintain high
performance.

The ScalingPolicy abstraction is responsible for defining the scaling strategy applied by the Man-
ager. It provides methods to pass the gathered worker metrics and to retrieve the number of work-
ers and stream partitions. This enables users to define custom auto-scaling strategies, from simple
threshold-based policies (e.g., scale workers by Y and partitions by Z if a metric exceeds X) to ad-
vanced approaches like time-series analysis or Al-driven workload prediction. FaaStream includes
two built-in policies: a default threshold-based coordinated auto-scaling policy (evaluated in §6.4.4)
and a static scaling policy for fixed resource allocation.

6.3.4 Data Shuffling via Custom Event Routing

FaaStream introduces a flexible data shuffling operator leveraging the key-based event routing mech-
anism in streaming systems. FaaStream allows users to specify a custom routing hash algorithm as
an optional parameter when applying a Transformer (e.g., map, filter). A routing hash algorithm
in FaaStream is a function that maps an event to a decimal value € [0, 1]. This value is then used to
determine the target partition for the event. Choosing a routing algorithm directly influences how
the shuffle operation is performed, enabling flexibility for addressing specific workloads.

For example, Fig. 29 shows how we can customize event routing to achieve data shuffling for a
WordCount job. To wit, FaaStream can use a consistent hashing algorithm to route all events with the
same “word” to the same partition. This guarantees that each worker in the reduce stage processes all
events for a given word, enabling parallel execution of the reduce operation without extra function
data exchanges.

As another example, in sorting jobs where event order must be preserved, the FaaStream data
shuffling uses a routing hash algorithm that keeps the natural ordering of events. To it, it ensures
that the i-th partition contains elements that are lower than those in the (i + 1)-th partition. This
allows each worker in the sort stage to locally sort the elements in its assigned partitions, producing
a globally sorted result at the end of the stage. We evaluate data shuffling in §6.4.5.

6.3.5 Consistent Function State under Failures

FaaStream provides consistent function state via exactly-once processing semantics that combine
transactional writes and checkpointing. It leverages stream transactions to atomically commit or
abort operations while maintaining consistent state across serverless functions. Each pipeline stage
is treated as a transactional unit, coordinated by the Manager. The Manager ensures all workers
checkpoint their state and read positions before committing a transaction. In case of errors, the Man-
ager employs a health detector mechanism to monitor the status of each serverless function. If a
failure is detected, it aborts the transaction and resets workers to the last checkpoint. The health de-
tector ensures that the system can react promptly to failures. Users can enable exactly-once semantics

Page 50 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Algorithm 2 Exactly-Once Manager’s logic in FaaStream

Require: Input/Output Stream, Workers, ReaderGroup
1: txn - NEWTXN(Output Stream)

2: while not end of Input Stream do

3 WORKERS.USETRANSACTION(txn)

4 WAITTXNWINDOW()

5: nextTxn <~ NEWTXN()

6: chkpt <~ WORKERS.CHECKPOINT(txn, nextTxn)
7.

8

9

SAVECHECKPOINT(TXN, CHKPT)

COMMIT(txn)

: txn < nextTxn
10: if error occurs then
11: ABORT(txn)
12: r_txn < LASTTXN()
13: r_chkpt <~ GETCHKPT(r_txn)
14: WORKERS.RESET(r_txn)
15: WORKERS.RESTART(r_chkpt)
16: end if

17: end while

Algorithm 3 Exactly-Once Worker Event Processing Loop

Require: Input Stream, Reader, Writer, Queue

1: while not end of Input Stream do

2 data < READER.READ()

3 if data is Event then

4 QUEUE.ADD(data) > Data in queue is processed by the UDE.
5: else if data is UseTransaction then

6: txn <~ USETRANSACTION.TXN()

7 writer <~ CREATEWRITER(txn)

8 else if data is Checkpoint then
9

: WAITQUEUEEMPTY()
10: FLUSH(txn)
11: SAVESTATE(txn, state)
12: else if data is Reset then
13: r_txn < RESET.TXN()
14: else if data is Restart(r_chkpt) then
15: state <~ RECOVERSTATE(r_txn)
16: READER.RESTART(r_chkpt)
17: end if

18: end while

by configuring it in the PipelineManager, with FaaStream handling all underlying mechanisms.
Algorithms 2 and 3 outline FaaStream’s exactly-once processing. The Manager (Algorithm 2)
coordinates transactions by initiating a new transaction, forwarding it to workers, and waiting for a
configurable duration for event processing. Workers checkpoint their state and read positions before
the Manager commits the transaction. In case of failure, the Manager aborts the transaction and resets
workers to the last checkpoint. The Worker (Algorithm 3) handles events and control messages.
Events are queued for processing, while control messages like UseTransaction, Checkpoint, Reset,
and Restart manage transaction initialization, state saving, and recovery to ensure failure recovery.

6.4 Evaluation

In this section, we evaluate FaaStream via experiments in AWS. Our evaluation addresses four key
questions:

¢ Can FaaStream unify data access to streaming and batch jobs while achieving good perfor-
mance? (§6.4.3)

* How does FaaStream achieve auto-scaling in heterogeneous serverless pipelines? (§6.4.4)
¢ How FaaStream data shuffling capabilities can optimize map-reduce serverless jobs? (§6.4.5)

* What are the data consistency trade-offs in FaaStream for serverless pipelines? (§6.4.6)

Page 51 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

6.4.1 Implementation

FaaStream is implemented in Java (10K LoC), leveraging AWS Lambda and Pravega [129] for server-
less functions and tiered streaming storage. The FaaStream implementation includes the worker (i.e.,
IO, hashing) and the orchestrator (i.e., auto-scaling, exactly-once protocol) functionality. To meet its
requirements, FaaStream enhances Pravega’s client with a collaborative segment distribution mecha-
nism, ensuring faster convergence to an even distribution among readers. FaaStream also introduces
a specialized reader for exactly-once processing, a custom stream writer for adaptive event routing,
and optimizes Pravega’s Segment Store for S3-based long-term storage (LTS). Finally, FaaStream in-
tegrates Crucial’s serverless executor [130] for managing serverless function execution, providing a
user-friendly API for invoking AWS Lambdas.

6.4.2 Experimental Setup

Deployment. All experiments are conducted in the AWS us-east-1 region. Unless otherwise spec-
ified, AWS Lambda functions are configured with 1,769MB of memory, corresponding to 1 vCPU
as per AWS documentation [131]. FaaStream deploys the Pravega cluster and AWS Lambda func-
tions within the same VPC and availability zone to minimize latency and costs. A m5.4xlarge EC2
instance, equipped with 16 vCPUs and 64GB of RAM, serves as the client VM for running the FaaS-
tream orchestrator. The Pravega cluster is deployed on i3en.2xlarge instances, each featuring 8
vCPUs, 64GB of RAM, and 2 dedicated NVMe drives, running Ubuntu 22.04. To simplify provision-
ing, each instance hosts a Pravega controller, a Pravega segment store, a Bookkeeper instance, and a
Zookeeper instance. One NVMe drive is allocated for the Bookkeeper journal and the other for the
Bookkeeper ledger and Zookeeper. For long-term storage, Pravega uses an S3 bucket via a VPC S3
endpoint.

Object storage/in-memory baselines. First, we evaluate FaaS pipelines executed in standard
object storage and in-memory baselines compared to FaaStream.

S3-triggered Lambda: This baseline uses S3 as the intermediate storage, with AWS Lambda func-
tions automatically triggered upon the creation of new objects in the S3 bucket. This setup represents
the native AWS approach for serverless workflows. Note that AWS Step Functions were not used
due to their 256KB data-passing limitation [132].

Lithops: We use the Lithops [113] serverless framework, a fork of PyWren [119], as one of our
baselines. Lithops is evaluated with two storage backends: S3 and Redis (in-memory). The S3 bucket
is located in the same AWS region as the Lambda functions to minimize latency. Redis is deployed on
amb.4xlarge EC2 instance (16 vCPUs, 64GB RAM) within the same VPC as the Lambda functions.

Seer: Seer [121], a state-of-the-art serverless shuffle manager, is used as a baseline for data shuf-
fling benchmarks. For the TeraSort benchmark, we use the publicly available Seer implementa-
tion [133], configured to use its direct shuffle method. AWS Lambda functions are allocated 1,769
MB of memory, and an S3 bucket in the same region as the functions is used for intermediate storage.

Serverless Spark: EMR Serverless [134] is a serverless version of Apache Spark [118], allowing users
to run Spark applications without managing infrastructure. It automatically scales resources based
on workload. For consistency, we configure Serverless Spark with a fixed number of executors, each
with 4 cores and 16GB of memory (4GB per core), to avoid performance degradation due to auto-
scaling.

Event streaming baselines. Moreover, we evaluate FaaStream using event streaming systems
other than Pravega.

Kinesis: AWS Kinesis Data Streams is a fully managed real-time data streaming service. For this
baseline, AWS Lambda functions read from and write to Kinesis streams. Kinesis streams are di-
vided into shards, which determine throughput capacity. To ensure fairness, we use the Provisioned
mode to control stream properties. Each shard costs $0.015 per hour. To match the hourly cost of
an i3en.2xlarge instance ($0.904), we allocate 60 shards ($0.90 per hour) per VM instance used by
FaaStream.

Kafka: We deploy a Kafka [123] cluster as another baseline for stream processing. AWS Lambda
functions read from and write to Kafka topics. The Kafka cluster is deployed on i3en.2xlarge VMs

Page 52 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

running Ubuntu 22.04. One NVMe drive is dedicated to the Zookeeper journal. For a fair compar-
ison, we configure Kafka with durability guarantees equivalent to FaaStream, flushing data to persis-
tent media before acknowledging writes (log.flush.interval.messages=1,log.flush.interval.ms
=0), and data replication set to 1.

Benchmarks. Embeddings generation: We use an embeddings extraction job as a benchmark to
evaluate CPU-bound jobs. The job consists of a single-stage pipeline that processes images from an
input stream. Each frame is passed through a pre-trained deep learning model, ResNet-50 (trained on
ImageNet), to extract feature embeddings. The extracted embeddings are then written to the output
stream. For this benchmark, we use a subset of the ImageNet dataset [135], with each image having
an approximate size of 35KB.

Hashing: To assess the performance of an I/O-bound workload, we employ a hash generation job
as a benchmark. This task involves a single-stage pipeline that computes SHA-256 hashes for byte ar-
ray events. The input data comprises raw bytes extracted from images in the ImageNet dataset [135].

WordCount: As one of the most widely used map-reduce jobs [136], WordCount serves as a corner-
stone for understanding distributed data processing. Despite its simplicity, it is highly representative
of a wide range of real-world map-reduce workloads [137, 138]. The task involves counting the occur-
rences of each word in a collection of text files. For this benchmark, we utilize a dataset comprising
120 text files from a Wikipedia dataset [139], totaling 4.3GB of text data.

TeraSort: The TeraSort benchmark [140] is a widely recognized standard for assessing the effi-
ciency of data shuffling in serverless analytics frameworks [141, 121, 142, 143]. It involves sorting a
large key-value dataset, where each record consists of 100 bytes: a 10-byte key and a 90-byte value.
The dataset is generated randomly and subsequently sorted by the key. Following prior works, we
evaluate using a 100GB dataset.

6.4.3 Unifying Streaming and Batch Data Access

In this section, we demonstrate that FaaStream unifies data access for streaming and batch serverless
jobs while achieving good performance in a wide variety of scenarios.

Streaming I0. Streaming pipeline jobs demand low latencies to ensure timely data processing
[144, 114, 145]. In this section, we assess the latency performance of FaaStream in comparison to the
baselines in §6.4.2.

Impact of event size on latency: We first evaluate the latency overhead of transferring data across
serverless functions. As outlined in [110], we measure the latency of a two-function chained pipeline
across various data sizes. The comparison includes FaaStream (1 EC2 VM), a single-shard Kinesis
stream, Lithops using either S3 or Redis (1 EC2 VM for Redis) as the storage backend, and Lambda
functions triggered by S3 events. The results appear in Figure 30a.

Visibly, for small event sizes (i.e., < 1KB), FaaStream exhibits consistently low latencies (e.g.,
p95 from 11.0ms to 12.2ms). On the other hand, Lambda S3 (up to 127.8 x), Kinesis (up to 6.3x),
and Lithops S3 (up to 12x), which store data persistently, show higher p95 latency than FaaStream.
Lithops Redis achieves p95 latencies from 2.05ms to 2.78ms, which is ~ 4.75x lower than FaaStream.
This is primarily because it stores data in memory rather than in storage.

For larger event sizes (100KB/1MB), FaaStream p95 latency also outperforms Lithops S3 (9.3 x
/7.2x), Kinesis (4.4 x /4.9x), and Lambda S3 (65.6 x /35.6x). Again, compared to Lithops Redis,
FaaStream is about 2.9 x /3.5x slower as it stores data on persistent storage rather than in memory.
These results indicate that FaaStream achieves data durability and low IO latency for a range of event
sizes, outperforming storage inter-function communication solutions like Kinesis and S3.

Throughput/latency trade-off: Next, we explore the latency behavior of FaaStream as we increase
the IO throughput of the pipeline. We use the same two-function chained pipeline as the previous
experiments with 1KB events (see Fig. 30b).

For latency-oriented workloads (i.e., < 100 events/second), Fig. 30b shows that FaaStream offers
the lowest (p95) latency numbers compared to the other storage-based alternatives (Kinesis, Lithops
S3). Only Lithops Redis using in-memory storage exhibits lower latency than FaaStream.

Interestingly, we observe that all the systems saturate between 10x to 1000x earlier than FaaS-

Page 53 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
== FaaStream == Lithops Redis == Lambda S3 —e— FaaStream +=+ Lithops Redis == FaaStream == Lithops Redis
FaaStream (Kinesis) Lithops S3 FaaStream (Kinesis) Lithops S3 FaaStream (Kinesis) Lithops S3
T] f 1 T]
10t} TG 10t ,
o Lo = = |
_ | 1 E | o | LB |
2 10° & S0y |2 10°} | . | |
s 3 ¢ = : R - =
- | z |] | B | - | = - |
S 102 g 3 102 | S 102
210 J[T 310 ! // ! g10 = - J(
% [é é ’% % ‘\; é %I Q = %\ ’3 J\[/ %1 '{L:; == |
|]0|J[1 t I & = % @Q‘lolj[— B % = IO‘J[= J(
== = B ‘ -
- = 1 i ! | |
oL & £ ® T Y | el |
10B 100B IKB 100KB 1MB 10 100 1000 10000 10 50 100
Events size Events/second Chained functions

(a) Latencies for data passing be-(b) Impact of event throughput in la-(c) Latencies of function chains of
tween functions. Event rate: 1 even-tencies. Event size: 1KB. different lengths. Event rate: 1 even-
t/s. t/s.

Figure 30: Impact on streaming latency of (a) inter-function data passing, (b) event throughput, and
(c) function chain length.

tream as the workload becomes more throughput-oriented. That is, as Lithops lacks a batching mech-
anism for writes, using the S3 backend struggles to handle > 10e/s. When switching to a Redis
backend, we observe that Lithops can sustain up to 1K e/s. In this line, although Kinesis shards the-
oretically support up to 1K e/s, we empirically observed saturation at lower rates. This supports that
using the stream abstraction in FaaStream allows us to develop batching algorithms that dynamically
adapt to latency- and throughput-oriented workloads.

Function chains: Next, evaluate the latencies for pipelines with long function chains. Similar to
[146, 110], in this experiment each function in the chain receives an integer, increments it by one, and
passes it to the next function. We measure the end-to-end latency of the pipeline for different chain
lengths. We used the same setup as in prior experiments.

As expected, Fig. 30c shows that FaaStream’s end-to-end latencies grow linearly with the number
of functions in the chain, as is also the case with Lithops S3 and Lithops Redis. However, this is not
the case with Kinesis, where the p95 latency increases significantly, reaching 650 ms for 10 chained
functions and 11, 885 ms for 100 functions. Similarly to the previous benchmarks, FaaStream achieves
latencies (e.g., p95 of 552 ms for 100 chained functions) almost an order of magnitude lower than
Kinesis (up to 21.5x) and Lithops S3 (up to 8.6 x), while being slightly higher than Lithops Redis (up
to 3.0x). These results support that FaaStream is an ideal substrate for building serverless pipelines.
It ensures reliable data transfer of various sizes and rates with high performance across long function
chains.

Batch IO. In contrast to streaming analytics, batch jobs typically demand high throughput. This
section evaluates FaaStream’s throughput performance against AWS Kinesis and Lithops with S3
when processing data in batch. The experiments assume data at rest (i.e., not cached in memory).
The dataset consists of raw byte array events. We use a single-stage pipeline whose functions read
the byte arrays and produce timestamped events written to the output stream. We measure the
pipeline’s processing throughput in MB/s.

Impact of event size on throughput: We evaluate the effect of event sizes on the throughput of FaaS-
tream compared to baselines in §6.4.2. In this experiment, we use a single concurrent AWS Lambda
function and measure the batch processing throughput for various event sizes. FaaStream is config-
ured with a single VM, while Kinesis is configured with 60 shards to match the cost of the FaaStream
setup.

Figure 31a shows that FaaStream consistently achieves the highest throughput across all event
sizes compared to Kinesis. For small events (1KB), FaaStream outperforms Kinesis by up to 3x.
This performance gap is primarily due to Kinesis’s limitation on the number of events that can be
read per request. As the event size increases, FaaStream keeps its advantage, with both systems
eventually converging near the AWS Lambda throughput limit (= 80MB/s). Importantly, Kinesis

Page 54 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
~8— FaaStream FaaStream (Kinesis) Lithops S3 —®— FaaStream FaaStream (Kinesis) Lithops S3 ~—®— FaaStream FaaStream (Kinesis) Lithops S3
T 1 [] []
1% : : g et 10 ! ! : : = 10°} : | /3/*”"#
- | . i = f .
<]Ozjf : : A ! i % < . < IOZJF / : : : 1
2 : S :) :) . : i : : i
= | o - | \E_, ! % | {
put = i = 1LE | i | i
Slo'J[; % 5 g 0t . . | . =
2] S | = i]
"ED i | fo] -ﬁ) 0\ |
2 10 : = 3 e E ke : : o
=1 =) I 1 =1 I 1
-ﬁ | | ﬁ I | ﬁ I |
10’”[: : : + : : % = = 101 : : : 1
: ' i : = t 1 1 1
102l i 102 \ 102! \
1KB 10KB 100KB IMB 10MB 100MB 1 2 4 16 32 2 4 16 32
Events size Concurrent AWS Lambda Concurrent AWS Lambda

(a) Impact of event size on through-(b) Batch throughput for differ-(c) Batch throughput for different
put using a single function. ent number of concurrent functions.number of concurrent functions.
Event size: 1KB. Event size: 1MB.

Figure 31: Impact on batch throughput of (a) event granularity and throughput scalability for 1KB
(b) and 1MB (c) events.

cannot manage events larger than 1MB.

Interestingly, when compared to Lithops S3, FaaStream exhibits significantly higher throughput
for small events. This is because object storage systems are not optimized for small data access.
For larger events, FaaStream’s performance is comparable to S3. However, for very large events
(10MB and 100MB), FaaStream’s throughput slightly degrades compared to smaller event sizes (e.g.,
100KB or 1MB). This degradation is attributed to a known issue?? in Pravega’s S3 backend. We
experimentally evaluated that this does not occur when using alternative long-term storage systems
like AWS EFS.

Overall, our experiments highlight that using tiered data streams as a storage substrate for server-
less pipelines can achieve high batch throughput for a variety of data sizes.

Throughput scalability: In what follows, we evaluate the batch throughput scalability of FaaStream
as the number of concurrent AWS Lambda functions increases. Two event sizes are considered: 1KB
and 1IMB. The event processing throughput is measured for varying numbers of concurrent AWS
Lambda functions (ranging from 1 to 32). FaaStream is deployed with a Pravega cluster consist-
ing of 5VMs, while Kinesis is configured with 300 shards to match the hourly cost of the Pravega
deployment. Figures 31b and 31c present the results for 1KB and 1MB events, respectively.

For both event sizes, FaaStream demonstrates the highest throughput, scaling linearly with the
number of concurrent AWS Lambda functions. In contrast, Kinesis throughput saturates at 8 Lambda
functions due to its dependency on the number of shards, which imposes a hard limit on its scala-
bility. Interestingly, FaaStream also outperforms Lithops with S3 in both cases. While the superior
performance for smaller event sizes was anticipated, FaaStream’s ability to achieve up to 2x higher
throughput for larger event sizes highlights its efficiency in handling high-throughput workloads.

Unified data access. Next, we evaluate FaaStream’s capability to execute a serverless job seam-
lessly in both streaming and batch modes without requiring code changes. To this end, we use the
hash generation job (see §6.4.2). We test two configurations: the first operates in streaming mode, gen-
erating hashes as data arrives at a rate of 100 images per second. The second runs in batch mode,
processing all pre-written data. Listing 1 shows the job code using the FaaStream APIL

We compare the FaaStream job in Listing 1 with the analogous implementations using Kinesis and
Lithops S3. For both streaming and batch executions, we use 4 concurrent AWS Lambda functions.
FaaStream is deployed using a single VM and the Kinesis stream is configured with 60 shards. In
Fig. 32, the X axes measures latencies to compute the hashes in streaming and the Y axes the through-
put of the batch job. Visibly, FaaStream achieves the highest throughput in batch mode —2.25x and
22.51x higher than Kinesis and Lithops S3— and the lowest latencies —80.99% and 86.02% lower p95

22This issue is being addressed by the Pravega community: https://github.com/pravega/pravega/issues/7441.

Page 55 of 108

https://github.com/pravega/pravega/issues/7441.

N

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

® FaaStream FaaStream (Kinesis) Lithops S3
300

[\
W
=)

(W]
S
(=}

Throughput (MB/s)
S @
(=] S

[}
(@)

0 20 40 60 80 100
p95 Latency (ms)

Figure 32: Unified data access performance. Event size: 35 KB, 4 concurrent AWS Lambdas.

Source<byte[]> source = Source.fromStream(input) ;
Pipeline<byte [], byte []> pipeline = source
.map (new HashTransformer(), workers)
.writeToStream(output) ;

Manager manager = new Manager();
manager .execute(pipeline, new StaticScalingPolicy());

Listing 1: FaaStream unified data access example.

latency than Kinesis and Lithops S3— in streaming mode. This experiment supports the overarching
design intent in FaaStream: a unified analytics API for both streaming and batch serverless pipelines
on top of tiered data streams.

6.44 Coordinated Auto-Scaling

In this section, we evaluate the coordinated auto-scaling capabilities of FaaStream, which combines
the inherent elasticity of FaaS with elastic data streams. To this end, we use real-world serverless
job: a surgical video processing pipeline from the National Center for Tumor Diseases (NCT) in
Germany [147]. Also, NCT provided traces describing the number of active operating rooms in a
hospital with 1-minute granularity, which exhibits strong daily and weekly patterns. Using this trace,
we generate an input stream of images with a configurable image-per-second rate that fluctuates over
time. We replay these traces with two types of workloads: a CPU-bound and an IO-bound processing
pipeline.

As a baseline for comparison, Lambda functions perform IO via Apache Kafka, a well-known
event streaming platform in the industry. Since Kafka does not provide elastic data streams [148, 149],
we use two different Kafka setups with a fixed number of topic partitions: 10 and 100 partitions.

FaaStream’s coordinated auto-scaling algorithm (see §6.3.3) uses a 20-second wait period for both
scaling up and scaling down. Scale-down operations occur when the average number of queued
events per worker is below 0.40, terminating one worker at a time, ensuring there is always at least
one worker. Scale-up operations happen when the average number of queued events per worker
exceeds 1.95, increasing the number of workers by 2 to 3 times. The input stream segments are
maintained at 3 to 4 times the number of workers. The queue length serves as an indicator of system
load. For instance, a mean queue length of 0.5 suggests that the incoming rate is approximately 50%
of the system’s processing capacity, allowing for a reduction in the number of workers. Conversely,
a mean queue length of 2 indicates that the incoming rate is roughly 200% of the processing capacity,

Page 56 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
— A FaaStream Kafka part. — 2 FaaStream (Kafka) —— Written events FaaStream (Kafka 10 part.) FaaStream (Kafka 10 part.) —— FaaStream
-~ FaaStream seg. -~ Kafka part --- FaaStream --- FaaStream (Kafka 100 part.) -+== FaaStream (Kafka 100 part.)
100 1.0
90 ! i 12 0.9 £
8011 b 10 M 038 ,}/
70 ! F : ' 0.7
o] - s sl e Y o /
5011 ; ' - ,J | ! H gos |
o ——— ‘.) M Ty 04 |
Sof il ; h : | I i \N 0.3 f
ol Ad s ! | 2 { | 0.2 |
Gr‘ - o T oo 0 \ |] 0.1 i
1000 2000 3000 4000 5000 6000 7000 10002000 3000 4000 5000 6000 7000 o2 10° 107 10° 106
Elapsed time (s) Elapsed time (s) Time to Process (ms)
(a) Active AWS Lambda functions(b) Throughput for CPU-bound(c) Latency CDF for CPU-bound
and segments/partitions for CPU-pipelines. pipelines.

bound pipelines.

Figure 33: Coordinated auto-scaling for CPU-bound pipelines: (a) throughput, (b) active functions
and partitions, (c) latency.

— A FaaStream Kafka part. - A FaaStream (Kafka) —— Written events FaaStream (Kafka 10 part.) FaaStream (Kafka 10 part) — FaaSweam
-~ FaaStream seg. - Kafka part. --~ FaaStream --- FaaStream (Kafka 100 part) ... FaaStream (Kafka 100 part.)
o 8000 I 1.0
80 7000 I o5 /
4 \ A \ M 0.8 /
20 6000 ! v 07
60 2 5000 mv“n‘\ ’J ‘ ” " \ . 06 /
50 £ 4000 f‘ : | T gos /
40 s ™ PR, TR o /
) B 3000 \ G L i 04
301ty T y [y Mo 03
S0l LHLA TR | 2000 ¥ / { /
ol R pood ML | A ool -y
O T N TN 0 I | | 0.1 I
) 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 OGor 102 10° 107 10° 106
Elapsed time (s) Elapsed time (s) Time to Process (ms)
(a) Active AWS Lambda functions(b) Throughput for IO-bound(c) Latency CDF for IO-bound
and segments/partitions for IO-pipelines. pipelines.

bound pipelines.

Figure 34: Coordinated auto-scaling for IO-bound pipelines: (a) throughput, (b) active functions and
partitions, (c) latency.

necessitating a doubling of the workers. The scale-up and scale-down thresholds are configurable,
and in our setup they are set to 0.40 and 1.95, respectively. During the experiments, we monitored
that the distribution of segments/partitions was uniform among workers for both FaaStream and
Kafka.

CPU bound pipelines. In this experiment, we use the embeddings generation job detailed in
§6.4.2, which is a CPU-bound job. We emulate a three-day period of the NCT trace in two hours.
AWS Lambdas are set with 4GB of memory.

Fig. 33a illustrates the resource utilization for the serverless pipeline using FaaStream and Kafka.
For the Kafka setup, we maintained a constant number of 32 Lambda functions running continu-
ously and consuming data from the topic. Instead, FaaStream uses the aforementioned auto-scaling
algorithm, with a maximum of 32 and a minimum of 1 AWS Lambda functions. Note that dynamic
scaling in FaaStream involves starting and stopping Lambda functions, which may incur in cold
start penalties. Fig. 33b shows the throughput of the pipelines. Visibly, the Kafka setup with 10 topic
partitions achieves ~ 40% lower throughput compared to FaaStream in peak periods due to the
constrained partition parallelism. In Kafka, each topic partition is consumed by at most one reader
at a time (i.e., they cannot be processed in parallel). This limitation is problematic for CPU-bound
serverless jobs, which require higher partition parallelism to distribute the load across more Lambda
functions. This causes event queuing that explains the higher latencies observed in Fig. 33c.

Page 57 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
—e— FaaStream Lithops S3 =& Serverless Spark
10° System Map/Reduce Exec.
Workers time (s) Shuffling Perf./cost
- System Workers cost ($) (GBJs/$)
z 200 123.28
£ Seer 225 129.66 200 0.216 3.75
5 102 250 136.28 Seer 225 0.273 2.82
FR e 250 0.338 2.17
L% "‘Q‘ i T Serverless 152 77.72
— Spark 176 85.66 150 0.261 3.670
T e P - 200 83.607 FaaStream 175 0.254 4.00
’ Map Parallelism 150 104.16 200 0.360 2.25
FaaStream 175 98.16
Figure 35: WordCount execu- 200 12324
tion time (4.3GB of data, 120 Table 15: Shuffling costs for 100 GB
files) for various levels of par- Table 14: Execution time for TeraSort benchmark.
allelism. 100GB TeraSort benchmark.

Moreover, Fig. 33b indicates that FaaStream achieves the expected ingestion throughput, as for
Kafka with 100 topic partitions. Fig. 33b shows that FaaStream auto-scaling only incurs a small
latency penalty (i.e., = 3 seconds at p95) due to cold function startup. Crucially, FaaStream achieves
such a performance while using fewer resources than Kafka with 100 partitions and 32 active Lambda
functions.

I0-bound pipelines. We use the hash generation job from §6.4.2 as an IO-bound serverless job. To
increase the IO load, we multiply by 1000 x the rate of images generated with respect to the previous
experiment and reproduce the 3-day NCT trace period in 1.5 hours.

Fig. 34a shows a similar resource utilization pattern as the previous experiment: with Kafka, par-
titions and Lambda functions are statically provisioned, whereas FaaStream adapts stream segments
and functions to workload fluctuations.

More importantly, we observe significant performance differences between using Kafka and FaaS-
tream for running IO bound jobs, both in terms of throughput (Fig. 34b) and latency (Fig. 34c). Specif-
ically, we observe that FaaStream achieves a throughput 2 x higher than Kafka and a time-to-process
latency orders of magnitude lower. Even worse, Kafka with 10 topic partitions achieves a slightly
higher throughput and lower latency than the setup with 100 topic partitions. This may be due to
the fact that we set Kafka with strict data durability. As Kafka uses a log file per topic partition,
an increasing number of partitions results in a loss of performance due to concurrent synchronous
writes [129]. This indicates that not all event streaming are equally equipped to serve serverless
pipelines in terms of parallelism.

6.4.5 Stream-based Data Shuffling

Data shuffling, which redistributes data among workers, is an essential primitive for many data pro-
cessing pipelines. In serverless computing, this process is particularly important due to the absence
of direct communication between functions, thus requiring an intermediate communication system.
In this section, we evaluate the performance of FaaStream with jobs that require data shuffling. To
this end, we use two well-known benchmarks: WordCount and TeraSort. These benchmarks are
representative of common data processing patterns [137] and are widely used in the literature to
evaluate the performance of data shuffling systems [141, 121, 143]. We compare the performance of
FaaStream with two state-of-the-art systems: Lithops [113] and Serverless Spark [134, 117].

Word Count. For WordCount, we implemented in FaaStream a custom shuffling algorithm that
uses the MurmurHash3 algorithm as the routing hash for each word (see §6.4.5). This allows us to
distribute the words consistently across the segments. We configured the Lithops’ reduce function
with the maximum memory available in AWS Lambda (10,240 MB) to avoid memory pressure, as
Lithops only supports a single reduce function. FaaStream uses a single VM instance.

Figure 35 shows the execution time of the WordCount benchmark as a function of the level of
parallelism in the Map stage. We observe that FaaStream outperforms Lithops by nearly an order

Page 58 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

--- FaaStream (Error) e A (Error)
—— FaaStream (No Error)

W
o
o

(=)

N
()
(e

(98]
o
o

[\
o
o

—
o
(e}

— O WA U 0O —
Active As

Processing Rate (events/s)

e IR

1

0 10 20 30 40 50 60 70 80 90 108
Elapsed time (s)

0

Figure 36: Exactly-once failure recovery.

of magnitude. This performance gap is expected due to the single reduce design in Lithops. In-
terestingly, FaaStream is also slightly faster than Serverless Spark (up to 25.80%), despite the latter
performing the shuffle in memory while FaaStream’s data shuffling involves disk operations. This
advantage is a direct result of data pipelining enabled by tiered data streams, which allows FaaS-
tream to overlap the map and reduce stages effectively.

TeraSort. We used Seer [121] and Serverless Spark as baselines for TeraSort. Our FaaStream
shuffling implementation uses a locality-based hashing algorithm which respects the lexicographical
order of the keys. This allows us to distribute the keys evenly across the segments while maintaining
their order, ensuring that each segment contains a contiguous range of keys. Both FaaStream and
Seer Lambdas are configured with 4GB of memory and FaaStream used 10 VMs.

Table 14 shows the execution time of the TeraSort benchmark for different configurations of Seer,
Serverless Spark, and FaaStream. Note that we were not able to execute Seer with fewer than 200
workers due to Lambda functions reaching their memory limit. Results in Table 14 indicate that
FaaStream is 20% faster than Seer. It is also noteworthy that FaaStream is only 20 seconds slower
than Serverless Spark, which performs shuffling in-memory (i.e., no data durability). Additionally,
for the Serverless Spark execution time, we only considered the time elapsed from the job start to its
completion, excluding the scheduling time for the job. If the scheduling time was to be considered,
the execution time for Serverless Spark would be 174 seconds, which is a 77% higher execution time
than FaaStream. These results support the design decision of using tiered data streams as a stor-
age substrate for data shuffling. Also, the FaaStream data shuffling primitive can adapt to various
shuffling algorithms.

Shuffling costs. Next, we also compare the intermediate storage costs used by the serverless
functions to perform data shuffling in TeraSort. For Seer, we measure the cost of the S3 requests
performed and for FaaStream we measure both the S3 cost and the cost for the EC2 cluster used.
We excluded Serverless Spark from this comparison because its shuffling operation is performed in-
memory and does not require intermediate storage. Along with the shuffling cost, we also measure
the performance/cost ratio of the shuffling operation, which takes into account the performance
of the shuffling operation in terms of GB/s and the cost of the shuffling operation, expressed as a
GB/s/$ ratio.

Table 15 shows the USD cost of the shuffling operator for the different configurations of Seer and
FaaStream. We observe that FaaStream'’s shuffling cost ($0.254) is only slightly higher than Seer’s
shuffling cost for the best configuration ($0.216). However, when it comes to the performance/cost
ratio, FaaStream achieves a ratio of 4.00GB/s/$, which is 0.25 GB/s/$ higher than Seer’s best config-
uration (3.75 GB/s/$). These results demonstrate that FaaStream’s shuffling cost is competitive with
state-of-the-art serverless analytics frameworks while providing a better performance/cost ratio.

Page 59 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

6.4.6 Stateful Pipelines upon Failures

Finally, we evaluate FaaStream’s failure recovery mechanism for keeping exactly-once state consis-
tency guarantees under failures. To this end, we execute two versions of a single-stage serverless job
configured with exactly-once semantics. The first version introduces a failure in all workers at a spe-
cific time, while the second proceeds normally without interruptions. The job processes a stream of
integers, computes their cumulative sum, and writes the results to an output stream. We configured
the job with 5 concurrent workers, processing a steady input stream of 100e/s.

Figure 36 presents the results. Around second 58, a failure is triggered, causing all workers to
halt. FaaStream detects the failure and completes the recovery process in ~ 5 seconds. This includes
failure detection, relaunching the workers, restoring their checkpointed state, and resuming process-
ing from the last checkpoint (see §6.3.5). After recovery, the system seamlessly continues processing
events, with no data loss or duplication, maintaining exactly-once guarantees.

[Framework [PublicFaaS | Storage abstraction [Workload type [Data elasticity [Shuffling [State consistency |
FaaSFlow [111] No Shared memory and remote store Batch No No ?m.mlc. o nsnster\qi
or individual steps
Boki [109] No Shared Log Batch Yes No Exactly-once
MinFlow [150] No Shared memory and Object Storage Batch No Yes N/A
Pheromone [110] No Shared memory and durable KV store Batch, Streaming* No Yes Not specified
SPCS [112] Yes Dynamo DB and SQS Streaming No No At Least Once
Lithops [113] Yes Object Storage Batch Yes No N/A
Seer [121] Yes Object Storage Batch Yes Yes N/A
Sponge [114] Yes No intermediate storage (VMs for its router operators). Streaming Yes Yes Exactly-once
FaaStream Yes Tiered data streams Batch, Streaming Yes Yes Exactly-once

* Batched streaming jobs.

Table 16: Related work comparison with FaaStream.

6.5 Related Work

Next, we review the related work. For clarity, Table 16 outlines the most relevant systems categorized
by key dimensions.

Serverless frameworks. First, we find serverless frameworks designed for public clouds that use
shared storage. ExCamera [151] uses thousands of AWS Lambda functions to process video streams,
using a rendezvous server for inter-function communication. gg[152] is able to launch thousands of
parallel functions, using external storage like S3 or Redis. It also proposes direct function communi-
cation via NAT-traversal, a technique furthered studied by FMI [153]. PyWren [119], Lithops [113],
NumpyWren [154], and Sprocket [155] rely on object storage for intermediate data. Kappa [156]
manages cloud function timeouts with checkpointing and uses FIFO queues on a coordinator VM
for inter-function communication. Crucial [130] uses distributed shared memory for synchronizing
function shared state. On the other hand, we find ad-hoc serverless runtimes with integrated storage
or communication mechanisms. Pheromone [110] uses in-place shared memory object store, enabling
zero-copy data sharing and direct inter-node communication. FaaSFlow [111] implements a shared
memory storage for co-located functions. Cloudburst [157] uses Anna [158] with a mutable cache for
stateful functions. SONIC [159] optimizes data exchanges with local storage, direct-passing between
VMs, and remote storage. While effective, these works rely on controlling the runtime, limiting their
applicability in public clouds.

Storage abstractions. Previous works propose various storage abstractions for intermediate data
and state management. Pocket [122] and Jiffy [160] propose elastic storage systems, with Jiffy opti-
mizing resource allocation for analytics workloads. Shredder [161] and Glider [162] enable lightweight
computations within the storage layer to reduce data movement. Shared log abstractions, such as
Beldi [126] and Boki [109], ensure fault tolerance and transactional consistency, with Boki co-locating
its LogBook engine for low-latency state management. IndiLog [127] further enhances shared log
scalability. Unlike these, FaaStream uniquely employs elastic and tiered data streams as a unified
storage abstraction.

Page 60 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Workload types. Several frameworks have been proposed to address specific workload types in
serverless environments. Flint [163] introduces a Spark execution engine for AWS Lambda, enabling
batch data analytics jobs on serverless. SplitServe [164] extends Apache Spark to use both VMs
and cloud functions, leveraging HDFS-based storage for data shuffling. For streaming workloads,
Styx [165] focuses on enabling stateful transactions in serverless streaming jobs. Flock [166] presents a
streaming query engine tailored for serverless environments. SPCS [112] proposes a stream comput-
ing framework built atop serverless architecture. Pheromone [110] supports both batch and stream-
ing workloads, but relays on batched streaming for the latter. Durable Functions [167] introduces an
actor-based model to enable stateful serverless workflows. Similarly, Dirigo [168] proposes a stream
processing service built atop actors. Apache Flink Stateful Functions [169] extends Flink with an actor
model for stateful serverless applications. However, it is not designed for data analytics workloads
and lacks key features like programmatic abstractions or a shuffling operator. FaaStream uniquely
supports both batch and streaming workloads programmatically and in terms of infrastructure, with
elastic streams handling fluctuating ingestion workloads.

Data shuffling. The serverless data shuffling problem has been addressed by several previous
works. Lambada [170] introduces a shuffle operator using object storage with a multi-level ex-
change pattern. Seer [121] optimizes the object storage exchange pattern used for faster execution.
Locus [141] adds shuffle support to PyWren, combining object storage and Redis. MinFlow [150],
optimizes the communication topology also combining shared memory and object storage. These
works emphasize the need for an optimized serverless shuffling using external storage. FaaStream
provides a novel data shuffling primitive by exploiting adaptive event routing on top of data streams.

State consistency. Multiple works focused on managing state in serverless pipelines. SPCS [112]
provides at-least-once guarantees for streaming workloads, while Boki [109] ensures exactly-once
guarantees for batch jobs. Sponge [114] and Styx [165] extend exactly-once semantics to streaming
workloads. Similarly, FaaStream allows deploying stateful functions, delivering exactly-once guar-
antees for streaming workloads on top of tiered data streams.

6.6 Conclusions

In this deliverable, we introduced FaaStream: a serverless framework that unifies streaming and
batch data processing in public FaaS platforms. FaaStream leverages elastic and tiered data streams
to support both batch and streaming workloads at the infrastructure level, while exposing a set of
unified data primitives at the programming level. Our evaluation shows that FaaStream achieves
low-latency and high-throughput inter-function data transfers, adaptability to fluctuating work-
loads, flexible data shuffling, and exactly-once function state consistency under failures. FaaStream
paves the way for freeing developers from infrastructure-related decisions when building hetero-
geneous FaaS pipelines in public clouds. Moreover, our results may incentivize cloud providers to
expose elastic and tiered data streams as a cloud-native storage abstraction FaaS platforms.

Page 61 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

7 XtremeHub Security and Streams

Another path of convergence in XtremeHub encompasses streams and security. In particular, we
worked on a compelling demonstration of NEARDATA's cutting-edge confidential computing capa-
bilities, showcasing how Trusted Execution Environments (TEEs) can be effectively applied to real-
time data streaming with an affordable performance impact for some use cases. This section serves as
a summary of the work done to combine security and low-latency stream processing in deliverable D4.2.

7.1 Secure Streaming in Action

Using Pravega as the streaming backbone and SCONE as the confidential computing runtime, the
NEARDATA team evaluated “sconified” clients running inside Intel SGX enclaves. These clients
were benchmarked against standard ones across 24 test cases, varying throughput (100-10K even-
t/sec) and payload sizes (100B-100KB). The results reveal a nuanced performance landscape:

¢ At low throughput, secure clients show higher latency (=~ 2x), as expected due to enclave
overhead.

¢ At medium to high throughput, the gap narrows significantly, with secure clients approaching
parity.

¢ At peak throughput (10K events/sec, 100KB payloads), secure clients even outperform stan-
dard ones—thanks to SCONE’s optimized threading and memory management.

7.2 Summary

These results show that, even though the expected latency impact from using Scone in streaming
clients, it may be justified in some health applications that require high security and confidentiality
standards. In domains like surgical Al and metabolomics, where data sensitivity is non-negotiable,
NEARDATA proves that confidential computing is no longer a bottleneck. The platform enables
real-time analytics with strong security guarantees, making it ideal for federated learning scenarios
where privacy, compliance, and performance must coexist.

In D4.2, we report the full report for this analysis. The document also dives deeper into the
Data Broker’s architecture, orchestration mechanisms, and integration with advanced security com-
ponents like SinClave, CRISP, LLD, and Revelio.

22The content of this section maps to tasks T3.2 and T4.4 and is related to the paper “Understanding the Latency-Security
Tradeoff: TEE-based Confidential Computing for Streaming Workloads” published in CEC@IEEE ICNP’25.

Page 62 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

8 XtremeHub Stream Connectors: Nexus
8.1 Introduction

Continuous data sources—e.g., 10T, sensors, server logs—generate an influx of data that needs to
be ingested, processed, and stored reliably and with high performance. Typically, continuous data
sources generate data events, which may contain unstructured contents ranging from 1 byte to multi-
ple MBs. Managing data events generated by a source requires the system to keep order and consis-
tency. This motivated the adoption of the data stream abstraction (a.k.a., “topic”) as the foundation for
managing data from continuous data sources.

In the last decade, multiple event streaming systems have emerged to expose the data stream
abstraction. For example, systems like Apache Kafka [123], Apache Pulsar [124], Redpanda [125], or
Pravega [171] implement streams with key guarantees, such as durability, event order, and high per-
formance, among others. Event streaming systems also provide connectors for analytics engines —
e.g., Apache Flink [116], Apache Spark [118]— to become a powerful data sink/source in production-
grade stream processing pipelines [172, 173].

More recently, however, the industry raised the need of storing stream data for the long term and
in a cost-effective manner (e.g., batch analytics, Al training, auditing) [174, 175, 176]. Augmenting
event streaming systems with long-term storage capabilities is a major challenge, with profound
design implications in some cases [177]. And yet, in recent years, we have witnessed most event
streaming systems providing storage tiering [178, 179]: the ability to move cold stream data to an
external storage service (e.g., AWS S3). Storage tiering for data streams allows the system to achieve
a sweet spot in the infrastructure costs and performance trade-off [86].

8.1.1 Motivation: Beyond Tiered Data Streams

In general, the storage tiering process for data streams is quite simple: it consists of moving chunks®®
of stream data to/from external storage via APIs. When a chunk —e.g., a few to 100s of MBs— of
stream data is considered cold, a server of the event streaming system triggers a storage operation
to offload it to external storage. Once stored remotely, chunks of stream data can be safely removed
from the high-performance, expensive drives used to ingest events with low latency.

Crucially, we identify that tiered data streams open up an opportunity for advanced data manage-
ment that remains largely unexplored beyond simple storage offloading. For instance, we could run
functions on chunks of tiered stream data that route them to specific storage based on their contents,
perform custom data transformations, or proactively prefetch/cache data for performance purposes,
to name a few. Ideally, this would be complementary and independent to the stream processing services
that event streaming systems already offer (e.g., Kafka Streams API, Flink jobs). In particular, appli-
cations could continue performing stream processing at the data event granularity with low latency,
while data management would be executed offline on stream data chunks.

A simple example of the opportunity we explore in NEARDATA is illustrated in Fig. 37 (details
in §8.7). In Fig. 37, we show different approaches to apply data compression on a Kafka stream:
i) client, ii) broker, and iii) storage tiering (broker). For each compression approach, we evaluate the
compression ratio and write latency for various write event rates and batch sizes via OpenMessaging
Benchmark [180]. Visibly, when applying compression at the data event level, there is a trade-off
between compression ratio and write latency. This is natural, as larger event batches provide better
compression opportunities at the cost of needing more time to complete. Note that this happens
irrespective of whether data event batches are compressed at the client or broker sides. Instead, by
applying compression on chunks of tiered stream data, we keep event write latency unaffected while
achieving 2.6 x better compression ratios than compressing data at the event level, as stream data
chunks are even larger than event batches.

A key observation is that managing chunks of tiered stream data can provide benefits beyond

22The content of this section maps to tasks T3.2 and T3.5 and is related to the paper “Nexus: A Data Management Mesh for
Tiered Data Streams”, submitted for publication.
2In this project, the term “chunk” or “data chunk” refers to the units of stream data offloaded to external storage.

Page 63 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
’gm Write latency vs compression ratio (Kafka)
NG ‘ ‘ Batch size=[5ms,5KB] |
§ 8- o ¢ A]
T 6
2
§ 4r o Uncompressed (100e/s)

o) = Client (100e/s)

Q 2 o Broker (100e/s)]
. ~ Tiered Storage - Broker (100e/s)

2 0 ‘ ‘ ‘ ‘

< 0 2 4 6 8 10

Data compression ratio

Figure 37: Write latency vs data compression trade-offs in enforcing data compression in Kafka at
different points of the write path (i.e., client, broker, and storage tiering).

data reduction. However, in the experiments above, we used the data compression functionality
built in the storage tiering binding itself [181]. As event streaming brokers are already complex
systems, attempting to build a general-purpose data management framework on top of a storage
tiering binding may be inflexible and hard to maintain. This calls to rethink data management for
tiered data streams as an independent service.

8.1.2 Data Management Challenges

Our goal is to enable transparent and flexible in-transit data management for tiered data streams. This
can be achieved by intercepting storage requests for stream data chunks and applying user-defined
functions, all without impacting existing event streaming systems. This approach empowers admin-
istrators to orchestrate rich data management pipelines, thereby adding value to the stream tiering
process.

Still, realizing this vision entails challenges: i) Decoupling: Event streaming and data manage-
ment should be clearly separated concerns. A strong reason supporting this decision is that event
streaming systems are performance-sensitive and complex already. Thus, adding advanced data
management capabilities to them could negatively impact their maintainability and performance. ii)
Transparency: Ideally, we should perform data management on tiered data streams without the event
streaming system noticing. Addressing this challenge would also benefit not just one, but multiple
event streaming systems. iii) Extensibility: Data management is a quite broad term [182]. As such, we
should provide users with means to develop a variety of data management functions for optimizing
storage flows related to tiered data streams. iv) Heterogeneity: As event streaming systems may be
deployed at the Edge and/or the Cloud, a data management solution should also be aware of such
heterogeneous infrastructures.

8.1.3 Contributions

We present Nexus, the first system to address the data management gap between event streaming sys-
tems and external storage services. Nexus transparently intercepts storage operations from tiered data
streams via standard APIs and executes in-line data management functions (streamlets) on chunks of
stream data. These functions are orchestrated through policies and executed across heterogeneous
infrastructures using clusters of workers (swarmlets), enabling extensible and location-aware data
management. Nexus supports both stateless and stateful streamlets. Moreover, Nexus introduces
mesh-like data routing to transparently manage streamlet execution across infrastructures. Our key
contributions are:

 This is the first work addressing the data management gap between streaming systems and
external stores.

* Design of Nexus, a system with streamlets, swarmlets, and policies for composable and location-
aware in-transit data management of tiered data streams.

Page 64 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
Client Broker . External
Storage tiering storage
.~~~ module
e Ess] [sss] 1 3
Events Event ! Tiered stream
batches
data chunks
Log files

Figure 38: Architecture of an event streaming system.

* Implementation of Nexus and multiple streamlets to evaluate the benefits on event streaming
systems like Kafka, Pulsar, and Pravega across Edge/Cloud deployments.

We validated Nexus through extensive experiments on AWS and on-premises clusters. Nexus
intercepts and routes storage requests with modest overhead (< 5%) and supports complex stream-
let pipelines. Nexus achieves compression ratios up to ~ 3.9x higher than Kafka’s and Pulsar’s
best client- or broker-side compression, all while maintaining low write latency. Additionally, Nexus
enables privacy-aware semantic routing using Al inference with efficient stateful execution, and re-
duces streamlet state metadata read requests by ~ 98% via partition-aware routing.

8.2 Background
8.2.1 Event Streaming Systems

Event streaming systems, such as Apache Kafka [87, 123], Apache Pulsar [124], Redpanda [125], and
Pravega [171], have emerged as a popular technology for ingesting and processing data in real-time.
These systems expose the data stream (a.k.a., topic) abstraction for managing data events. Internally,
data streams are composed of partitions or segments, which can be parallelized for higher throughput.
Most systems provide support for data durability and exactly-once semantics in data streams, as well
as low-latency stream data ingestion.

The general architecture of event streaming systems consists of producers that write data events
to streams, and consumers that read and process these events (see Fig. 38). Brokers act as interme-
diaries, managing the ingestion, storage, and delivery of events. Each broker persists stream data to
local log files on high-performance storage devices to ensure durability and low-latency access [183].
Data is typically organized into append-only logs, segmented by partitions, and replicated across
brokers for fault tolerance.

8.2.2 The Shift towards Streaming Storage

Due to the growing storage demands of streaming use cases, event streaming systems have adopted
tiered storage as a key feature [178, 179, 184]. Tiered storage consists of offloading cold stream data
from high-performance storage (e.g., SSDs, NVMes) to scale-out storage (e.g., object storage). This
results in a sweet spot in the latency-throughput trade-off while reducing storage costs, making it a
crucial feature for organizations to efficiently manage and store stream data [86].

In tiered storage, cold stream data is offloaded in chunks: units of larger granularity than individ-
ual events, typically ranging from a few to 100s of megabytes. These chunks are transferred asyn-
chronously from the broker’s local log files to external storage via standard APIs (e.g., AWS S3). Once
offloaded, the data is removed from the high-performance tier, freeing up resources for low-latency
ingestion. This mechanism is transparent to producers and consumers, and enables long-term reten-
tion to historical data without impacting the performance of the hot path. However, advanced data
management has not yet been considered in the tiering process.

8.3 Nexus Design

This section presents the design of Nexus, a novel data management mesh for tiered data streams.

Page 65 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
Edge Cloud A
Kafka tiered streams Swarmlet A © Swarmlet C
stream1/partition0 / °
® . g <M, o Bucket 1
j=2J
= s 82 5 . s3 5 -
@ 5 Stream_let @ @ § Streamlet ﬁ D
o Execution % o Execution =
-—/ 5 S
- 1N s1 s2 s3 3 s1 s2 s3 . @
-
" S k 1 Streamlets Streamlets 5PU
stream2/partition0 ©) § —
B —3 © CloudB Polici
Pulsar tiered streams g H ou olicies
stream3/partition0 i N s3 - Bucket2 P1 [kafka] stream1: edge(s1) ®
> | edge(s2, [9zip])
> s | cloud(s3) > bucket1
E Stream_let 'nE: -
o Execufion % E‘ ‘ [kafka] stream2: edge(s3) > local_store
Tiered stream data chunks s1 s2 |s3 . 2
Y Streamiets 9 i P3) [pulsar] stream3: edge(s4) > bucket2, local_store
Worker instance Swarmiet B
s1 Data prefetching s2 Data compression sSélemantiC labeling %’rivacy—aware data routing

Figure 39: An architecture overview and operation of Nexus.

8.3.1 Design Principles and Insights

Event streaming systems are progressively adopting tiered storage as a key feature for providing
scalable and cost-effective data storage. However, these systems are limited in terms of data man-
agement capabilities for tiered data streams. As of today, most systems just provide storage bindings
for offloading chunks of stream data to external storage. To over come these limitations, we present
Nexus, whose design is determined by the following set of principles.

First, Nexus is designed considering that event streaming and data management should be clearly
decoupled concerns. A key observation supporting this design decision is that event streaming sys-
tems work at the data event level, whereas tiered data streams are managed at the chunk level. Such
data granularities are totally different both in terms of size (i.e., 10-1000x size difference) and pro-
cessing latency expectations (i.e., milliseconds vs minutes). In this sense, we realize that most event
streaming systems adopt standard APIs for managing tiered stream data from external storage ser-
vices (e.g.,, AWS S3, Azure) [178, 185]. Nexus design exploits this insight by transparently intercepting
storage operations of tiered data streams. In addition to favor a decoupled data management layer,
storage API interception makes Nexus applicable to virtually any event streaming system with tiered
storage.

Second, data management is a broad term with many types of applications [182]. As such, Nexus
is designed to deploy and execute user-defined data management functions for optimizing storage oper-
ations related to tiered data streams [186, 187] (see §8.4.2). While some data management functions
are expected to be stateless, Nexus design also considers supporting stateful functions. Function state
may be required for storing data required for an algorithm or passing a partial event stored in pre-
vious chunk across executions?*, for example. In contrast to prior work [188], we do not attempt to
keep globally consistent metadata shared across functions. As a novel contribution, Nexus exploits
the sequential structure of data streams for routing data across stateful functions and linearizing func-
tion state management via consistent hashing. This relaxes the consistency requirements on shared
metadata [189] (see §8.4.3).

Finally, event streaming systems are increasingly deployed at the Edge, or in Edge/Cloud envi-
ronments [190, 191], for latency, cost, and privacy reasons. However, such an heterogeneous infras-
tructure also needs to be considered at the data management level. Nexus allows users to deploy
data management functions on specific locations and compose their execution across the Cloud/Edge
infrastructures via simple policies. Note that some functions may require specialized hardware for
their execution (e.g., GPU, TEE). Nexus tracks the specialized hardware available in worker instances,

24Gome event streaming systems do not guarantee that event boundaries match with chunks of tiered stream data [86].

Page 66 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

as well as execution requirements for transparently executing functions and routing data to the right
place (see §8.4.4).

8.3.2 Abstractions

In what follows, we describe the abstractions that are key building blocks for the design of Nexus:

Streamlet: A streamlet is a function executed in-line on a storage request related to a chunk of
tiered stream data. Streamlets are reactive: they are invoked upon the interception of storage opera-
tions. The streamlet concept is broad enough to address diverse data management requirements on
data streams. We classify the streamlets into four categories: transformers, which change the content
of data (e.g., compression, encryption); performance, which aim to improve the 10 performance of the
event streaming system (e.g., caching, prefetching); routing, which change the default destination of
stream data (e.g., multi-cloud replication); and semantic, which analyze the contents of stream data
chunks and react to them (e.g., Al-based metadata labeling). Note that a streamlet may fall into more
than one category at the same time (e.g., privacy-aware data routing).

Swarmlet: A swarmlet is set of Nexus worker instances for executing streamlets. Importantly, all
the worker instances within a swarmlet are identical in terms of hardware resources and are located
in the same infrastructure (Edge, Cloud). A Nexus deployment may be composed of multiple swarm-
lets, each one having its own access endpoint. This abstraction allows Nexus to easily route data and
schedule the execution of streamlets based on their hardware needs.

Policy: Administrators use policies for configuring the execution of streamlets in Nexus. Policies
can define the execution of a single streamlet or multiple ones composed in an execution pipeline [192].
Moreover, policies allow administrators to determine the location for a streamlet execution, as stream-
lets may need to be executed at different locations across a Cloud /Edge environment. In Nexus, a pol-
icy has the following elements: i) system type, which helps Nexus to identify actual chunks of stream
data from other system-dependent metadata files also stored externally; ii) target, which defines the
relevant stream(s) for the policy at hand; iii) streamlet pipeline, which defines the streamlet(s) to be ex-
ecuted, as well as the location and order of execution; iv) output storage, which is the eventual location
of stream data chunks once executed the streamlet pipeline. Each streamlet may contain parameters
for configuring its runtime behavior.

8.4 Nexus Architecture

Nexus runs on one or multiple clusters. Fig. 39 shows an overview of its architecture and operation.
Nexus worker instances are deployed as swarmlets (step (D, Fig. 39) based on their infrastructure
location (Edge, Cloud) and hardware resources (e.g., GPU, TEE). Administrators can then deploy
streamlets (step @, Fig. 39) by loading binaries and setting up their metadata descriptor that de-
scribes key aspects for their execution, like hardware requirements. With swarmlets and streamlets
in place, an administrator defines policies to orchestrate the execution of streamlets on data streams
(step @), Fig. 39). The metadata of streamlets, swarmlets, and policies is stored in the metadata store
(see §8.4.1).

Event streaming systems can be configured to offload chunks of tiered stream data against a
swarmlet service endpoint. Nexus worker instances act as a proxy by implementing standard APIs
(AWS S3) for transparently intercepting storage operations from the event streaming system view-
point (step @, Fig. 39). Moreover, worker instances take care of the execution of streamlets (step
©®), Fig. 39). As visible in Fig. 39, Nexus executes streamlet pipelines enforcing the streamlet location
specified by the policy. This is possible thanks to Nexus” mesh-like data routing (step ®), Fig. 39).

In the following, we describe the system components in Nexus that allow administrators building
data management pipelines for tiered data streams.

8.4.1 System Metadata

A swarmlet has a metadata store for managing system metadata and these are independent across
swarmlets.
Swarmlet deployment. Deploying a Nexus swarmlet consists of creating a service composed by

Page 67 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

one or multiple containerized worker instances. Such instances should be reachable under the same
endpoint. Moreover, a swarmlet has two metadada requirements to be fully operational. First, an
administrator needs to define the location of the swarmlet. For instance, if a swarmlet is deployed on
an Edge cluster, we could associate it with the location label edge. Similarly, administrators should
define the required specialized hardware for worker instances, if any. Worker instances for a swarmlet
are placed on nodes with the required hardware available and labeled accordingly (e.g., gpu). Both the
location and hardware metadata of swarmlets is stored in the metadata store and used for correctly
executing streamlet processing pipelines.

Streamlet metadata. Streamlets interact with metadata at multiple levels. First, an administrator
installing a streamlet provides a descriptor specifying its main features. This includes information
about if the streamlet should be executed on writes and/or reads (on=[PUT, GET, ALL]), the stream-
let type (e.g., type=transformer), if it is stateful (stateful=[true, falsel), or if it has any special
hardware requirements to be executed (e.g., hardware=gpu). This descriptor helps Nexus to execute
streamlets correctly and in the right location via data routing (see §8.4.4).

8.4.2 Streamlet Execution

Streamlets are runnable function binaries that are executed in the execution engine of worker in-
stances. Streamlet binaries can be dynamically distributed and loaded onto swarmlets. The con-
tainer image of worker instances also allows packaging third-party libraries that could be invoked
by streamlets [193]. Next, we provide details on streamlet execution:

Containerized execution. Nexus provides container level isolation for streamlets running on the
same worker instance. Streamlets scheduled on the same worker instance run in the same container
and can access the shared system metadata. This approach is reasonable as Nexus can be adminis-
tered by a single organization, which differs from public FaaS platforms [194]. The execution engine
allows to pipeline several streamlets on a single storage request, based on the policy definition. To
illustrate this, policy P1 in Fig. 39 shows the pipelined execution of streamlets s1 (prefetching) and
s2 (compression) in a worker instance at the Edge.

Storing outputs. Once its execution completes, a terminal streamlet in a pipeline stores the pro-
cessed data chunk on the external storage defined in the policy. Nexus provides a storage binding
module for abstracting the streamlets from the different the supported API implementations. Nor-
mally, a streamlet pipeline ends by storing stream data chunks in a single storage service (P1 and P2
in Fig. 39). Still, streamlets that route data may receive as input several storage service endpoints to
store data based on the computation’s output. For instance, P3 in Fig. 39 routes data to a local object
store or to a S3 bucket depending on whether it infers some potential privacy issue in the contents of
stream data chunks.

8.4.3 Streamlet State

Nexus provides state support to streamlets. In particular, stremlets can access the following primi-
tives:

Object tags. A new StreamletContext object is created upon execution of a streamlet pipeline.
The StreamletContext provides support for managing shared key/value pairs. This yields that,
within the pipeline execution in a worker instance, streamlets can manage their own key/value pairs,
as well as access key/value pairs from other streamlets. This basic primitive can support interesting
functionality; e.g., streamlet s1 may route data to bucket b only if key k managed by streamlet s2 has
a certain value. Importantly, all the key/value pairs generated during a streamlet pipeline execution
are asynchronously stored along with the object itself as object tags. Upon a GET request, object
tags are loaded in the StreamletContext and are available to streamlets before the pipeline starts its
execution.

Stateful streamlets. Although many streamlets are assumed to be stateless (e.g., data compres-
sion), complex data management functions may need to keep persistent state. To this end, Nexus
allows administrators to define a streamlet as stateful (stateful=true). At that point, Nexus will au-
tomatically store in the system metadata any data structure (e.g., list, map) annotated as @Persistent.

Page 68 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Optimistic Concurrency Contention (Redis WATCH) Lock Contention (Redis WATCH+MULTI+EXEC)

4
Thread inter-operation time: Thread inter-operation time:
U(0.01, 0.1) sec. - u(0.01, 0.1) sec.

1N

o

©
o
w

Failed operation rate
o o
> (<>

o
o
o

Per-operation waiting time (s)
o
[N

o

o

1 2 4 8 16 1 2 4 8 16
Concurrent threads Concurrent threads

Figure 40: Redis micro-benchmarks to measure contention in concurrent updates on shared data
structures (optimistic concurrency, locks). The time between checking the server state and perform-
ing the update is random € [0.01,0.1] secs.

However, in this setting, managing the streamlet state can be expensive if done naively. For the
sake of illustration, let us assume a data routing streamlet that analyzes stream data chunks and
stores them in an alternative bucket based on the computation outcome. Moreover, it keeps track of
chunks stored in the alternative bucket via a persistent map to serve GET requests. As Nexus assumes
no control over load balancers, data chunks are randomly distributed and processed by streamlet
instances across different worker nodes for the same stream. Therefore, streamlets are concurrently
managing the same shared map. To keep updates to the shared map consistent, we could resort to
existing synchronization primitives in metadata services. But, as visible in a set of micro benchmarks
on Redis (Fig. 40), both optimistic concurrency and locking mechanisms exhibit significant contention
as the number of concurrent updates grow. Similarly, consistent metadata stores proposed in the
serverless literature also incur overhead in keeping shared data structures consistent [188].

Instead, to enable efficient streamlet state management, we build on the observation that a data
stream partitions are parallel (i.e., there is no dependency among them) and sequential (i.e., the data
arrival and tiering process keeps order). Therefore, Nexus can linearize metadata updates on a per-
partition basis to avoid metadata synchronization on stateful streamlet data structures working on
the same stream [195]. First, within the same worker node, storage requests for a given stream parti-
tion are processed in order of arrival. Second, for a given stream partition, Nexus creates individual
streamlet data structures in the metadata store that are managed by the same streamlet instance. As
depicted in Fig. 41, this has two benefits: i) streamlet metadata updates do not require synchroniza-
tion, and ii) on GETs, streamlets have a fresh view of their metadata, which reduces accesses to the
metadata store.

Naturally, managing the streamlet state this way also requires ensuring that Nexus routes storage
requests based on their partition to a consistent set of worker nodes. As we describe next, this is
supported via data routing.

8.44 Mesh-like Data Routing

Event streaming systems have limited flexibility for configuring the storage tiering endpoint [178,
148]. For this reason, Nexus handles the complexity of routing stream data chunks for building
streamlet pipelines. Moreover, Nexus assumes no control over the service load balancer. Thus, the
proxy component in the Nexus worker instance is responsible for intercepting and routing storage
requests across the system. In Nexus, data routing considers direct data transfers across swarmlets,
which differs from typical indirect communication in serverless pipelines [194, 193]. Nexus offers two
routing types:

Partition-aware data routing: Nexus employs a deterministic data routing protocol to assign
stream partitions to specific worker instances, thereby ensuring consistent execution of stateful stream-
lets. Let S be a stream composed of parallel partitions P = {p1, p2,...,pi} and W = {wq,wo, ..., w]-}
be the set of available worker instances within a swarmlet. Nexus partitions the ID space [0,2" — 1]
into m contiguous intervals (m > j), each assigned to a worker instance. Given a stream partition

Page 69 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Nexus worker (w,)

Tiered stream data chunk requests Linearization of Per-stream partition Streamlet Pe[j—stream Ipam“?n
L storage request queues cache and streamlet state

r 1

requests per]
stream2/p1/0.log stream partition SOl
o .
stream1/p1/0.log | stream1/p1/1.log / o K
Storage requests |
Metadata store
on r 3.9m)
0 T 2 KN 2
ID space |—— W I Wy I W, I W3 I
H(* ") — W, H(*stream2/p1”) — W, ¥~ Partition-aware data routing

Figure 41: Example of partition-aware data routing.

identifier py, a consistent hash function H : P — [0,2" — 1] is used to compute its position in the
ID space [?]. The storage request is forwarded to worker w, responsible for the interval containing
H(px). Once in w;, the storage request will be processed by the expected streamlets. An example of
such a process can be seen in Fig. 41.

Location and hardware-based data routing: Nexus also routes stream data chunks based on pol-
icy location and hardware. First, an administrator explicitly defines in a policy where a streamlet
should be executed (Edge, Cloud). The reason is that some streamlets are more effective when exe-
cuted on a specific infrastructure (e.g., caching data at the Edge). Based on policy metadata, Nexus
routes storage operations to the swarmlets available by the policy location. Moreover, Nexus implic-
itly re-routes operations within the same locations to meet a streamlet’s hardware requirements. To
illustrate this, P2 in Fig. 39 defines a policy in which streamlet s3 is set for execution at the edge and
requires a GPU. For a Kafka cluster, swarmlet A is defined as the storage tiering endpoint. However,
swarmlet A does not have GPU-powered worker instances. In this situation, proxies in swarmlet
A route storage operations to swarmlet B, which has worker instances with GPUs. This provides
flexibility to Nexus deployments without impacting event streaming systems configuration.

8.4.5 Fault Tolerance and Correctness

Nexus is designed to target the same level of reliability as if the event streaming system was interact-
ing with an external storage. To this end, Nexus processes storage requests in-line and only acknowl-
edges them back to the event streaming system once the entire streamlet pipeline has completed
successfully. This ensures that data transformations (e.g., compression, routing) are fully applied
before the data is considered durably stored. For transformer streamlets, which modify the content
of stream data chunks, Nexus can re-compute the checksum headers to maintain compatibility with
object storage APIs and preserve end-to-end data integrity.

Nexus relies on partition-aware data routing to ensure consistent streamlet execution and state
management. Swarmlet membership is tracked via a consistent metadata service (e.g., watches),
ensuring that partition ownership is always up-to-date and validated before execution. Before pro-
cessing a request, each worker checks whether it owns the partition at hand. If not, the request fails
and is retried.

Finally, most metadata in Nexus is local to each swarmlet, simplifying management and avoid-
ing cross-infrastructure dependencies. However, policies that span multiple infrastructures require
a consistent view to ensure deterministic streamlet execution. Nexus enforces this via scheduled pol-
icy updates: new policy versions are propagated from the Edge to the Cloud and applied to future
chunks based on stream monotonicity. Additionally, storage requests carry the policy version be-
ing executed, allowing workers to validate consistency and reject mismatched executions, triggering
retries.

8.5 Nexus in Action

Next, we briefly overview the main Nexus APIs from a developer viewpoint.

Page 70 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA

Nexus API Purpose Key Methods

ByteStreamlet Raw byte processing (e.g., compression, encryption) processPutBytes,
processGetBytes

DataSourceStreamlet Preload or redirect data before GET (e.g., caching, routing) handlePreGet

EventStreamlet<T> Record-level processing (e.g., Al inference, annotations) processPutRecord,
processGetRecord

Deserializer<T> Converts byte stream to typed records deserializeChunk

QPersistent Declares persistent state across executions -

Table 17: Summary of Nexus Streamlet APIs

8.5.1 Streamlet API

Developers extend Nexus by implementing streamlets that process stream data chunks. Nexus sup-
ports two streamlet types: ByteStreamlet and EventStreamlet (see Table 17).

A ByteStreamlet allows developers to process raw byte streams during PUT and GET operations
by implementing the methods processPutBytes and processGetBytes. These streamlets are suit-
able for functionality such as compression or encryption, for instance. Nexus invokes these methods
in-line during storage operations, ensuring that transformations are applied before data is durably
stored.

For streamlets like caching or buffering, developers can also implement the DataSourceStreamlet
interface. This interface extends the byte-based model by allowing streamlets to intercept the data
source before a GET operation via the handlePreGet method. This enables streamlets to pre-load
content from alternative sources or serve cached data directly.

The EventStreamlet<T> API allows developers to process deserialized records from stream data
chunks. These streamlets are ideal for semantic processing tasks, such as Al-based inference or
content-based annotation. Developers must provide a Deserializer<T> implementation to convert
the input stream into typed records. The streamlet then defines processPutRecord and processGetRecord
to handle each record individually. Importantly, event streamlets cannot modifying the request con-
tent to preserve data integrity.

Both ByteStreamlet and EventStreamlet can maintain persistent state across executions by an-
notating data structures with @Persistent. Nexus automatically stores and retrieves these structures
using the system metadata backend at hand.

8.6 Implementation

We have implemented Nexus as a middleware for the S3Proxy project [196], an extensible S3-compatible
proxy. The middleware intercepts S3 requests and processes them based on system metadata (e.g.,
swarmlets, streamlets, and policies). From the client’s perspective, Nexus behaves like a standard S3
interface: the client receives a response only if the request is successfully stored or fails. Internally,
however, Nexus uses asynchronous programming to concurrently process requests in a streaming
fashion. The implementation spans over 7K lines of Java code, including a CLI for managing meta-
data and scripts for deployment and benchmarking. Redis [197] serves as the metadata backend,
with local caching for read-only access. Upon updates (e.g., new policies), Redis notifies the Nexus
metadata service to apply changes. Nexus also supports dynamic compilation and runtime loading
of streamlets and deserializers. The code is available at [198].

8.7 Validation

The evaluation of Nexus focuses on the following questions:
¢ Can Nexus provide high performance storage request interception and routing (§8.7.2)?

* What benefits may Nexus transparently bring to existing event streaming systems (§8.7.3)?

Page 71 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

8.7.1 Experimental Setup

Cluster settings. We deploy Nexus in two Kubernetes-based environments. On AWS, we create an
EKS cluster on top of 3 i3en.2xlarge instances, each with 8vCPUs, 64GB of memory, and 2 local
NVMe drives to deploy all instances (Nexus workers, Redis, and benchmarks). We use AWS S3
as long-term storage. Our lab cluster is composed of 7 VMs running Kubernetes. Each VM has 8
CPUs, 20GB of memory, and 80GB of storage (1 master, 6 workers). One VM has a GPU available for
running Al-related streamlets (Nvidia A16 with 16GB VRAM). In our experiments, Edge and Cloud
are logical regions for swarmlets within the same infrastructure.

Baselines. We exercise Nexus via 3 streaming systems:

Apache Kafka: Apache Kafka [87, 123] is a distributed event streaming platform optimized for
high-throughput, low-latency data processing via a publish-subscribe model. It structures data into
topics, partitions, and offsets, ensuring scalability and fault tolerance through replication. For tiered
storage, introduced in KPI-405 [184], we use Aiven’s Kafka storage tiering plugin [181].

Apache Pulsar: Apache Pulsar [124] is a scalable, low-latency event streaming system. Its tiered
storage offloads sealed log segments from high-performance storage (e.g., Apache BookKeeper [199,
183]) to cost-efficient long-term storage, reducing costs while preserving seamless access to historical
data.

CNCF Pravega: Pravega [171, 86] is a distributed stream storage system for unbounded, high-
throughput data. Pravega streams support dynamic scaling, exactly-once semantics, and long-term
retention. Its tiered storage integrates low-latency short-term storage via Apache BookKeeper with
cost-efficient long-term storage like cloud object stores.

Benchmarks. To generate workloads in our experiments, we resort to the following benchmarks:

FIO: FIO [200] is a powerful benchmarking tool used to evaluate the performance of storage
systems, including object storage services. It supports various workload types such as sequential
and random read/write operations, mixed I/O patterns, and custom workloads. FIO allows users
to configure parameters like block size, I/O depth, and number of jobs, and it supports multiple I/O
engines (e.g., libaio).

OpenMessaging Benchmark: OpenMessaging Benchmark [180] is a comprehensive toolset designed
for benchmarking messaging systems in the cloud. It supports systems like Apache Kafka, Apache
Pulsar, Pravega, and more.

Datasets. We used the following datasets for building stream data payloads in our experiments®:
i) Data compression: For data compression experiments, we used traces from HDFS from a collection of
system logs available at [201, 202]. ii) Semantic data routing: For image payloads, we used images from
ImageNet [99] and Cholec80 [203]. iii) Genomic data: For the genomics data management experiment,
we use FASTQ files available from SRA Toolkit [204].

8.7.2 Interception Performance

First, we evaluate Nexus in isolation via FIO to understand its interception and routing performance
on AWS.

IO interception performance. We execute a r/w workload of objects against S3 via FIO as a
performance baseline. Then, we reproduce the same workload when a single Nexus worker intercepts
storage request without processing and when it executes a no-op streamlet. Fig. 42 shows the results
for various levels of benchmark parallelism and object sizes.

First, the main observation in Fig. 42 is that Nexus does not induce a significant performance
penalty when intercepting object storage requests. In most cases, the throughput reduction that FIO
reports when Nexus intercepts requests falls below 5%. Nexus worst performance cases compared
to the baseline seem to be for one benchmark thread and extreme object sizes (IMB and 1000MB).
A possible explanation may be that Nexus performs metadata checks during the hot path that incur
additional latency, whose impact is more pronounced for low parallelism rates. We also observe
that throughput variability in Nexus is generally lower compared to FIO performing IO directly to

2We extended OpenMessaging Benchmark to load custom payloads.

Page 72 of 108

HORIZON - 101092644
31/10/2025

100

FIO Benchmark (r/w) - Object Size 1MB

350

FIO Benchmark (r/w) - Object Size 10MB

FIO Benchmark (r/w) - Object Size 100MB

NEARDATA
RIA

FIO Benchmark (r/w) - Object Size 1000MB

[s3
80 [INexus (no streamlets)
[ENexus (NOOP streamlet)

Throughput (MBps)
n £ [o2]
S 5 3

=)

1 2 4
Number of Threads

300
)

1S3
[INexus (no streamlets)
[EINexus (NOOP streamlet)

B
n
a
S

200

Throughput (M
o o a
o o o o

8 1 2 4

Number of Threads

350
300
@

Throughput (MB,

— o

a o a o a

o ©O O O O o

1000

[1s3
[INexus (no streamlets)
[EMINexus (NOOP streamlet)

Throughput (MBps)

1 2 4 8
Number of Threads

[s3
[INexus (no streamlets)
[ENexus (NOOP streamlet)

800

600

400

200

1 2 4 8
Number of Threads

Figure 42: Interception performance of 1 Nexus instance under FIO read /write workloads on AWS.

FIO Benchmark (r/w) - Object Size 1MB

[INexus (NOOP streamlet)
| [EMINexus (NOOP streamlet + tags)

FIO Benchmark (r/w) - Object Size 10MB

[_INexus (NOOP streamlet)
EINexus (NOOP streamlet + tags)

100

80

2 2

g n§3 250
= 601 =200
3 3

-g'l 40 —%150
8 =}

c

=

2100
JLem [N JLom [
1 2 4 8 1 2 4 8

Number of Threads Number of Threads

Figure 43: Performance impact of leveraging object tags using 1 Nexus instance under FIO read /write
workloads on AWS.

S3. This may be due to the server buffering configurations for optimizing HTTP connections in
Nexus. Overall, a single Nexus instance can execute a no-op streamlet from multiple client requests at
~ 730MBps, demonstrating the feasibility of the current implementation.

Object metadata. Nexus exploits object metadata to allow streamlets annotating objects, as well as
to store specific system information (e.g., if the object was processed by a transformer streamlet). To
inspect the impact of using object tags, Fig. 43 shows the throughput comparison of a no-op streamlet
versus a no-op streamlet that stores and retrieves an object tag for PUTs and GETs, respectively.

Fig. 43 shows that the throughput reduction related to managing object tags is generally minor.
Specifically, the worst-case throughput reduction observed is 2.7% and 3.2% for 1IMB and 10MB ob-
jects, respectively. A key reason for minimizing the performance impact of managing object tags
is that these are asynchronous operations. For instance, upon an object PUT, object tags are stored
asynchronously once the actual object has been correctly stored (see §8.4.3), thus not blocking the
original request. This experiment demonstrates that Nexus can effectively manage object metadata,
which can be leveraged for both system and user purposes.

Streamlet pipelining overhead. Next, we evaluate the performance of Nexus intercepting object
storage requests with a different number of pipelined functions in the same worker instance. To this
end, we create policies pipelining up to 3 no-op streamlets for PUT requests (see Fig. 44).

Fig. 44 shows that Nexus can successfully pipeline multiple functions as a chain. Visibly, each
additional no-op streamlet can induce an additional 1% to 6% of throughput reduction, depending
on the case. In line with prior observations, the 3-streamlet case with the lowest levels of parallelism
exhibits the most pronounced performance drop compared to the baseline (up to 6.8%). Overall, this
experiment demonstrates the practicality of building complex streamlet pipelines in Nexus.

Data routing overhead. Nexus can route object requests transparently to event streaming systems
based on the policies and streamlets configured (see §8.4.4). We evaluate the performance impact of
executing no-op streamlets across 1 to 3 Nexus worker instances (see Fig. 45).

In the more typical 2-hop pipeline scenario (e.g., Cloud-Edge deployments), Fig. 45 shows that
the throughput reductions due to routing across swarmlets ranges from 6.2% to 14.8%, depending
on object size and benchmark parallelism. We also assess a more demanding 3-hop configuration in

Page 73 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
60 FIO Benchmark (w) - Object Size 1MB 600 FIO Benchmark (w) - Object Size 100MB
[INexus 1 NOOP Streamlet h [_INexus 1 NOOP Streamlet 3l

—50 /@ Nexus 2 NOOP Streamlets —~500 @ Nexus 2 NOOP Streamlets
Q ElNexus 3 NOOP Streamlets <3 Il Nexus 3 NOOP Streamlets
o)
<S40 < 400
330 3300
= ey
3 3200
820 8
_C c
=10 HII 100

o 1NN 0

1 2 4 8

8 1 2 4
Number of Threads Number of Threads

Figure 44: Processing performance depending on pipeline size of 1 Nexus instance under FIO write
workloads on AWS.

FIO Benchmark (w) - Object Size 10MB FIO Benchmark (w) - Object Size 100MB

[INexus NOOP streamlet (1 hop) [_INexus NOOP streamlet (1 hop)

300 [EMNexus NOOP streamlet (2 hops) —~500 I Nexus NOOP streamlet (2 hops)
3250 | [IEINexus NOOP streamlet (3 hops) é_ Il Nexus NOOP streamlet (3 hops)
g 2 400

= 200 5

o %300

5 150 > 200

©100 e

(S F

" e (1N o

1 2 4 8 1 2 4 8

Number of Threads Number of Threads

Figure 45: Performance impact of data routing hops under FIO write workloads on AWS.

Nexus. In this case, we observe a higher performance penalty, with throughput reductions reaching
up to 25.6%, particularly for larger objects. Despite the added routing complexity, these results con-
firm that Nexus maintains acceptable performance levels and preserves transparency from the event
streaming system’s perspective, which is a key design goal.

8.7.3 Enhancing Event Streaming Systems

Next, we focus on illustrating the advantages that Nexus provides to event streaming systems in our
on-premises cluster.

Infrastructure abstraction. We perform two experiments in this section: data compression and se-
mantic data routing (see Fig. 47). For the first experiment, we deploy two Nexus swarmlets logically
associated to Edge and Cloud regions, where data compression takes place at the Edge. Second, as
may happen in a real environments, the Edge cluster is expanded with GPU-enabled nodes. Then,
we create a new swarmlet in the Edge region and implemented a semantic data routing streamlet
pipeline that requires GPU. The crucial insight is that such infrastructure expansion is transparent
to the event streaming system, as Nexus re-routes storage requests across swarmlets based on hard-
ware requirements. Therefore, Nexus allows administrators to manage the infrastructure and policies
without requiring changing the (limited) tiered storage configuration of event streaming systems.

Transparent data compression. First, we focus on data compression. We implemented a trans-
former streamlet: GZip data compression (s1). We set event streaming systems to offload data to
Nexus swarmlet 1 in our on-premises cluster and configured Nexus against a MinlO bucket. We
compare the impact of data compression on the event streaming systems built-in mechanisms (if
any) in terms of latency and compression ratio for Kafka, Pulsar, and Pravega.

Fig. 46 shows how different compression models—client-side, broker-side, tiered storage (bro-
ker), and Nexus—affect compression ratio and write latency across event streaming systems. Nexus
achieves the highest compression ratios (e.g., up to 10.4x in Pravega, 9.9x in Kafka, and 8.3 in
Pulsar) while maintaining low write latencies (similar to compressing data at the tiered storage mod-
ule in the Kafka broker). Nexus achieves compression ratios up to 3.9x higher than the best client-

Page 74 of 108

HORIZON - 101092644 NEARDATA

1 JVrite latency vs compression ratio (Kafka) - write latency vs compression ratio (Kafka) ,,Write latency vs compression ratio (Pulsar) - write latency vs compression ratio (Pulsar) Write latency vs compression ratio (Pravega)
Batch size=[5ms,5KB] Batch size=[100ms,100KB] Batch size=[5ms,5KB] Batch size=[100ms, 100KB] 4 = Uncompressed (100e/s)
© Uncompressed (1000efs)
35 * Nexus (100e/s)
10 105 o 0r o o * 105 » Nexus (1000e/s)
o A 3
= ° = *
I A 100 ° 8 100
° L] * 25
Py ° a o = *

)

© Uncompressed (100e/s)
 Uncompressed (1000e/s)
= Client (100e/s)

= Client (1000e/s)

o Broker (100e/s)

o Uncompressed (100e/s)
© Uncompressed (1000e/s)
= Client (100e/s)

= Client (1000e/s)

+ Broker (100e/s)

o

IS
©
8
IS
©
38

Avg. p95 write latency (ms)
o
o

Avg. p95 write latency (ms)
8

Avg. p95 write latency (ms)

Avg. p95 write latency (ms)
&

Avg. p95 write latency (ms)
N

o Uncompressed (100e/s)
 Broker (1000e/s) + Broker (1000e/s) © Uncompressed (1000e/s) © Uncompressed (1000e/s)
4 Tiered Storage - Broker (100e/s) = Tiered Storage - Broker (100e/s) = Client (100e/s) = Client (100e/s)
= Tiered Storage - Broker (1000e/s) Tiered Storage - Broker (1000e/s) = Client (1000e/s) = Client (1000e/s)] x *
* Nexus (100e/s) + Nexus (100e/s) * Nexus (100e/s) + Nexus (100e/s)
+ Nexus (1000e/s) + Nexus (1000e/s) + Nexus (1000e/s) + Nexus (1000e/s)
0 80 0

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 2 4 6 8 10 12 [] 2 4 6 8 10 12

Data compression ratio Data compression ratio Data compression ratio Data compression ratio Data compression ratio

= Uncompressed (100e/s)

~
@
&
~
®
&

®
3

o

Figure 46: Data compression vs write latency of event streaming systems data compression and
Nexus.

Edge Cloud
Single storage
tiering endpoint

‘
T}‘ 1 Stream A (text) 1

Streaming
System -_!

/' SWvarmlet 3 -

Swarmlet 1 Swarmlet 2

. "
Automatic data
routing

Stream B (images)
s1 Data compression - Al image inference . Data routing

Figure 47: Experiment setup showing Nexus capabilities to abstract infrastructure from event stream-
ing systems.

or broker-side compression in Kafka, and over 3.8 higher in Pulsar (Pravega has no compression
implemented).

Interestingly, in Kafka and Pulsar, which use user-defined batching strategies (e.g., fixed batch
time and size), we observe that larger batch sizes and higher producer rates generally improve com-
pression ratios by leading to larger event batches. For instance, in Kafka, increasing the batch size
from 5ms/5kb to 100ms/100kb at 100e/s improves the compression ratio from 2.84x to 7.75x with
client-side compression. However, this improvement comes at the cost of increasing 95th write la-
tency by ~ 15x. These results show that Nexus enables transparent data compression across diverse
event streaming systems, without impacting hot path write latency.

Semantic data routing. We instantiated a new swarmlet (swarmlet 3) in our on-premises in-
frastructure deployed on nodes equipped with GPUs (see Fig. 47). We run a workload with Open-
Messaging Benchmark in which the benchmark writes images to Kafka containing humans or not,
switching randomly every 2MBs. Then, we configured a two-streamlet pipeline at the Edge: i) a se-
mantic human detection streamlet via Yolov5 [205] model (s2), and ii) a data routing streamlet (s3)
that stores a data chunk on a private bucket if any of the processed images belongs to a human. Note
that s2 is a stateful streamlet (see §8.4.3), meaning that it keeps a @Persistent map of the data chunks
stored in the private bucket.

Fig. 48 (left) shows a time-series with the semantic decisions made by the streamlet pipeline.
Visibly, Nexus stores stream data chunks to the right bucket based on the result of the Al inference
process (wWhen Kafka manages 1IMB and 2MB chunks). Furthermore, while s2 is an EventStreamlet
that processes the internal content of a chunk event by event (see §8.5), its implementation allows the
user to perform Al inference on a subset a chunk’s events. Fig. 48 (right) illustrates s2’s processing
time depending on the image sampling rate and the chunk size. Finally, we tested s2 by using the
proposed partitioned approach vs a shared approach in which any streamlet instance can manage

Page 75 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
«10° Privacy-aware data routing (1MB chunks) 1Privacy-aware routing PUT times (inference + 10)
10 T T T — T
B
< 8 0.9}
ko) H
6 H
% 0.8F i
<
£ J
0.7 3
22
o Private bucket IlllNon-private bucket| 05 -
0 - C 6f i
SIS R I SRS N i
Time (s) 005} H
106 Privacy-aware data routing (2MB chunks) © H
25 H
.~ 04} :
> H
g 2 ;
2 03} :
9 1.5 ;
2 02}
= > 1MB chunks (sampling=100%)
305 01L H 1MB chunks (sampling=50%)
('_C) . . n : ¢ |===2MB chunks (sampling=100%)
0 Private bucket gNon-pnvale bucket o2 |s20i2MB chunks (sampling=50%)
0 (anee L I I | I
S Y S S S SR I S SRR 0 01 02 03 04 05 06
Time (s) Time (s)

Figure 48: Storage bucket for stream data chunks decided by the semantic streamlet (left) and infer-
ence times based on chunk size and event sampling rate (right).

the streamlet state. In this sense, while the number of metadata writes is similar as any update
needs to be persisted in metadata, we found that the partition-aware data routing reduced in ~ 98%
read requests to the metadata in our experiment. The reason is that the same streamlet instance was
in charge of managing metadata for a given stream partition thanks to Nexus partition-aware data
routing (§8.4.4), thus avoiding having to load the most recent metadata on every request.

8.8 Related Work

Unlike existing systems, Nexus uniquely targets the data management gap between event streaming
systems and external storage by enabling programmable, in-transit functions on tiered data streams
across heterogeneous infrastructures.

Data streaming and data management. Event streaming systems such as Apache Kafka [123],
Apache Pulsar [124], Redpanda [125], and Pravega [86] have evolved to support high-throughput,
low-latency ingestion and durable storage of data streams [177]. Recent advancements have intro-
duced tiered storage mechanisms that offload cold data to external object stores [184, 178, 179], en-
abling unified access for both streaming and batch analytics. Unfortunately, these systems provide
limited support for in-transit data management during tiering. To our knowledge, only Aiven’s
storage tiering module for Kafka [181] offers built-in support for data compression and caching on
chunks of tiered stream data. However, extending such tiering modules, which are deployed on top
of event streaming brokers, introduces additional complexity and operational burden. Instead, Nexus
proposes a programmable data management layer that operates on tiered stream data independently
of the streaming system’s hot path.

Software-defined storage. Nexus builds on software-defined storage (SDS) concepts, such as poli-
cies and processing stages that shape storage behavior. IOFlow [206] pioneered SDS with end-to-end
I/0 policies via queuing abstractions. Crystal [186] extended SDS to object stores using filters and a
centralized controller for dynamic policy enforcement. Retro [207] generalized SDS for multi-tenant
systems with resource-agnostic policies. While these systems focus on internal control and resource
management, Nexus targets programmable data management over tiered stream data and operates
by intercepting and processing storage operations across Edge/Cloud infrastructures.

Data-intensive serverless systems. Recent serverless computing research explores data-aware
function orchestration, akin to Nexus streamlets. Sonic [192] enables application-aware data pass-
ing across chained functions, while Sion [208] introduces elasticity and locality-aware scheduling for
cloud storage. Middleware systems [187] and bucket-trigger models [194] propose data-driven exe-
cution for object stores. AWS S3 Object Lambda [209] enables developers to customize the output of
GET requests using Lambda functions, allowing for transformations such as filtering. However, it is

Page 76 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

limited to read-time operations and lacks support for stateful orchestration. Nexus shares the goal of
programmable data flows but focuses on tiered stream data. It supports efficient stateful streamlet
execution via partition-aware routing, leveraging stream properties to optimize metadata access. To
our knowledge, existing serverless frameworks do not address the unique challenges of managing
tiered streams across Edge/Cloud infrastructures.

Data and service meshes. Nexus borrows ideas from data and service mesh systems to route stor-
age requests to the right swarmlets for enforcing policy execution. While industry platforms such
as Confluent’s data mesh framework [210] adopt data mesh principles for decentralized governance
and scalable data sharing, they operate primarily at the metadata and access control layer. In contrast,
service meshes such as Istio [211] focus on continuous data ingestion and traffic routing across het-
erogeneous infrastructures. Emerging data mesh platforms such as NebulaStream [212] aim to unify
data management across heterogeneous infrastructures, especially in IoT and Edge/Cloud environ-
ments. These systems focus on continuous data ingestion and distributed query execution. Nexus
complements this vision by focusing on the tiering boundary (where stream data transitions from
hot to cold) and enabling programmable data management at that point.

8.9 Conclusions

Nexus introduces a novel data management mesh that bridges the gap between event streaming sys-
tems and external storage. By decoupling data management from the streaming hot path, Nexus sup-
ports extensible streamlet pipelines on tiered stream data across heterogeneous infrastructures with
modest overhead. Our results shows that Nexus achieves up to 3.9 x higher compression ratios than
built-in mechanisms in Kafka and Pulsar, supports privacy-aware semantic routing with efficient
stateful execution, and reduces metadata read requests for stateful streamlets by 98% via partition-
aware routing. oWe believe Nexus opens a new design space for programmable tiered stream data
management that can benefit data-intensive use cases using event streaming systems.

Page 77 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

9 XtremeHub HPC Connectors

9.1 Introduction

In this section, we present Lithops-HPC, an HPC connector that allows Lithops to access HPC re-
sources lying on supercomputers. Such work is challenging as Lithops relies on Kubernetes or on
cloud providers. Such options are unavailable on the supercomputer due to security issues concern-
ing Docker, as well as the requirement of privileges to run certain commands.

However, Singularity, with limitations, is allowed to run as long as it is only user level. One
cannot build a container within the supercomputer; however, one can run images previously built,
as they can be run on the user level. Thus, we devised a connector acting as a backend to integrate
Lithops into it. In the process of such work, the changes were higher than expected and actually
resulted in a new concept of Lithops, while keeping its essence, Lithops-HPC.

High Performance Computing (HPC) provides users with direct access to advanced computa-
tional infrastructure. However, effectively utilizing its full potential requires expertise in resource
configuration and program parallelism. As a result, HPC users often face the challenge of manag-
ing infrastructure and using low-level computing techniques, which can be particularly daunting for
non-expert users unfamiliar with aspects such as job scheduling, resource provisioning, data distri-
bution, and even parallel programming.

A growing trend in HPC user accessibility, aimed at simplifying programming, is driven by the
increasing adoption of Python in supercomputing environments [213]. Understandably, most tools
and libraries for scientific data processing and machine learning are available in Python, bringing
them closer to non-expert users and allowing more people to explore them. Tools such as Open
OnDemand [214] confirm this need by enabling a Jupyter Notebook interface to a supercomputer.
Furthermore, this is motivated by recent initiatives like Al factories [215] in the EU and the National
Artificial Intelligence Research Resource (NAIRR) [216] in the USA, designed to open supercomput-
ers to the general public to drive innovation. The downside is that they do not provide an easy way
for these non-experts to easily leverage supercomputing resources, resulting in ineffective utilization.
Frameworks such as Pegasus [217], COMPSs [218], Parsl [219], and cluster-based dataflow engines
like Dask, Spark, Flink, or Ray try to hide such complexities to the end-user. However, all of them
still require the user to handle resource allocation through the SLURM manager. For the end-user,
this can be challenging as the manager requests at last the amount of cores, GPUs, and wall clock
time. This is not an easy decision for such a user profile, and a misprediction on such parameters
can result in the workload crashing or using more resources than necessary, with the latter being the
most common case, which is not desirable for the sake of the whole infrastructure nor by other users
requiring such unused resources, which become unavailable for no reason.

On the other hand, cloud computing has evolved over the years to simplify distributed and par-
allel computing, with a particular focus on non-expert users. With the recent serverless paradigm,
infrastructure management shifts from the developer to the service provider. This approach allows
to creation of serverless architectures that, particularly with the Function-as-a-Service (FaaS) model,
allow running massively parallel programs by coding a single function that automatically scales on
demand to thousands of CPU cores without managing any resources.

Several frameworks leverage FaaS services to easily develop and scale data analytics applica-
tions, such as PyWren [220], ExCamera [221], and Lithops [92]. Among them, Lithops stands out for
its intuitive Python-based programming model. With it, applications may distribute the computa-
tion seamlessly through map (and reduce) operations that automatically run a function in parallel,
massively, based on the data volume.

Lithops-HPC is designed to support multiple cloud platforms, allowing users to focus on their
applications rather than worrying about resources, parallelization, and the particularities and oper-
ation of specific services. This abstraction of infrastructure and the associated programming model
are highly attractive to scientists in HPC, as they are applicable to many data processing applications
and offer the potential to utilize advanced computing resources more effectively without necessitat-

2The content of this section maps to tasks T3.4 and has been submitted for publication.

Page 78 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

ing expertise in their management. While Lithops-HPC integrates Lithops into HPC environments,
it still requires user management and a certain level of knowledge of the infrastructure. An element
that is also lacking in COMPSs, Dask, and other alternative frameworks targeting HPC. They still
require custom, hands-on resource provisioning and management.

So in this section, we present Lithops-HPC, an innovative expansion of the Lithops data ana-
lytics framework that leverages its simple Python interface and serverless abstractions to execute
massively parallel applications elastically on HPC clusters. The main goal is to not only ease the
programmability of HPC workloads to the user but also to avoid the user having to have any knowl-
edge of the infrastructure. The user simply requests to run a piece of code, and the framework takes
it from there. Lithops-HPC addresses the unique challenge of bridging the gap between serverless
and HPC technologies, bringing together the advantages of both. On the one hand, following a
serverless model, the system reduces the complexity and expertise requirements imposed upon HPC
users. On the other hand, users still have access to the full power of HPC resources that are not
available in serverless services, such as high-performance processors, sophisticated storage systems,
faster communication networks (e.g., InfiniBand), and hardware accelerators (e.g., GPUs and TPUs).

Our implementation of Lithops-HPC tackles specific challenges in the fast invocation of tens or
hundreds of thousands of functions in parallel, solving bottlenecks in scalability and latency issues,
and providing seamless access to specialized hardware and technologies.

We evaluated Lithops-HPC using two demanding benchmarks: a large-scale matrix multiplica-
tion test (FLOPs) and a high-throughput object storage benchmark (write/read tasks). The results
show that Lithops-HPC supports serverless application development capable of scaling immedi-
ately to tens of thousands of CPU cores, outperforming popular cloud platforms, and bringing both
flexibility and scalability to HPC systems. In particular, we found that Lithops-HPC allows users
to deploy applications more simply than traditional HPC submissions while introducing minimal
overhead compared to a naive Python-MPI implementation, even when executing more than 10,000
parallel functions. Performance results showed that Lithops-HPC achieved up to 60 GFLOPs per
CPU worker and more than 1,000 GFLOPs per GPU worker—roughly 3x and 50x faster, respectively,
than AWS-reported performance. In storage tests, Lithops-HPC achieved more than 600 MB/s band-
width using a parallel file system (PFS) for both read and write tasks. These results are approximately
three times higher than the throughput achieved by the AWS-S3 storage system. Additionally, the
Lithops-HPC resource manager, a component enabling dynamic switching between CPU and GPU
runtimes at execution time, allows applications to automatically take advantage of accelerators when
they are available.

9.2 The Lithops-HPC framework

Figure 49 illustrates the Serverless Advanced Computing (Lithops-HPC) design. The Lithops-HPC
model abstracts traditional HPC infrastructure configurations, such as job scheduling and resource
allocation, allowing programmers to focus solely on coding. However, similar to other serverless
platforms, a provider role is still necessary to handle routine infrastructure deployments and man-
agement. To facilitate these tasks, Lithops-HPC provides a command-line Application Programming
Interface (API), which contains all necessary scripts to schedule jobs, allocate machines within HPC
nodes, and start CPU/GPU workers (i.e, the user should just type lithops hpc runtime_deploy <run-
time name> to start a new runtime backend). It allows customizing the runtime backend, setting
the number of workers, the type of processing units (both CPU and GPU are supported), and stor-
age properties via a configuration file. An example of this configuration is defined in the following
config.yaml.

1 lithops:
> backend: hpc
storage: pfs
1 pfs:
storage_root: <DIR_PATH>
6 cluster_hpc:

Page 79 of 108

HORIZON - 101092644
31/10/2025

host: <hpc_login>

username: <hpc_user>

key_path: <SSH key pair>
hpc:

runtime: <choose a particular runtime_name>

runtimes: #Custom runtime parameters

<runtime_name>:
account: <HPC_USER>
qos: <HPC_QOS>
num_workers: <CPU/GPU workers>

a)

rogram parallelism,

Data distribution,
Resource management,
Computing techniques

Task & Job

scheduling
Number of CPUs

User

.
o Number of tasks

o Number of nodes
.

Login node

Y

A (@D

o

TRADITIONAL HPC PROGRAMMING MODEL

il il

o
(<]

H H

il il

I— Interconnected Computing Nodes J

Parallel File System

=
=

v
==
==

>
/

NEARDATA
RIA

Tasks as functions
Specify Compute
Backend

User

SAC PROGRAMMING MODEL

[/%CPU/GPUO == CPU/GPUO gCPU/GPUOJ

Worker Worker Worker
I
£=CPU/GPUO £=CPU/GPUO &= CPU/GPUO
Worker Worker Worker
I I I
(= 1 riinrS &= CPU/GPUO &= CPU/GPUO
L Worker Worker

User Resource

Interface Manager

Runtime

Deployment

I— Interconnected Computing Nodes

<

Parallel File System (PFS/GKFS)

>

N

N

Y
N~—

~

/

Figure 49: Using HPC resources by non-expert users. Traditional model and using Lithops-HPC.

Once a runtime is deployed, different users can use it to execute their functions. It is also possible
to scale up/down the system by appending or releasing CPU/GPU workers into an existing runtime
(i.e user should just type lithops hpc runtime scaleup<up/down> <runtime name> to scale a particular

compute backend).

Later, the users, in the client role, employ the available runtimes to compute their applications.
They can list all available runtimes using the command line API and choose one by editing the con-
figuration file (i.e user should just type lithops hpc runtime_list to list all available compute backends).
It allows clients to execute their applications, reusing a deployed backend, without interacting with

Page 80 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

the infrastructure. However, similar to other HPC platforms, an account and credentials to connect
to the supercomputer are still mandatory. To simplify the connection with the cluster, Lithops-HPC
includes the necessary commands in the command line API; it abstracts the necessary steps to log
in to the cluster, attach the runtimes, and mount the file system (i.e user should just type lithops hpc
connect to connect with the HPC cluster via SSH key pair).

9.2.1 Architecture Implementation

Lithops-HPC architecture comprises the following components.

¢ Compute backend: The essential component in the compute backend is the CPU/GPU worker.
A worker represents the computational unit, and it is responsible for executing the user-defined
functions. Lithops-HPC is based on a modified version of Lithops” multi-cloud serverless
framework.

¢ Storage backend: The storage component is responsible for storing user function instructions,
input data, and the corresponding results. Lithops-HPC model supports both Parallel File Sys-
tem (PFS) and GekkoFS (GKEFS) [222]. Lithops-HPC creates a directory inside the client machine
that will be used as a mount point. It abstracts the storage tasks from the user and allows any
modifications made inside that directory will be replicated to the filesystem inside the HPC
machines. Besides, by using the specialized GKFS storage system, the local disk inside each
compute node in the HPC cluster is aggregated to produce a high-performance storage space
that can be accessed in a distributed manner.

¢ Communication middleware: A message broker software enables communication between
the client and the compute backend. Lithops-HPC employees the Advanced Message Queuing
Protocol (AMQP) to store the defined functions into a unique work queue (aka: Task Queue).
This process encapsulates a task as a message and sends it to each CPU/GPU worker in the
compute backend. Once the runtime is chosen by the user, the tasks are appended to the current
task queue. Users can share a task queue across several runtimes, allowing scaling up the
systems, by setting the rmq_queue parameter in the configuration file. It allows to scaleup
the system even using several machines. Pending tasks are automatically distributed to all the
runtimes with the same rmq_queue values and returned to the original queue in case some
runtime is canceled (scaled down the system).

* Client: Lithops-HPC abstracts all the necessary steps to log in to the cluster, attach the runtimes,
and mount the file system. Lithops-HPC spawns a local client on a PC and then does a double
port forward to the message broker through the HPC login node to reach the compute backend.
Lithops-HPC provides a complete command-line API (CLI) that allows users to manage the
HPC with minimal effort.

¢ Executor: It is the main component inside the client that abstracts away the complexity of cloud
backends and storage systems, allowing users to run distributed functions at scale with min-
imal configuration. It orchestrates the execution of tasks, launches parallel workers, packages
the function and data, handles transmission to remote workers, tracks task progress, retrieves
logs, stats, and finally recollects the results.

* Resource manager: It is a component that acts as a middle layer between the backend and the
client, receiving all the jobs” petitions to run. The user interacts with the manager, indicating
a lithops configuration file and the lithops job it wish to run. Then the scheduler invokes the
client, which in turn deploys the jobs. Then, it reads the statistics from the Communication mid-
dleware. It uses Prometheus to retrieve data regarding the status of each of the queues using
a REST APL Moreover, it reads the information regarding the backends in the lithops configu-
ration file to estimate how much each of them can handle. Later, the manager decides which
backend each of the jobs should be run on, so it is also able to enforce resource management

Page 81 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

Figure 50: HPC vs Lithops Workflow deployment complexity

policies, although at the moment it merely implements a First Fit policy. The current imple-
mentation served only the purpose of demonstrating that it is possible to combine multiple
backends and implement policies.

9.2.2 Programming model

The basic component in the Lithops-HPC programming model is a function. A function represents
a set of instructions (aka: Task) that is applied to a set of data. Lithops-HPC supports the following
execution modes. i) asynchronous call: one single function is computed in a worker. ii) map call:
parallel execution of data is done across multiple workers. iii) map-reduce: first, a map function for
each intermediate data is executed, then a reduce function merges all intermediate results associated.

Lithops-HPC is focused on data movement efficiency. By using Lithops, it automatically breaks
the workload into smaller portions (aka: chunks), handing each portion to a separate worker. There-
fore, scaling is totally dynamic and only limited by the designed program concurrency. In addition,
Lithops-HPC employs decorators to handle GPU accelerators, which allows the same code can be
executed in both CPU and GPU workers, only by setting the target device in the code.

9.3 Evaluation
9.3.1 Setup

The experiments described in the next lines were conducted inside three different clusters. The main
cluster is the MareNostrum 5 (MN5) supercomputer. MN5 combines Lenovo ThinkSystem SD650
V3 and Eviden BullSequana XH3000 architectures, providing two partitions with different techni-
cal characteristics. The MN5-General-Purpose Partition comprises 6.408 nodes based on Intel Sap-
phire Rapids (4th Generation Intel Xeon Scalable Processors). The second cluster was NORD4, it is a
Lenovo system composed of SD530 Compute Racks, an Intel Omni-Path high-performance network
interconnected and running SuSE Linux Enterprise Server as the operating system. This general-
purpose block consists of 1 rack housing 72 nodes with a grand total of 3456 processor cores. Finally,
CTE-AMD is a cluster based on AMD EPYC processors, with Rocky Linux release 8.5 Operating Sys-
tem and an Infiniband interconnection network. It compomises 33 compute nodes, each of them 1
x AMD EPYC 7742 @ 2.250GHz (64 cores and 2 threads/core, total 128 threads per node) 1024GiB
of main memory distributed in 16 dimms x 64GiB @ 3200MHz, 1 x SSD 480GB as local storage 2 x
GPU AMD Radeon Instinct MI50 with 32GB Single Port Mellanox Infiniband HDR100, GPFS via two
copper links 10 GBit.

9.3.2 Complexity

The first goal was to compare the perceived user-experience and its complexity compared to previous
systems. Figure 50 compares the traditional HPC job submission workflow with the Lithops-HPC de-
ployment process. Each block represents a step in the user workflow. Green lines indicate hardware
interactions and purple blocks denote software-level interactions.

To quantify process complexity, each step was assigned a value between 0 and 3, inspired by
complexity scoring models proposed by [223]. Cyclomatic Complexity [224], Yaqin’s metric [225],

Page 82 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

and Process Complexity [223] metrics were computed from these values. Cyclomatic Complexity
measures the number of independent paths in a control flow graph, where lower values indicate sim-
pler logic with fewer branching decisions, making systems easier to test and maintain (Eql). Yaqgin’s
Metric assesses the cognitive difficulty of understanding a process by analyzing structural elements
based on AND, OR, and XOR branch complexities; a lower score indicates minor mental effort and
fewer opportunities for user error (Eq2). Process Complexity evaluates the technical knowledge re-
quired to complete a framework, including the number of manual steps and system interactions.
Lower process complexity implies a more accessible and streamlined user experience (Eq3).

M=E—-N+2P (Eql)
where:
M Cyclomatic complexity (number of independent paths)
E Number of edges in the control flow graph
N Number of nodes in the control flow graph

P Number of connected components (usually 1 for a single program)

Y = Ns + As + Cand + Cor + Cxor + Cyc + Cd (Eq2)

where:

Y Yaqin’s cognitive complexity score
Ns Graph size

Cand/or/xor Branch complexity
Ccyc Cyclical complexity

Cd Depth complexity

Cp =) (Wt) (Eq3)

where:
Cp Process complexity score
Wt Wt is the weight for each one of the tasks

Table 18 summarizes the results. Cyclomatic-Complexity reveals that Lithops-HPC deployment
requires approximately 1.5x fewer execution paths compared to the traditional HPC workflow, in-
dicating a simpler and more streamlined process. Yaqin's metric shows that Lithops-HPC deploy-
ment introduces 1.6x fewer branches, loops, and nesting depth than traditional HPC, which means
fewer cognitive activities for users. Finally, the Process Complexity score indicates that Lithops-
HPC demands half as much technical knowledge to complete the workflow compared to traditional
HPC submissions. These evaluations demonstrate that Lithops-HPC offers a significantly more user-
friendly and less complex deployment experience than traditional HPC job submissions.

Page 83 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 A
Complexity
Backend Deployment Cyclomatic | Yaqin | Process
HPC 3| 6 2
Lithops 2 43 13

Table 18: Complexity metrics

9.3.3 Lithops-HPC Overhead

Despite achieving the main goal of simplifying complexity, it is nonetheless important to assess
whether it was achieved at a high cost or not. For this, we must assess Lithops-HPC framework
compared to the traditional approach in supercomputers. To evaluate the overhead introduced by
our Lithops-HPC framework, a FLOPs-intensive application, a matrix multiplication workload, was
executed in two scenarios: traditional Python-MPI and Lithops-HPC using our Lithops-HPC frame-
work. The experiment was run using 112, 1120, and 11200 tasks; each task comprises a square matrix
multiplication of size 4086, with 5 loop iterations, where each task is executed on a single CPU (since
each MN5 node contains 112 CPUs, 1, 10, and 100 MN5 nodes were employed, respectively). First,
only the execution time was considered. The time required by the workload manager (Slurm) to
allocate computational nodes was excluded from both cases. Figure 51 illustrates that the execution
time per task is the same for all experiments when traditional MPI-Python is employed; however, our
Lithops-HPC model introduces an overhead at the beginning and the end of each function. Figure
51 details the execution stages in the Lithops deployment. Four distinct states are shown: host sub-
mission, function start, function end, and result collection. The plot indicates that the Lithops-HPC
model requires additional time to start the function and recollect the results, which increases with
the number of tasks to execute. In particular, these times are required by the executor, the Lithops
component in charge of invoking the worker and collecting the results (see 4.4 section). The overall
overhead is up to 1.75x slower for 11200 tasks.

9.3.4 Time to service

Although our Lithops-HPC model introduces an overhead, it allows reusing the resources assigned
to an application. This reusage can be enabled without requiring a new allocation through the Slurm
managet, in opposition to traditional MPI-based approaches. Consequently, despite the performance
to run an application may be degraded, in the overall picture, users may now submit multiple ap-
plications and or experiments without waiting to be allocated new resources. To assess how much
time is gained, we make a new experiment to assess the time to service. The experiment comprises
relaunching the application 10 times and calculating the total time required to run and finish them
all, including resource allocation. For this experiment, we acquired resources from the Spanish Su-
percomputing Network (RES), which granted us our own partition in the MareNostrum 5 supercom-
puter. This allowed us to have priority over resource allocation and thus make a fair comparison to
the priorities scientific users of the supercomputer typically get, as they typically request RES grants
as well. Figure 52 illustrates the total time used in both scenarios (Python-MPI and Lithops-HPC).
Subfigure a) shows the time taken when the nodes are already allocated, while b) considers as well
the time required to perform the first backend allocation. Thu,s this figure shows that reusing the
backend deployed by Lithops, it is possible to reduce the total execution time by 1.5x, and that, in
both scenarios, it is better than using a pure-MPI approach for this reason. We must clarify, however,
that if we looked at individual runs and not a collection of them, MPI would be faster. Thus, we
are improving time to service when considering repetitive experiments, which is a common case in
research groups where several people need to run, and Lithops-HPC allows them to reuse resources,
unlike MPIL.

Page 84 of 108

HORIZON - 101092644

a) b) ©)
1120 11200 N === FLOPS-MPI
I —— FLOPS-LITHOPS
1008 1 10080 b
896 1 8960 |
784 4 7840
3 F 6721 3 6720
5 5 5
£ £ 560 £ 5600
£ I i £
= 448 |I B~ 4480
1
KELR T | 3360 |
\)
2241 i 2240 1
1 il
1 1
1124 : 1120 &
e \ } \
_____ o LU e BT 0 e
0 2 4 6 8 10 12 14 16 0 3 6 9 12 15 21 24 0 3 6 9 12 15 18 21 24
Execution Time (sec) Execution Time (sec) Execution Time (sec)
d) °) f
110 ma 3 "' n2o :.3 i 11200 BN fost submit
) 1008 . i 3 10080 W function start
99 4 & W function done
o 896 : 8960 - results fetched
o ¢
7 784 ':%' ‘ 7840
Ut .
Lty
= 66 (= 672 g = 6720 |
(¢} bl o Hi D ¢}
§ 55 £ 560 1 § 5600 °
g 2 i g l
S S . S
T o4 T 448 a0 T 4480
.2
-
33 336 3 ¢ 3360
22 224 I H 2240
U
11 12 ¢ 120 5
1 B
0 ‘1, ‘1, 0 ", .ﬂ 0 L are '
0 2 4 6 8 10 12 14 16 18 20 22 24 0 3 6 9 12 15 18 21 24 27 30 33 0o 3 9 12 15 18 21 24 27 30

Execution Time (sec)

Execution Time (sec)

Execution Time (sec)

Figure 51: Python MPI execution vs Lithops execution. (a) reuses the resources allocated while (b)
makes a new resource allocation - hence the extra time to complete.

Figure 52: Python MPI execution vs Lithops execution

o
=

Total Duration (s)

=
=

Total Duration (s)

‘ Q
1501 MM FLOPS-MPI
1251 W FLOPS-LITHOPS
100
75 (o)
o)
50
e — o i
25 —Q— ; *
104
o)
o)
103 4
10?
10t _+_: —— $
112 1120 11200
Number of task

Page 85 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

9.3.5 High-performance

The performance achieved by our framework was evaluated using the standard FLOPs and Object-
Storage Lithops” benchmarks [226]. FLOPs application calculates the computing power by executing
an n-square matrix multiplication during m iterations and reports the total of Floating Point Oper-
ations Per Second (FLOPs). The Object Storage benchmark measures the speed of data transfer by
writing and reading a file of size n MB and reports the bandwidth (MB/s). We evaluated both com-
pute and storage performance on high-performance computing (HPC) resources and compared the
results against reports from popular cloud platforms at a similar scale (each task computes a matrix of
size 4096 with 5 loop iterations, for the FLOPS benchmark, and writes/reads a file size of 512MB for
the object-storage benchmark).To demonstrate the ability of our framework to leverage specialized
resources such as accelerators, we included GPU-based experiments.

Figures 53 and 54 illustrate the performance comparison for 1,000 concurrent tasks executed in
both cloud platforms and the HPC system. (Results for 100 tasks are similar and follow the same
trend). The results show that the Lithops-HPC framework achieves higher performance in FLOPS
than any cloud offering, up to 3x for HPC-CPU runtime and 30x for HPC-GPU runtime, faster
processing than the best-performing FaaS service (AWS Lambda). Furthermore, performance is more
consistent across tasks than in any other service, with AWS Lambda being closer. This allows a better
predictability of application performance, which is key for HPC programs.

Similarly, storage access in HPC is faster across the board (3 x AWS). In contrast, variability across
functions here is higher for the HPC system due to the shared and centralized nature of the PFS. One
of the attempts to further improve Lithops-HPC was to introduce GKFS, with he idea of leveraging
local hard disks available on each of the supercomputers” nodes as a hot cache for GPFS (the un-
derlying network filesystem across the supercomputer). While results were promising, the number
of InfiniBand sockets GKFS needs to open diminished its results and shows no improvements with
respect to GPFS. However, further work will be done regarding the required number of open sockets
to achieve the expected performance.

Nonetheless, already with the GPFS filesystem, Lithops-HPC framework provides an ultra-fast
storage system (30x AWS) with an excellent bandwidth (around 700 MB/s in both write and read
operations), which is outstanding for data processing applications that transfer lots of data.

a) b) ‘
1000 1 AWS 120000 A AWS
3 GCp GCP
[Azure ——= Azure
200 BN BM os000 |1 | IBM
[Aliyun Aliyun
I HPC-CPU --- HPC-CPU
2 3 HPC-GPU HPC-GPU
£ 6001 2 72000 1
2 o
& = .
= O
s

400 I| 48000 1+
24000 A

200 u f
]LVL‘ e S o S AN S
0 G I R U ALY FPPPPTT P S on
2

0 40 60 80 >1000 0 20 40 60 80 100
GFLOPS Execution Time (sec)

e

0

Figure 53: FLOPS benchmark on cloud FaaS and Lithops-HPC (1000 tasks). FLOPS per function
histogram (left) and peak aggregate (right).

Page 86 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
a) Write b) Read
103
102 7
102 4
a a
= =
. 101!
10
%) o o s = n 1% 1% o o) s =] 1% 17
s 5 § &8 E E & : 8 1 B : £ &
< =z &) Qo < = &) @)
) d)
AWS
****** GCP
300- 3007 ——— Azure
IBM
Aliyun
250+ 250- -+ HPC-PFS

HPC-GKFS

200+ 1

GB/s

1501 ¢

100~

50+

00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0
Time (s) [Write] Time (s) [Read]

Figure 54: Storage benchmark on cloud FaaS and Lithops-HPC (1000 tasks). The top row shows a
box plot of per-function storage bandwidth. Bottom row shows the aggregate of functions along
wall-clock time.

9.3.6 Scaling

We repeated the previous FLOPS and storage benchmarks at large scale to demonstrate how our
framework enables seamless scaling to significantly larger resource pools than typical cloud services,
without additional user effort. Figure 55 compares the execution time and peak GFLOPs achieved by
Lithops-HPC across varying numbers of workers (1 worker = 1 CPU running a task). The blue line
represents the expected execution time, while the gray line indicates the overhead introduced. The
figure also illustrates the distribution of the achieved GFLOPs across the total number of workers.

Page 87 of 108

HORIZON - 101092644 NEARDATA

31/10/2025 RIA
a) b)
28672 R S I
65.0 =+
14336 H = M L ?1
62.5 T+ — -
7168 T
60.0 1 1
2 3584 = —+
Z z
9 o 575
5 1792 2
g © 55.0 T —
£ 896 ‘ T 1
448 52.5
224 50.0 4 I
112 47.5 !
o~ < [ee] (e} o < [oe] [(e} o
— o~ <t (=)} [} [ee] [(=} m ~
— o <t [ee] n — m [(}
0 5 10 15 20 -~ 3 2
Execution time (s) Total functions

Figure 55: Massive FLOPS benchmark.

9.3.7 Resource management

To illustrate the first fit policy implemented in our resource manager (described in section 4.4) we
have designed an experiment to demonstrate that Lithops-HPC can offload to other backends once
the preferred one reaches the saturation point. To this end, we have run 1000 instances of FLOPS.
Each of the runs are separated by 400 miliseconds. In this experiment, we set a maximum of 100 cores
in the CPU backend, with so many others in the GPU backend.

Figure 56 shows the number of jobs executed in each of the backends during the launch of the
aforementioned 1000 instances. It can be observed how, after around 200 seconds, the CPU backend
becomes saturated, at which point jobs start to be run on the GPU backend (red line), thus offloading
there. The total number of jobs run on the GPU is quite small compared to those run on the CPU, as
the preferred backend is that one. This experiment demonstrates the ability to implement schedul-
ing policies to effectively manage resources. In the future, we could implement more sophisticated
policies and feed information to them using ML-based approaches.

9.3.8 Multi-cluster deployment

The concept of backend offloading can be extended to the cluster level. In this scenario, three run-
times, sharing the same task queue, were deployed across the three HPC clusters (MN5, NORD4,
and CTE-AMD). Then, trhee application were submitted. Each application corresponds a FLOPs
execution for 5000, 3000, and 2000 tasks, respectively. Figure 57 illustrates the execution schedule,
showcasing how tasks are automatically distributed across all clusters. It shows as the task are auto-
matically assigned when a new runtime is available and how the task are requeued when a runtime
is canceled. In this scenario there is no orchestration in place: all backends share the same queue and
filesystem - which is a requirement of the RabbitMQ queue system used -. Thus, when a message (i.e,
a function) gets into the queue the first backend to look in it for a function to execute will. Therefore
we can say the distribution is performed in a FCFS fashion where the backend with the best trade-off
between resources and computational power will consume most of the workload. For this reason the
GPU backends consume more than the HPC.

9.4 Related Work

Serverless data analytics have been fervently explored in the literature. These works aim at deliv-
ering a compute substrate for data processing workloads that is highly elastic and provided based
on demand, at very fine granularity, so that users do not need to provision any resources and pay

Page 88 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

|
N compute

acc (1140 tasks, 1 nodes)

hpc (1860 tasks, 1 nodes) 1 ‘ ‘

Time

Runtime Name (Task Count)

Figure 56: Offloading of tasks across HPC and GPU

T
B appl
hpc_1 (1334 tasks, 70 nodes) 1 B app2
I app3

hpe_gpu2 (7666 tasks, 25 nodes)

hpe_gpul (25022 tasks, 75 nodes) 1

hpc_2 (1280 tasks, 30 nodes)

Runtime Name (Task Count)

hpc_base (4424 tasks, 100 nodes) 1

Figure 57: Application running using different runtimes.

only for the exact resources that they need, when they need them. Most serverless data processing
frameworks [220, 92, 221] leverage the Function-as-a-Service (FaaS) paradigm for running stages of
functions in parallel that are spawned based on data volume and are finely billed by milliseconds of
active computation. Some approaches extend this idea by designing function orchestration systems
to define workflows that manage function dependencies (i.e, tasks in a graph) and enable complex
serverless applications [227, 228, 229, 230, 231, 232, 233, 234].

A critical challenge in serverless data analytics is in handling application state, i.e, how data
moves through a workflow when functions are ephemeral and stateless. Solutions to this challenge
include extending the FaaS model with a shared memory space [235, 236, 237, 238], or designing
specialized external storage systems [239, 240, 84, 241, 242, 243, 189].

Several frameworks aim at simplifying the usage of HPC clusters. Most tooling and middleware
in this line become wrappers around the cluster manager system (, Slurm or similar) with the goal to
hide its complexities for users who are not knowledgeable in managing resources at a low level and
are ready to sacrifice some performance for the sake of convenience. Among many instances of this

Page 89 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

are Pegasus [217], COMPSs [218], Parsl [219], and cluster-based dataflow engines like Dask, Spark,
Flink, or Ray.

Some interaction between serverless ideas and HPC has already been explored. HPC-Whisk
[244], for example, adapts the OpenWhisk open-source FaaS platform to run serverless functions
in an HPC cluster by deploying low-priority jobs in the supercomputer that operate as OpenWhisk'’s
invoker nodes (function workers). rFaaS [245] is an RDMA-enabled FaaS implementation that uses
idle supercomputer resources to execute short-running ephemeral functions dynamically, and [246]
further explores resource wastage in HPC, advocating for a serverless approach to fill idle compu-
tation spaces. funcX [247] explores a federated FaaS platform to spread on multiple locations, even
supercomputers. An early exploration of the Lithops model on HPC [248] uses Singularity containers
to manually deploy workers on a supercomputer, showing promising results.

In contrast to literature, this work extends the full serverless experience to HPC data analytics,
rather than only supporting FaaS execution. We embrace serverless usability to enable HPC users
to code applications through simple Python functions that run in parallel based on data volume.
This model is more familiar to non-expert users than other frameworks that require them to deploy
and manage resources and code applications with complex parallel and distributed computing tech-
niques. Whereas HPC-Whisk and rFaaS could serve as compute backends on HPC for a framework
like Lithops, they primarily target short-lived functions running on idle HPC resources, which are
unsuitable for data analytics workloads. Instead, our approach allocates larger compute resources for
running functions as an alternative to (although not replacing) traditional resource management in
supercomputers. In this scenario, function workers can be shared between users for better resource
utilization, and requested or returned dynamically to the underlying platform to match demand.

9.5 Discussion

The results presented in the previous section demonstrate that the Lithops-HPC framework effec-
tively simplifies the deployment of high-performance computing (HPC) workloads. By reducing
the number of required user interactions with hardware and software, and by abstracting deploy-
ment complexity, Lithops-HPC offers a more accessible alternative to traditional sbatch-based HPC
job submissions. Furthermore, Lithops-HPC does not introduce significant overhead over a naive
implementation of Python multiprocessing.

Moreover, although traditional HPC implementations (C code, MP], etc.) can be highly optimized
for performance, they demand expertise and advanced programming concepts that move away from
the common environment for non-expert HPC users. Thanks to the abstraction layers provided by
Lithops and its integration into the HPC infrastructure, we showed that our Lithops-HPC frame-
work enables a much simpler and faster deployment process than manual Python parallelization
via Slurm. In addition, despite the fact that the traditional MPI approach offers better performance,
it does not allow the reuse of the allocated resources, which means a waiting time for each new
deployment. However, using Lithops-HPC, once a runtime is deployed, it can be reused across mul-
tiple applications by the same or different users, effectively eliminating repeated interactions with
the underlying infrastructure and streamlining the workflow. Therefore, our Lithops-HPC strategy
clearly outperforms MPI-based approaches in scenarios where scientific teams should work together
and launch many applications.

Although Lithops-HPC methodology is similar to Cloud computing, performance evaluation
confirms that the Lithops-HPC framework enables users to leverage high-performance resources ef-
ficiently, achieving superior performance compared to cloud-based deployments under the same
parallelism levels. In fact, the evaluation showed that our HPC implementation outperforms cloud
platforms in both FLOPS and storage bandwidth. Furthermore, while cloud providers typically limit
large-scale CPU access, Lithops-HPC makes it relatively easy to provision tens or even hundreds of
CPUs. We demonstrated that the Lithops-HPC can easily handle workloads with more than 20,000
parallel functions without degrading performance or increasing the programming effort.

Importantly, Lithops-HPC allows users’ functions to automatically detect GPU availability and
run accordingly. It enables demanding applications to benefit significantly from GPU acceleration

Page 90 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

without additional effort. Furthermore, by sharing the same task queue, Lithops-HPC exhibits strong
adaptability across heterogeneous clusters, allowing functions to leverage all the computational re-
sources and for the compute backend to adapt to workload variations. It represents a significant
improvement in HPC programmability, as traditional models are often rigid and lack such dynamic
resource selection.

9.6 Future Work

Despite its advantages, Lithops-HPC has some limitations that need handling. First, it introduces
minimal overhead during function initialization and result collection, which affects performance
compared to traditional HPC implementations. Second, while the current implementation supports
a basic resource manager, switching between CPU and GPU runtimes, it lacks advanced scheduling
strategies such as workload-aware balancing, energy-efficient execution, or cost-aware scheduling.
Another concern is security: while authentication is required to access clusters, storage protection
mechanisms are limited to directory permissions, and thus are exposed to potential vulnerabilities.
Lastly, Lithops-HPC is inspired by the Function-as-a-Service (FaaS) model, which emphasizes in-
frastructure abstraction and event-driven executions but also introduces limitations in function con-
currency, especially when tasks have complex interdependencies. Managing such dependencies or
shared state between functions remains an open challenge for future development in our Lithops-
HPC model and FaaS area.

Page 91 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

10 Conclusions and Next Steps

A summary of the KPIs for XtremeHub components is illustrated in Table 19.

[[Component [KPI [[Results i
KPI-2 Burst Computing enables group-aware invocation and locality-optimized communication,
XtremeHub Compute improving throughput by up to 3 x and reducing invocation latency by 11.5x.
KPI-3 Burst Computing improves worker simultaneity by 26.5%, enabling full parallelism and sim-

plifying deployment of interactive workloads like grid search and PageRank. It supports
elastic, resource-agnostic programming via a single group invocation primitive.

KPI-2 Our serverless Vector DBs implementation achieves sub-second batch query latency and re-
duces indexing time by 9.2 to 65.6x compared to Milvus.
KPI-2 Our block-based data partitioning scheme for serverless vector DBs outperforms clustering-

based (Vexless) in indexing performance by 3.5x to 5.8 x, and reduces cost by 56% to 63%,
while supporting continuous data ingestion and dynamic workloads.

KPI-5 Serverless Vector DBs simplify deployment of RAG workloads, reduces operational tasks,
and reduces costs up to 98% compared to Milvus.
KPI-3 FaaStream supports coordinated auto-scaling of serverless pipelines, adapting to fluctuating
XtremeHub Streams workloads and outperforming Kafka-based setups in throughput and latency.
KPI-2 FaaStream achieves 22.5x higher throughput than Lithops with S3 for small events (e.g., 1KB).
KPI-2 FaaStream achieves up to 80.99% lower latency than AWS Kinesis in streaming IO.
KPI-1 FaaStream achieves up to up to 25.80% faster data shuffling than Serverless Spark.
KPI-5 FaaStream allows executing the same serverless job both in batch and streaming without al-

most no changes in the job’s code.

KPI-4 SCONE-protected Pravega clients show affordable latency increase (2x) at low throughput
and negligible overhead at high throughput (e.g., 10k events/sec), making it practical to use
in latency-sensitive applications.

XtremeHub Security

KPI-1 Nexus streamlets enable programmable data reduction techniques like compression, achiev-

XtremeHub Connectors ing 2.6 x to 3.9 x better compression ratios than event streaming systems built-in compression
(e.g., Kafka, Pulsar).

KPI-1 Nexus partition-aware data routing allows for stateful streamlets while reducing metadata

reads by ~ 98% due to linearization of operations.

KPI-1 Lithops-HPC achieves higher FLOPs and object storage throughput than popular cloud plat-
forms, demonstrating up to 3 x better compute performance and efficient data transfer using
GKFS-backed parallel storage.

KPI-5 Lithops-HPC reduces deployment complexity compared to traditional HPC workflows: Cy-
clomatic Complexity drops from 3 to 2, Yagin’s metric from 69 to 43, and Process Complexity
from 28 to 13.

Table 19: KPIs and results achieved by XtremeHub components in D3.2, aligned with project-level
indicators.

The D3.2 deliverable marks a significant milestone in the evolution of XtremeHub, demonstrat-
ing its maturity as a programmable data plane for near-data processing across heterogeneous in-
frastructures. By integrating advanced components such as Burst Computing, FaaStream, Serverless
Vector DBs, Nexus, and HPC connectors, the reference implementation showcases how XtremeHub
can support dynamic, latency-sensitive, and data-intensive workloads with elasticity, performance,
and security. The system’s ability to unify compute, stream, and security capabilities—validated
through rigorous benchmarking and real-world use cases—positions it as a robust foundation for
next-generation serverless analytics in domains like genomics, metabolomics, and surgiomics.

The results presented in this deliverable provide strong evidence of XtremeHub’s alignment with
NEARDATA’s KPIs. From significant throughput and latency improvements in ETL and video an-
alytics, to demonstrable auto-scaling, confidential computing, and user-centric platform simplicity,
XtremeHub delivers on its promise of enabling efficient and secure data processing at scale. The
convergence of its components into a cohesive runtime paves the way for broader exploitation in
NEARDATA's use cases and future adoption in International Health Data Spaces. Looking ahead,
the deliverable sets the stage for further integration, orchestration, and deployment of XtremeHub
across diverse infrastructures and application domains.

Page 92 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

References

[1] G. Paris, P. Garcia-Lopez, and M. Sadnchez-Artigas, “Serverless Elastic Exploration of Un-
balanced Algorithms,” in 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), (Los Alamitos, CA, USA), pp. 149-157, IEEE Computer Society, Oct. 2020. ISSN:
2159-6190.

[2] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia: enabling quality-
of-service in serverless computing,” in Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC "20, (New York, NY, USA), pp. 311-327, Association for Computing Ma-
chinery, Oct. 2020.

[3] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized Core-granular Scheduling for
Serverless Functions,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC
19, (New York, NY, USA), pp. 158-164, Association for Computing Machinery, Nov. 2019.

[4] E.Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC "17,
(New York, NY, USA), pp. 445-451, Association for Computing Machinery, Sept. 2017.

[5] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, Fast and Slow: Low-Latency Video Processing Us-
ing Thousands of Tiny Threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), (Boston, MA), pp. 363-376, USENIX Association, Mar. 2017.

[6] J. Sampé, G. Vernik, M. Sanchez-Artigas, and P. Garcia-Lopez, “Serverless data analytics in
the IBM cloud,” in Proceedings of the 19th International Middleware Conference Industry,
Middleware 18, (New York, NY, USA), p. 1-8, Association for Computing Machinery, 2018.

[7] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and K. Win-
stein, “From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional
containers,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19), (Renton, WA),
pp- 475-488, USENIX Association, July 2019.

[8] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa, I. Stoica, and D. A.
Patterson, “Cloud programming simplified: A Berkeley view on serverless computing,” Tech.
Rep. UCB/EECS-2019-3, EECS Department, University of California, Berkeley, Feb 2019.

[9] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A Serverless Video Processing
Framework,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC 18, (New
York, NY, USA), pp. 263-274, Association for Computing Machinery, Oct. 2018.

[10] S. Werner and S. Tai, “A reference architecture for serverless big data processing,” Future
Generation Computer Systems, vol. 155, pp. 179-192, 2024.

[11] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng, “Wukong: a scalable and
locality-enhanced framework for serverless parallel computing,” in Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC 20, (New York, NY, USA), p. 1-15, Association
for Computing Machinery, 2020.

[12] D. Barcelona-Pons, P. Sutra, M. Sanchez-Artigas, G. Paris, and P. Garcfa-L6pez, “State-
ful Serverless Computing with Crucial,” ACM Transactions on Software Engineering and
Methodology, vol. 31, pp. 39:1-39:38, Mar. 2022.

[13] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on
serverless infrastructure,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), (Boston, MA), pp. 193-206, USENIX Association, Feb. 2019.

Page 93 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. M. Hellerstein,]J. Faleiro, J. E. Gonzalez,]J. Schleier-Smith, V. Sreekanti, A. Tumanov, and
C. Wu, “Serverless computing: One step forward, two steps back,” 2018.

D. Barcelona-Pons and P. Garcia-Lépez, “Benchmarking Parallelism in FaaS Platforms,” Future
Generation Computer Systems, vol. 124, pp. 268-284, Oct. 2020.

P. Garcia Lopez, A. Slominski, B. Metzler, M. Berhendt, and S. Shillaker, “Serverless end game:
Disaggregation enabling transparency,” in Proceedings of the 2nd Workshop on SErverless
Systems, Applications and MEthodologies, SESAME 24, (New York, NY, USA), p. 9-14, Asso-

ciation for Computing Machinery, 2024.

1. Miiller, R. Bruno, A. Klimovig, J. Wilkes, E. Sedlar, and G. Alonso, “Serverless Clusters: The
Missing Piece for Interactive Batch Applications?.” Presented at 10th Workshop on Systems for
Post-Moore Architectures (SPMA 2020), Apr. 2020.

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M. Hellerstein, and A. Tu-
manov, “Cloudburst: stateful functions-as-a-service,” Proceedings of the VLDB Endowment,
vol. 13, pp. 2438-2452, July 2020.

S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless
computing,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), (Boston, MA),
pp- 419-433, USENIX Association, July 2020.

V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica, J. Ragan-Kelley, E. Jonas, and
S. Venkataraman, “Serverless linear algebra,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, SoCC 20, (New York, NY, USA), p. 281-295, Association for Computing

Machinery, 2020.

B. Wadie, L. Stuart, C. M. Rath, B. Drotleff, S. Mamedov, and T. Alexandrov, “Metaspace-ml:
Context-specific metabolite annotation for imaging mass spectrometry using machine learn-
ing,” Nature Communications, vol. 15, no. 9110, 2024.

Y. Li, S. J. Park, and J. Ousterhout, “MilliSort and MilliQuery: Large-Scale Data-Intensive
computing in milliseconds,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), (Boston, MA), pp. 593-611, USENIX Association, Apr. 2021.

N. Kaviani, D. Kalinin, and M. Maximilien, “Towards serverless as commodity: a case of Kna-
tive,” in Proceedings of the 5th International Workshop on Serverless Computing, WOSC 19,
(New York, NY, USA), p. 13-18, Association for Computing Machinery, 2019.

W. Qiu, M. Copik, Y. Wang, A. Calotoiu, and T. Hoefler, “User-guided Page Merging for Mem-
ory Deduplication in Serverless Systems,” in 2023 IEEE International Conference on Big Data

(BigData), (Los Alamitos, CA, USA), pp. 159-169, IEEE Computer Society, Dec. 2023.

J. Stojkovic, T. Xu, H. Franke, and]. Torrellas, “MXFaaS: Resource sharing in serverless en-
vironments for parallelism and efficiency,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ISCA "23, (New York, NY, USA), Association for Com-

puting Machinery, 2023.

D. Barcelona-Pons, M. Sanchez-Artigas, G. Paris, P. Sutra, and P. Garcia-Lopez, “On the FaaS
track: Building stateful distributed applications with serverless architectures,” in Proceedings
of the 20th International Middleware Conference, Middleware '19, (New York, NY, USA),

pp. 41-54, Association for Computing Machinery, dec 2019.

Y. Li, L. Zhao, Y. Yang, and W. Qu, “Rethinking deployment for serverless functions:
A performance-first perspective,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC "23, (New York, NY, USA),

Association for Computing Machinery, 2023.

Page 94 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[28] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating Function-as-a-Service
workflows,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), (Boston, MA),
pp- 805-820, USENIX Association, July 2021.

[29] F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen, “Serialization/deserialization-free state
transfer in serverless workflows,” in Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys 24, (New York, NY, USA), p. 132-147, Association for Computing
Machinery, 2024.

[30] M. Copik, R. Bohringer, A. Calotoiu, and T. Hoefler, “FMI: Fast and cheap message passing for
serverless functions,” in Proceedings of the 37th International Conference on Supercomputing,
ICS 723, (New York, NY, USA), p. 373-385, Association for Computing Machinery, 2023.

[31] D. Barcelona-Pons, P. Garcia-Lopez, and B. Metzler, “Glider: Serverless ephemeral stateful
near-data computation,” in Proceedings of the 24th International Middleware Conference,
Middleware 23, (New York, NY, USA), p. 247-260, Association for Computing Machinery,
2023.

[32] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi,]J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427—444, USENIX Association, Oct.
2018.

[33] J. Kim and K. Lee, “FunctionBench: A Suite of Workloads for Serverless Cloud Function Ser-
vice,” in 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), (Los Alami-
tos, CA, USA), pp. 502-504, IEEE Computer Society, July 2019.

[34] B. Huang, S. Huang, J. Dai, J. Huang, and T. Xie, “The HiBench benchmark suite: Character-
ization of the MapReduce-based data analysis,” in 2010 IEEE 26th International Conference
on Data Engineering Workshops (ICDEW 2010), (Los Alamitos, CA, USA), pp. 41-51, IEEE
Computer Society, Mar. 2010.

[35] M. Sanchez-Artigas, G. T. Eizaguirre, G. Vernik, L. Stuart, and P. Garcia-L6épez, “Prim-
ula: a practical shuffle/sort operator for serverless computing,” in Proceedings of the 21st
International Middleware Conference Industrial Track, Middleware 20, (New York, NY, USA),
p. 31-37, Association for Computing Machinery, 2020.

[36] B. Liston, “Ad hoc big data processing made simple with serverless MapReduce,” 2016.

[37] S. Thomas, L. Ao, G. M. Voelker, and G. Porter, “Particle: ephemeral endpoints for serverless
networking,” in Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC 20,
(New York, NY, USA), pp. 16-29, Association for Computing Machinery, Oct. 2020.

[38] C. Lee and J. Ousterhout, “Granular computing,” in Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS "19, (New York, NY, USA), p. 149-154, Association for
Computing Machinery, 2019.

[39] C.Segarra, S. Shillaker, G. Li, E. Mappoura, R. Bruno, L. Vilanova, and P. Pietzuch, “"GRANNY:
Granular management of Compute-Intensive applications in the cloud,” in 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI 25), (Philadelphia, PA),
pp- 205-218, USENIX Association, Apr. 2025.

[40] Z. Ruan, S. Li, K. Fan, S. J. Park, M. K. Aguilera, A. Belay, and M. Schwarzkopf, “Quick-
sand: Harnessing stranded datacenter resources with granular computing,” in 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI 25), (Philadelphia, PA),
pp- 147-165, USENIX Association, Apr. 2025.

Page 95 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. Copik, A. Calotoiu, G. Rethy, R. Bohringer, R. Bruno, and T. Hoefler, “Process-as-a-service:
Unifying elastic and stateful clouds with serverless processes,” in Proceedings of the 2024 ACM
Symposium on Cloud Computing, SoCC "24, (New York, NY, USA), p. 223-242, Association for

Computing Machinery, 2024.

G. T. Eizaguirre, D. Barcelona-Pons, A. Arjona, G. Vernik, P. Garcia-Lépez, and T. Alexandrov,
“Serverful functions: Leveraging servers in complex serverless workflows (industry track),”
in Proceedings of the 25th International Middleware Conference Industrial Track, Middleware
Industrial Track 24, (New York, NY, USA), p. 15-21, Association for Computing Machinery,
2024.

X. Wei, E. Lu, T. Wang, J. Gu, Y. Yang, R. Chen, and H. Chen, “No provisioned concurrency: Fast
RDMA-codesigned remote fork for serverless computing,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), (Boston, MA), pp. 497-517, USENIX

Association, July 2023.

Z. Jia and E. Witchel, “Nightcore: efficient and scalable serverless computing for latency-
sensitive, interactive microservices,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS 21,

(New York, NY, USA), pp. 152-166, Association for Computing Machinery, Apr. 2021.

M. Copik, K. Taranov, A. Calotoiu, and T. Hoefler, “rFaaS: Enabling high performance server-
less with rdma and leases,” in 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), (Los Alamitos, CA, USA), pp. 897-907, IEEE Computer Society, may 2023.

I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt,
“SAND: Towards High-Performance serverless computing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), (Boston, MA), pp. 923-935, USENIX Association, July 2018.

R. Basu Roy, T. Patel, R. Liew, Y. N. Babuji, R. Chard, and D. Tiwari, “ProPack: Executing
concurrent serverless functions faster and cheaper,” in Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing, HPDC "23, (New York,

NY, USA), p. 211-224, Association for Computing Machinery, 2023.

Z.Wu, Y. Deng, Y. Zhou, J. Li, S. Pang, and X. Qin, “ FaaSBatch: Boosting Serverless Efficiency
With In-Container Parallelism and Resource Multiplexing ,” IEEE Transactions on Computers,
vol. 73, pp. 1071-1085, Apr. 2024.

C. Jin, Z. Zhang, X. Xiang, S. Zou, G. Huang, X. Liu, and X. Jin, “Ditto: Efficient serverless
analytics with elastic parallelism,” in Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM 23, (New York, NY, USA), p. 406-419, Association for Computing Machinery,
2023.

M. Abdi, S. Ginzburg, X. C. Lin, J. Faleiro, G. I. Chaudhry, I. Goiri, R. Bianchini, D. S. Berger, and
R. Fonseca, “Palette Load Balancing: Locality Hints for Serverless Functions,” in Proceedings
of the Eighteenth European Conference on Computer Systems, EuroSys '23, (New York, NY,
USA), pp. 365-380, Association for Computing Machinery, May 2023.

A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S. Bagchi, “ORION and the three
rights: Sizing, bundling, and prewarming for serverless DAGs,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), (Carlsbad, CA), pp. 303-320,
USENIX Association, July 2022.

H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica, “Caerus: NIMBLE task schedul-
ing for serverless analytics,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), (Boston, MA), pp. 653-669, USENIX Association, Apr. 2021.

Page 96 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[53] D.H.Liu, A. Levy, S. Noghabi, and S. Burckhardt, “Doing more with less: Orchestrating server-
less applications without an orchestrator,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), (Boston, MA), pp. 1505-1519, USENIX Association,
Apr. 2023.

[54] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the data, not the function: Rethinking
function orchestration in serverless computing,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), (Boston, MA), pp. 1489-1504, USENIX Asso-
ciation, Apr. 2023.

[55] S. Mohanty, V. M. Bhasi, M. Son, M. T. Kandemir, and C. Das, “Faastloop: Optimizing loop-
based applications for serverless computing,” in Proceedings of the 2024 ACM Symposium on
Cloud Computing, SoCC 24, (New York, NY, USA), p. 943-960, Association for Computing
Machinery, 2024.

[56] A. Flink, “Stateful functions,” 2023.

[57] W. W. Song, T. Um, S. Elnikety, M. Jeon, and B.-G. Chun, “Sponge: Fast reactive scaling for
stream processing with serverless frameworks,” in 2023 USENIX Annual Technical Conference
(USENIX ATC 23), (Boston, MA), pp. 301-314, USENIX Association, July 2023.

[58] A.]Jain, A. F. Baarzi, G. Kesidis, B. Urgaonkar, N. Alfares, and M. Kandemir, “SplitServe: Effi-
ciently splitting apache spark jobs across faas and iaas,” in Proceedings of the 21st International
Middleware Conference, Middleware 20, (New York, NY, USA), p. 236-250, Association for
Computing Machinery, 2020.

[59] J. Sampé, M. Sdnchez-Artigas, P. Garcia-Lopez, and G. Paris, “Data-driven serverless functions
for object storage,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
Middleware 17, (New York, NY, USA), pp. 121-133, Association for Computing Machinery,
Dec. 2017.

[60] M. Wawrzoniak, I. Miiller, G. Alonso, and R. Bruno, “Boxer: Data Analytics on Network-
enabled Serverless Platforms,” in 11th Conference on Innovative Data Systems Research, CIDR
2021, (Chaminade, USA), CIDR, Jan. 2021.

[61] T. Schirmer, J. Scheuner, T. Pfandzelter, and D. Bermbach, “Fusionize: Improving Server-
less Application Performance through Feedback-Driven Function Fusion,” in 2022 IEEE
International Conference on Cloud Engineering (IC2E), (Los Alamitos, CA, USA), pp. 85-95,
IEEE Computer Society, Sept. 2022.

[62]]J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-Lopez, “Outsourcing Data
Processing Jobs With Lithops,” IEEE Transactions on Cloud Computing, vol. 11, pp. 1026-1037,
Jan. 2023.

[63] M. Wawrzoniak, G. Moro, R. Bruno, A. Klimovic, and G. Alonso, “Off-the-shelf data analytics
on serverless,” in Proceedings of the 14th Conference on Innovative Data Systems Research,
CIDR 2024, (Chaminade, USA), CIDR, 2024.

[64] M. Grohe, “word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings
of structured data,” in Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS'20, (New York, NY, USA), p. 1-16, Association for
Computing Machinery, 2020.

[65] M. T. Pilehvar and J. Camacho-Collados, Embeddings in natural language processing: Theory
and advances in vector representations of meaning. Switzerland: Morgan & Claypool Publish-
ers, 2020.

Page 97 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[66] B. Klein, G. Lev, G. Sadeh, and L. Wolf, “ Associating neural word embeddings with deep
image representations using Fisher Vectors ,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 4437-4446, IEEE Computer
Society, June 2015.

[67] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F Li, and Y. Cai, “Analyticdb-v: a hybrid analyti-
cal engine towards query fusion for structured and unstructured data,” Proc. VLDB Endow.,
vol. 13, p. 3152-3165, Aug. 2020.

[68] Pinecone, “Pinecone.io,” 2025.
[69] Weaviate, “Weaviate.io,” 2025.

[70] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X. Xu, K. Yu, Y. Yuan, Y. Zou,
J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo, J. Gu, R. Jiang, Y. Wei, and C. Xie, “Milvus: A purpose-
built vector data management system,” in Proceedings of the 2021 International Conference
on Management of Data, SIGMOD 21, (New York, NY, USA), p. 2614-2627, Association for
Computing Machinery, 2021.

[71] R. Guo, X. Luan, L. Xiang, X. Yan, X. Yi,]. Luo, Q. Cheng, W. Xu, J. Luo, F. Liu, Z. Cao, Y. Qiao,
T. Wang, B. Tang, and C. Xie, “Manu: a cloud native vector database management system,”
Proc. VLDB Endow., vol. 15, p. 3548-3561, Aug. 2022.

[72] R. Shan, “ A Deep Dive into Vector Stores: Classifying the Backbone of Retrieval-Augmented
Generation ,” in 2024 IEEE International Conference on Big Data (BigData), (Los Alamitos, CA,
USA), pp. 88318833, IEEE Computer Society, Dec. 2024.

[73] J. J. Pan, J. Wang, and G. Li, “Survey of vector database management systems,” The VLDB
Journal, vol. 33, no. 5, pp. 1591-1615, 2024.

[74] Upstash, “Upstash - serverless data platform,” 2025.
[75] AWS, “Amazon opensearch service as a vector database,” 2025.
[76] “Aws lambda.” https://aws.amazon.com/en/lambda/, 2024.

[77] “Microsoft azure functions.” https://learn.microsoft.com/en-us/azure/
azure-functions/functions-overview, 2024.

[78] Google, “Cloud run functions,” 2025.

[79] Y. Su, Y. Sun, M. Zhang, and J. Wang, “Vexless: A serverless vector data management system
using cloud functions,” Proc. ACM Manag. Data, vol. 2, May 2024.

[80] Azure, “Azure durable functions,” 2025.

[81] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A survey of opportunities,
challenges, and applications,” ACM Comput. Surv., vol. 54, Nov. 2022.

[82] J. Manner, M. EndreB, T. Heckel, and G. Wirtz, “ Cold Start Influencing Factors in Function as
a Service ,” in IEEE/ACM UCC Companion 18, (Los Alamitos, CA, USA), pp. 181-188, IEEE
Computer Society, Dec. 2018.

[83] X. Liu,]J. Wen, Z. Chen, D. Li, J. Chen, Y. Liu, H. Wang, and X. Jin, “Faaslight: General
application-level cold-start latency optimization for function-as-a-service in serverless comput-
ing,” ACM Transactions on Software Engineering and Methodology, vol. 32, no. 5, pp. 1-29,
2023.

Page 98 of 108

https://aws.amazon.com/en/lambda/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[84] M. Copik, R. Bohringer, A. Calotoiu, and T. Hoefler, “FMI: Fast and cheap message passing for
serverless functions,” in Proceedings of the 37th International Conference on Supercomputing,
ICS 723, (New York, NY, USA), p. 373-385, Association for Computing Machinery, 2023.

[85] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces,” in Proceedings of the 24rd
International Conference on Very Large Data Bases, VLDB 98, (San Francisco, CA, USA),
p- 194-205, Morgan Kaufmann Publishers Inc., 1998.

[86] R.Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system for
data streams,” in Proceedings of the 24th International Middleware Conference, Middleware
23, (New York, NY, USA), p. 165-177, Association for Computing Machinery, 2023.

[87] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log process-
ing,” in NetDB 11, vol. 11, pp. 1-7, 2011.

[88] R. M. Esteves, T. Hacker, and C. Rong, “Competitive k-means, a new accurate and dis-
tributed k-means algorithm for large datasets,” in Proceedings of the 2013 IEEE International
Conference on Cloud Computing Technology and Science - Volume 01, CLOUDCOM 13,
(USA), p. 17-24, IEEE Computer Society, 2013.

[89] M. I. Malinen and P. Franti, “Balanced k-means for clustering,” in Structural, Syntactic, and
Statistical Pattern Recognition: Joint IAPR International Workshop, S+ SSPR 2014, Joensuu,
Finland, August 20-22, 2014. Proceedings, (Berlin, Heidelberg, Germany), pp. 32-41, Springer,
Springer, 2014.

[90] R. de Maeyer, S. Sieranoja, and P. Fréanti, “Balanced k-means revisited,” Applied Computing
and Intelligence, vol. 3, no. 2, pp. 145-179, 2023.

[91] “Stateless serverless vector database,” 2025.

[92] J. Sampé, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcifa-L6pez, “Outsourcing data
processing jobs with lithops,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1026—
1037, 2023.

[93] M. Douze, A. Guzhva, C. Deng,]J. Johnson, G. Szilvasy, P.-E. Mazaré, M. Lomeli, L. Hosseini,
and H. Jégou, “The faiss library,” 2025.

[94]]J. Levy-Kramer, “k-means-constrained,” Apr. 2018.
[95] AWS, “Configure lambda function memory,” 2025.
[96] Zilliz, “VectorDBBench: A Benchmark Tool for VectorDB,” 2025.

[97] A.B. Yandex and V. Lempitsky, “ Efficient Indexing of Billion-Scale Datasets of Deep Descrip-
tors ,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Los
Alamitos, CA, USA), pp. 2055-2063, IEEE Computer Society, June 2016.

[98] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “ Going deeper with convolutions ,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 1-9, IEEE Computer
Society, June 2015.

[99] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ ImageNet: A large-scale hierar-
chical image database ,” in 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPR Workshops), (Los Alamitos, CA, USA), pp. 248-255,
IEEE Computer Society, June 2009.

Page 99 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[100] D. G. Lowe, “Distinctive image features from Scale-Invariant keypoints,” International Journal
of Computer Vision, vol. 60, pp. 91-110, Nov. 2004.

[101] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the
spatial envelope,” International Journal of Computer Vision, vol. 42, pp. 145-175, May 2001.

[102] “K-means constrained,” 2025.

[103]]J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE
Transactions on Big Data, vol. 7, no. 3, pp. 535-547, 2019.

[104] J. J. Pan, J. Wang, and G. Li, “Vector database management techniques and systems,” in
Companion of the 2024 International Conference on Management of Data, SIGMOD/PODS
24, (New York, NY, USA), p. 597-604, Association for Computing Machinery, 2024.

[105] “Google cloud functions.” https://cloud.google.com/functions, 2024.

[106] Forrester, “Introducing forrester’s function-as-a-service platforms landscape.” https://www.
forrester.com/blogs/introducing-forresters-functions-as-a-service-landscape/,
2023.

[107] “Aws serverless applications scenarios.” https://docs.aws.amazon.com/wellarchitected/
latest/serverless-applications-lens/scenarios.html, 2024.

[108] “Serverless reference architecture: Real-time stream processing.” https://github.com/
aws-samples/lambda-refarch-streamprocessing/, 2024.

[109] Z. Jia and E. Witchel, “Boki: Towards data consistency and fault tolerance with shared logs in
stateful serverless computing,” ACM Trans. Comput. Syst., Sept. 2024. Just Accepted.

[110] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the data, not the function: Rethinking func-
tion orchestration in serverless computing,” in USENIX NSDI '23, (Boston, MA), pp. 1489-1504,
USENIX Association, Apr. 2023.

[111] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo, “Faasflow: enable efficient
workflow execution for function-as-a-service,” ASPLOS "22, (New York, NY, USA), p. 782-796,
Association for Computing Machinery, 2022.

[112] Z. Cai, Z. Chen, X. Chen, R. Ma, H. Guan, and R. Buyya, “Spsc: Stream processing framework
atop serverless computing for industrial big data,” IEEE Transactions on Cybernetics, pp. 1-9,
2024.

[113]]J. Sampé, M. Sanchez-Artigas, G. Vernik, 1. Yehekzel, and P. Garcia-L6épez, “Outsourcing data
processing jobs with lithops,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1026~
1037, 2023.

[114] W. W. Song, T. Um, S. Elnikety, M. Jeon, and B.-G. Chun, “Sponge: Fast reactive scaling for
stream processing with serverless frameworks,” in USENIX ATC 23, (Boston, MA), pp. 301-
314, USENIX Association, July 2023.

[115] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, “Lambda architecture for cost-
effective batch and speed big data processing,” in IEEE international conference on Big Data,
pp. 2785-2792, IEEE, 2015.

[116] “Apache flink.” https://flink.apache.org, 2023.

[117] “Apache spark.” https://spark.apache.org, 2023.

Page 100 of 108

https://cloud.google.com/functions
https://www.forrester.com/blogs/introducing-forresters-functions-as-a-service-landscape/
https://www.forrester.com/blogs/introducing-forresters-functions-as-a-service-landscape/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://flink.apache.org
https://spark.apache.org

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[118] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al., “Spark: Cluster comput-
ing with working sets.,” USENIX HotCloud "10, vol. 10, no. 10-10, p. 95, 2010.

[119] E.Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: distributed com-
puting for the 99%,” in ACM SoCC 17, (New York, NY, USA), p. 445-451, Association for
Computing Machinery, 2017.

[120] “Amazon kinesis.” https://aws.amazon.com/es/kinesis, 2023.

[121] M. Sanchez-Artigas and G. T. Eizaguirre, “A seer knows best: Optimized object storage shuf-
fling for serverless analytics,” in ACM/IFIP Middleware "22, (New York, NY, USA), p. 148-160,
Association for Computing Machinery, 2022.

[122] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi,]. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in USENIX OSDI “18, (Carlsbad, CA), pp. 427-444,
USENIX Association, Oct. 2018.

[123] “Apache kafka.” https://kafka.apache.org, 2023.
[124] “Apache pulsar.” https://pulsar.apache.org, 2023.
[125] “Redpanda.” https://redpanda.com, 2023.

[126] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu, “Fault-tolerant and transactional state-
ful serverless workflows,” in OSDI "20, pp. 1187-1204, USENIX Association, Nov. 2020.

[127] M. Wiesholler, F. Dinu, J. Picorel, and P. Bhatotia, “Indilog: Bridging scalability and perfor-
mance in stateful serverless computing with shared logs,” in ACM SYSTOR 24, (New York,
NY, USA), p. 1-13, Association for Computing Machinery, 2024.

[128] “Apache pulsar - overview of tiered storage.” https://pulsar.apache.org/docs/2.11.x/
tiered-storage-overview, 2023.

[129] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system
for data streams,” in ACM Middleware "23, (New York, NY, USA), p. 165-177, Association for
Computing Machinery, 2023.

[130] D. Barcelona-Pons, P. Sutra, M. Sdnchez-Artigas, G. Paris, and P. Garcia-Lépez, “Stateful server-
less computing with crucial,” ACM Trans. Softw. Eng. Methodol., vol. 31, Mar. 2022.

[131] “Documentation for memory configuration in aws lambda.” https://docs.aws.amazon. com/
lambda/latest/dg/configuration-memory.html, 2024.

[132] “Aws step functions service quotas.” https://docs.aws.amazon.com/step-functions/
latest/dg/service-quotas.html, 2023.

[133] “Seer terasort implementation.” https://github.com/GEizaguirre/terasort-1lithops, 2023.
[134] “Amazon emr.” https://docs.aws.amazon.com/emr/, 2023.

[135]]J. Deng, W. Dong, R. Socher, L.-]. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchi-
cal image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009.

[136] “Hadoop mapreduce tutorial: Example: Wordcount v1.0.” https://hadoop.
apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html, 2023.

Page 101 of 108

https://aws.amazon.com/es/kinesis
https://kafka.apache.org
https://pulsar.apache.org
https://redpanda.com
https://pulsar.apache.org/docs/2.11.x/tiered-storage-overview
https://pulsar.apache.org/docs/2.11.x/tiered-storage-overview
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/step-functions/latest/dg/service-quotas.html
https://docs.aws.amazon.com/step-functions/latest/dg/service-quotas.html
https://github.com/GEizaguirre/terasort-lithops
https://docs.aws.amazon.com/emr/
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[137] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark suite: Characteriza-
tion of the mapreduce-based data analysis,” in IEEE ICDEW "20, pp. 41-51, 2010.

[138] G. Vernik, M. Factor, E. K. Kolodner, P. Michiardi, E. Ofer, and F. Pace, “Stocator: Providing
high performance and fault tolerance for apache spark over object storage,” in IEEE/ACM
CCGRID 18, pp. 462471, 2018.

[139] D.S. (Itemdrdata), “Plain text wikipedia 2020-11,” 2020. Accessed: 2025-03-25.
[140] O. O. Yahoo!, “Terabyte sort on apache hadoop,” Mai 2008 2008.

[141] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on serverless
infrastructure,” in USENIX NSDI "19, (Boston, MA), pp. 193-206, USENIX Association, Feb.
2019.

[142] M. Séanchez-Artigas, G. T. Eizaguirre, G. Vernik, L. Stuart, and P. Garcia-Lépez, “Primula: a
practical shuffle/sort operator for serverless computing,” in ACM Middleware '20 Industrial
Track, (New York, NY, USA), p. 31-37, Association for Computing Machinery, 2020.

[143] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica, “Caerus: NIMBLE task scheduling for
serverless analytics,” in 18th USENIX NSDI "21, pp. 653-669, USENIX Association, Apr. 2021.

[144] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache flink:
Stream and batch processing in a single engine,” The Bulletin of the Technical Committee on
Data Engineering, vol. 38, no. 4, 2015.

[145] G. Chantzialexiou, A. Luckow, and S. Jha, “Pilot-streaming: A stream processing framework
for high-performance computing,” in IEEE e-Science 18, pp. 177-188, 2018.

[146] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen, “Characterizing
serverless platforms with serverlessbench,” in ACM SoCC "20, (New York, NY, USA), p. 30-44,
Association for Computing Machinery, 2020.

[147] “National center for tumor diseases (germany).” https://www.nct-dresden.de/en/homepage,
2025.

[148] “Apache kafka - documentation.” https://kafka.apache.org/documentation, 2023.

[149] R. Gracia-Tinedo, F. Junqueira, B. Zhou, Y. Xiong, and L. Liu, “Practical storage-compute elas-
ticity for stream data processing,” in ACM Middleware "23 Industrial Track, (New York, NY,
USA), p. 1-7, Association for Computing Machinery, 2023.

.Li, Y. Li, W. Zhu, Y. Xu, and J. C. S. Lui, “MinFlow: High-performance and cost-efficient data

[150] T.Li, Y.Li, W. Zhu, Y. X d]. C.S. Lui, “MinFlow: High-perf d fficient d
passing for I/O-intensive stateful serverless analytics,” in USENIX FAST "24, (Santa Clara, CA),
pp- 311-327, USENIX Association, Feb. 2024.

[151] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-Latency video processing
using thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), (Boston, MA), pp. 363-376, USENIX Association, Mar. 2017.

[152] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and K. Winstein,
“From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional con-
tainers,” in USENIX ATC "19, (Renton, WA), pp. 475-488, USENIX Association, July 2019.

[153] M. Copik, R. Bohringer, A. Calotoiu, and T. Hoefler, “Fmi: Fast and cheap message passing
for serverless functions,” in ACM ICS 23, (New York, NY, USA), p. 373-385, Association for
Computing Machinery, 2023.

Page 102 of 108

https://www.nct-dresden.de/en/homepage
https://kafka.apache.org/documentation

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[154] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica, J. Ragan-Kelley, E. Jonas,
and S. Venkataraman, “Serverless linear algebra,” in ACM SoCC 20, (New York, NY, USA),
p- 281-295, Association for Computing Machinery, 2020.

[155] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A serverless video processing
framework,” in ACM SoCC 18, (New York, NY, USA), p. 263-274, Association for Computing
Machinery, 2018.

[156] W. Zhang, V. Fang, A. Panda, and S. Shenker, “Kappa: a programming framework for server-
less computing,” in ACM SoCC "20, (New York, NY, USA), p. 328-343, Association for Com-
puting Machinery, 2020.

[157] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M. Hellerstein, and
A. Tumanov, “Cloudburst: stateful functions-as-a-service,” Proc. VLDB Endow., vol. 13,
p. 2438-2452, July 2020.

[158] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein, “Anna: A kvs for any scale,” in IEEE ICDE 18,
pp. 401-412, 2018.

[159] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and S. Bagchi, “SONIC:
Application-aware data passing for chained serverless applications,” in USENIX ATC 21,
pp. 285-301, USENIX Association, July 2021.

[160] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica, “Jiffy: elastic far-memory
for stateful serverless analytics,” in Proceedings of the Seventeenth European Conference on
Computer Systems, (New York, NY, USA), p. 697-713, Association for Computing Machinery,
2022.

[161] T. Zhang, D. Xie, F. Li, and R. Stutsman, “Narrowing the gap between serverless and its state
with storage functions,” in ACM SoCC '19, (New York, NY, USA), p. 1-12, Association for
Computing Machinery, 2019.

[162] D. Barcelona-Pons, P. Garcia-Lopez, and B. Metzler, “Glider: Serverless ephemeral stateful
near-data computation,” in ACM Middleware 23, (New York, NY, USA), p. 247-260, Asso-
ciation for Computing Machinery, 2023.

[163] Y. Kim and]. Lin, “ Serverless Data Analytics with Flint ,” in IEEE CLOUD ’18, (Los Alamitos,
CA, USA), pp. 451455, IEEE Computer Society, July 2018.

[164] A.]Jain, A. F. Baarzi, G. Kesidis, B. Urgaonkar, N. Alfares, and M. Kandemir, “Splitserve: Effi-
ciently splitting apache spark jobs across faas and iaas,” in ACM Middleware "20, (New York,
NY, USA), p. 236-250, Association for Computing Machinery, 2020.

[165] K. Psarakis, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos, “Styx: Trans-
actional stateful functions on streaming dataflows,” in ACM SIGMOD ’25, Association for
Computing Machinery, 2025.

[166] G. Liao, A. Deshpande, and D. J. Abadi, “Flock: A low-cost streaming query engine on faas
platforms,” 2023.

[167] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S. Meiklejohn, “Durable
functions: semantics for stateful serverless,” Proc. ACM Program. Lang., vol. 5, Oct. 2021.

[168] L. Xu, D. Saxena, N. J. Yadwadkar, A. Akella, and I. Gupta, “Dirigo: Self-scaling stateful actors
for serverless real-time data processing,” 2023.

[169] “Apache flink stateful functions.” https://nightlies.apache.org/flink/
flink-statefun-docs-stable/, 2025.

Page 103 of 108

https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[170] 1. Miiller, R. Marroquin, and G. Alonso, “Lambada: Interactive data analytics on cold data us-
ing serverless cloud infrastructure,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, (New York, NY, USA), p. 115-130, Association for Com-
puting Machinery, 2020.

[171] “Pravega.” https://cncf.pravega.io, 2023.
[172] “Confluent.” https://wuw.confluent.io/, 2024.
[173] “Streamnative.” https://streamnative.io/, 2024.

[174] “Storage reimagined for a streaming world.” https://cncf.pravega.io/blog/2017/04/09/
storage-reimagined-for-a-streaming-world/, 2017.

[175] “Infinite storage in confluent platform.” https://www.confluent.io/blog/
infinite-kafka-storage-in-confluent-platform/, 2020.

[176] “Streaming lakehouse: Introducing pulsar’s lakehouse tiered storage,” 2023.
https://streamnative.io/blog/streaming-lakehouse-introducing-pulsarsy
-lakehouse-tiered-storage.

[177] A.Povzner, P. Mahajan, J. Gustafson, J. Rao, . Juma, F. Min, S. Sridharan, N. Bhatia, G. Attaluri,
A. Chandra, et al., “Kora: A cloud-native event streaming platform for kafka,” Proceedings of
the VLDB Endowment, vol. 16, no. 12, pp. 3822-3834, 2023.

[178] “Apache pulsar - overview of tiered storage.” https://pulsar.apache.org/docs/3.3.x/
tiered-storage-overview/, 2024.

[179] “Redpanda - tiered storage.” https://docs.redpanda.com/current/manage/
tiered-storage/, 2024.

[180] “Openmessaging benchmark.” https://github.com/openmessaging/benchmark, 2025.

[181] “Remotestoragemanager for apache kafka tiered storage.” https://github.com/Aiven-Open/
tiered-storage-for-apache-kafka, 2025.

[182] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage management in cloud environments:
Taxonomy, survey, and future directions,” ACM Computing Surveys (CSUR), vol. 50, no. 6,
pp- 1-51, 2017.

[183] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” ACM SIGOPS operating
systems review, vol. 47, no. 1, pp. 9-15, 2013.

[184] “Kip-405: Kafka tiered storage.” https://cwiki.apache.org/confluence/display/KAFKA/
KIP-405%3A+Kafka+Tiered+Storage, 2025.

[185] “Tiered storage in confluent platform.” https://docs.confluent.io/platform/current/
clusters/tiered-storage.html, 2024.

[186] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sanchez-Artigas, P. Garcia-Lopez, Y. Moatti, and
E.Rom, “Crystal: Software-defined storage for multi-tenant object stores,” in USENIX FAST’17,
pp. 243-256, 2017.

[187]]J. Sampé, M. Sanchez-Artigas, P. Garcia-Lépez, and G. Paris, “Data-driven serverless functions
for object storage,” in ACM/IFIP /USENIX Middleware’17, pp. 121-133, 2017.

[188] D. Barcelona-Pons, P. Sutra, M. Sdnchez-Artigas, G. Paris, and P. Garcia-Lopez, “Stateful server-
less computing with crucial,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 3, pp. 1-38, 2022.

Page 104 of 108

https://cncf.pravega.io
https://www.confluent.io/
https://streamnative.io/
https://cncf.pravega.io/blog/2017/04/09/storage-reimagined-for-a-streaming-world/
https://cncf.pravega.io/blog/2017/04/09/storage-reimagined-for-a-streaming-world/
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://streamnative.io/blog/streaming-lakehouse-introducing-pulsars%-lakehouse-tiered-storage
https://streamnative.io/blog/streaming-lakehouse-introducing-pulsars%-lakehouse-tiered-storage
https://pulsar.apache.org/docs/3.3.x/tiered-storage-overview/
https://pulsar.apache.org/docs/3.3.x/tiered-storage-overview/
https://docs.redpanda.com/current/manage/tiered-storage/
https://docs.redpanda.com/current/manage/tiered-storage/
https://github.com/openmessaging/benchmark
https://github.com/Aiven-Open/tiered-storage-for-apache-kafka
https://github.com/Aiven-Open/tiered-storage-for-apache-kafka
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://docs.confluent.io/platform/current/clusters/tiered-storage.html
https://docs.confluent.io/platform/current/clusters/tiered-storage.html

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[189] Q.Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on serverless
infrastructure,” in USENIX NSDI'19, pp. 193-206, 2019.

[190] “Unlocking the edge: Data streaming goes where you go with confluent.” https://www.
confluent.io/blog/data-streaming-at-the-edge/, 2024.

[191] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-aware strategies for deploying
data stream processing applications on large cloud-edge infrastructure,” IEEE Transactions on
Cloud Computing, 2021.

[192] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian, S. Mitra, Y. Peng, H. Wang, A. Klimovic,
H. Yang, et al., “Sonic: Application-aware data passing for chained serverless applications,” in
USENIX ATC"21, pp. 285-301, 2021.

[193]]J. Sampé, M. Sanchez-Artigas, G. Vernik, 1. Yehekzel, and P. Garcia-Lopez, “Outsourcing data

processing jobs with lithops,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1026—
1037, 2021.

[194] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the data, not the function: Rethinking func-
tion orchestration in serverless computing,” in USENIX NSDI'23, pp. 1489-1504, 2023.

[195] R. Halalai, P. Sutra, E. Riviere, and P. Felber, “Zoofence: Principled service partitioning and
application to the zookeeper coordination service,” in IEEE SRDS'14, pp. 67-78, 2014.

[196] “S3proxy.” https://github.com/gaul/s3proxy, 2025.

[197] “Redis.” https://redis.io, 2025.

[198] “Nexus repository.” https://github.com/neardata-eu/nexus, 2025.
[199] “Apache bookkeeper.” https://bookkeeper.apache.org, 2023.

[200] “fio - flexible i/ 0 tester.” https://fio.readthedocs.io, 2025.

[201]]J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection of system log datasets
for ai-driven log analytics,” in IEEE ISSRE’23, pp. 355-366, 2023.

[202] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale system problems
by mining console logs,” in ACM SOSP’09, p. 117-132, 2009.

[203] D.M.]J. M. M. D. M. N. P. Andru Twinanda, Sherif Shehata, “Endonet: A deep architecture for
recognition tasks on laparoscopic videos,” IEEE Transactions on Medical Imaging, vol. 36, 02
201e6.

[204] “Sra toolkit.” https://hpc.nih.gov/apps/sratoolkit.html, 2025.

[205] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, Z. Yifu, C. Wong,
D. Montes, et al., “ultralytics/yolov5: v7.0-yolov5 sota realtime instance segmentation,”
Zenodo, 2022.

[206] E.Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey, R. Black, and T. Zhu,
“loflow: A software-defined storage architecture,” in ACM SOSP’13, pp. 182-196, 2013.

[207]]J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted resource management in
multi-tenant distributed systems,” in USENIX NSDI'15, pp. 589-603, 2015.

[208] J. Zhang, A. Wang, X. Ma, B. Carver, N. Newman, A. Anwar, L. Rupprecht, D. Skourtis,
V. Tarasov, E. Yan, et al., “Sion: Elastic serverless cloud storage,” in VLDB’23, 2023.

Page 105 of 108

https://www.confluent.io/blog/data-streaming-at-the-edge/
https://www.confluent.io/blog/data-streaming-at-the-edge/
https://github.com/gaul/s3proxy
https://redis.io
https://github.com/neardata-eu/nexus
https://bookkeeper.apache.org
https://fio.readthedocs.io
https://hpc.nih.gov/apps/sratoolkit.html

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[209] “Amazon s3 object lambda.” https://aws.amazon.com/s3/features/object-lambda, 2025.

[210] “Confluent blog - an introduction to data mesh.” https://www.confluent.io/blog/
benefits-of-data-mesh-and-how-to-get-started, 2025.

[211] “Istio.io.” https://istio.io/, 2025.

[212] S. Zeuch, A. Chaudhary, B. D. Monte, H. Gavriilidis, D. Giouroukis, P. M. Grulich, S. Brefs,
J. Traub, and V. Markl, “The nebulastream platform for data and application management in
the internet of things,” in CIDR"20, 2020.

[213] V. Amaral, B. Norberto, M. Gouldo, M. Aldinucci, S. Benkner, A. Bracciali, P. Carreira, E. Celms,
L. Correia, C. Grelck, H. Karatza, C. Kessler, P. Kilpatrick, H. Martiniano, I. Mavridis, S. Pllana,
A. Respicio, J. Simdo, L. Veiga, and A. Visa, “Programming languages for data-intensive hpc
applications: A systematic mapping study,” Parallel Computing, vol. 91, p. 102584, 2020.

[214] O. OnDemand, “Open ondemand,” 2025.
[215] E. Comission, “Ai factories,” 2025.
[216] N.S. Foundation, “National artificial intelligence research resource,” 2025.

[217] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen,
R. Ferreira da Silva, M. Livny, and K. Wenger, “Pegasus, a workflow management system for
science automation,” Future Generation Computer Systems, vol. 46, pp. 17-35, 2015.

[218] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes, and]. Labarta,
“Pycompss: Parallel computational workflows in python,” The International Journal of High
Performance Computing Applications, vol. 31, no. 1, pp. 66-82, 2017.

[219] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard, J. M.
Wozniak, I. Foster, M. Wilde, and K. Chard, “Parsl: Pervasive parallel programming in
python,” in Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC "19, (New York, NY, USA), p. 25-36, Association for Com-
puting Machinery, 2019.

[220] E.Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC "17,
(New York, NY, USA), pp. 445451, Association for Computing Machinery, Sept. 2017.

[221] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in USENIX NSDI'17, pp. 363-376, 2017.

[222] M.-A. Vef, N. Moti, T. Siui3, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A. Brinkmann,
“Gekkofs - a temporary distributed file system for hpc applications,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 319-324, 2018.

[223] M. Lacdtusu, A. D. Ionita, F. D. Anton, and F. Lacatusu, “Analysis of complexity and perfor-
mance for automated deployment of a software environment into the cloud,” Applied Sciences,
vol. 12, no. 9, p. 4183, 2022.

[224] M. Shepperd, “A critique of cyclomatic complexity as a software metric,” Software Engineering
Journal, vol. 3, no. 2, pp. 30-36, 1988.

[225] M. A. Yaqin, R. Sarno, and S. Rochimah, “Measuring scalable business process model complex-
ity based on basic control structure,” International Journal of Intelligent Engineering & System,
vol. 13, no. 6, pp. 52-65, 2020.

Page 106 of 108

https://aws.amazon.com/s3/features/object-lambda
https://www.confluent.io/blog/benefits-of-data-mesh-and-how-to-get-started
https://www.confluent.io/blog/benefits-of-data-mesh-and-how-to-get-started
https://istio.io/

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[226] L. Team, “Lithops: Compute and storage benchmarks,” 2020.

[227] B. Carver,]J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng, “Wukong: a scalable and
locality-enhanced framework for serverless parallel computing,” in Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC 20, (New York, NY, USA), p. 1-15, Association
for Computing Machinery, 2020.

[228] A. Arjona, P. G. Lépez,]. Sampé, A. Slominski, and L. Villard, “Triggerflow: Trigger-based or-
chestration of serverless workflows,” Future Generation Computer Systems, vol. 124, pp. 215-
229, 2021.

[229] A. W. Services, “Step functions,” 2016.
[230] Azure, “Durable functions,” 2016.

[231] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S. Bagchi, “ORION and the three
rights: Sizing, bundling, and prewarming for serverless DAGs,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), (Carlsbad, CA), pp. 303-320,
USENIX Association, July 2022.

[232] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica, “Caerus: NIMBLE task schedul-
ing for serverless analytics,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), (Boston, MA), pp. 653-669, USENIX Association, Apr. 2021.

[233] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating Function-as-a-Service
workflows,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), (Boston, MA),
pp- 805-820, USENIX Association, July 2021.

[234] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making serverless computing
useful for hpc workflows via hybrid execution,” in Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 22, (New York, NY,
USA), p. 4660, Association for Computing Machinery, 2022.

[235] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt,
“SAND: Towards High-Performance serverless computing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), (Boston, MA), pp. 923-935, USENIX Association, July 2018.

[236] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless
computing,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), (Boston, MA),
pp- 419-433, USENIX Association, July 2020.

[237] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M. Hellerstein, and A. Tu-
manov, “Cloudburst: stateful functions-as-a-service,” Proceedings of the VLDB Endowment,
vol. 13, pp. 2438-2452, July 2020.

[238] T. Zhang, D. Xie, F. Li, and R. Stutsman, “Narrowing the gap between serverless and its state
with storage functions,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC
19, (New York, NY, USA), pp. 1-12, Association for Computing Machinery, 2019.

[239] D. Barcelona-Pons, P. Sutra, M. Sanchez-Artigas, G. Paris, and P. Garcia-Lopez, “State-
ful Serverless Computing with Crucial,” ACM Transactions on Software Engineering and
Methodology, vol. 31, pp. 39:1-39:38, Mar. 2022.

[240] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica, “Jiffy: Elastic far-memory
for stateful serverless analytics,” in Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys 22, (New York, NY, USA), pp. 697-713, Association for Comput-
ing Machinery, 2022.

Page 107 of 108

HORIZON - 101092644 NEARDATA
31/10/2025 RIA

[241] D. Barcelona-Pons, P. Garcia-Lopez, and B. Metzler, “Glider: Serverless ephemeral stateful
near-data computation,” in Proceedings of the 24th International Middleware Conference,
Middleware 23, (New York, NY, USA), p. 247-260, Association for Computing Machinery,
2023.

[242] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi,]. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427—444, USENIX Association, Oct.
2018.

[243] G. T. Eizaguirre and M. Sadnchez-Artigas, “A seer knows best: Auto-tuned object storage
shuffling for serverless analytics,” Journal of Parallel and Distributed Computing, vol. 183,
p. 104763, 2024.

[244] B. Przybylski, M. Pawlik, P. Zuk, B. Lagosz, M. Malawski, and K. Rzadca, “ Using Un-
used: Non-Invasive Dynamic FaaS Infrastructure with HPC-Whisk ,” in SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, (Los Alami-
tos, CA, USA), pp. 1-15, IEEE Computer Society, Nov. 2022.

[245] M. Copik, K. Taranov, A. Calotoiu, and T. Hoefler, “rFaaS: Enabling high performance server-
less with rdma and leases,” in 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), (Los Alamitos, CA, USA), pp. 897-907, IEEE Computer Society, may 2023.

[246] M. Copik, M. Chrapek, L. Schmid, A. Calotoiu, and T. Hoefler, “Software resource disaggrega-
tion for hpc with serverless computing,” 2024.

[247] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, and K. Chard, “funcx:
A federated function serving fabric for science,” in Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC "20, (New York,
NY, USA), p. 65-76, Association for Computing Machinery, 2020.

[248] A. A. Benavides, T. D. Coll, A. Call, P. Garcia Lépez, and R. Nou Castell, “Enhancing hpc with
serverless computing: Lithops on marenostrum5,” in 2024 IEEE 32nd International Conference
on Network Protocols (ICNP), (Los Alamitos, CA, USA), pp. 1-6, IEEE Computer Society, 2024.

Page 108 of 108

	Executive summary
	Introduction
	XtremeHub Overview
	XtremeHub Compute: Burst Computing
	Introduction
	Motivation: in search of burstability
	FaaS is holding us back

	Burst Computing
	Worker packing and communication

	Design and implementation
	Life cycle overview
	Developing and running bursts
	Application example
	Burst platform implementation
	BCM implementation

	Evaluation
	Burst group invocation
	Burst inter-pack communication
	Burst group collectives
	Burst applications

	Related work
	Discussion and Conclusions

	XtremeHub Compute for RAG: Serverless Vector DBs
	Introduction
	Motivation
	Challenge: Stateless FaaS & Dynamic Data
	Contributions

	Background
	Function-as-a-Service (FaaS)
	Vector DBs

	Serverless Vector DBs: An Overview
	Architecture
	Vector DB Design: Serverful vs Serverless

	Trade-offs in Data Partitioning
	Clustering-based Data Partitioning
	Block-based Data Partitioning

	Experimental Methodology
	Prototype Implementation
	Setup

	Clustering vs Block-based Data Partitioning
	The Cost of Balanced Data Partitions
	The Effect of Vector Redundancy
	Clustering vs Blocks: Data Partitioning
	Clustering vs Blocks: Query Performance
	Clustering vs Blocks: Cost Analysis

	Milvus vs Block-based Serverless Vector DB
	Partitioning and Indexing Performance
	Query Performance
	Cost analysis
	Scalability

	Related Work
	Discussion and Conclusions

	XtremeHub Streams and FaaS: FaaStream
	Introduction
	Challenges
	Contributions

	Motivation: Stream-based FaaS Pipelines
	Key Insights: Not All Streams are Created Equal

	FaaStream Design
	FaaStream Architecture and Life-cycle
	FaaStream Abstractions and API
	Serverless Pipeline Auto-Scaling
	Data Shuffling via Custom Event Routing
	Consistent Function State under Failures

	Evaluation
	Implementation
	Experimental Setup
	Unifying Streaming and Batch Data Access
	Coordinated Auto-Scaling
	Stream-based Data Shuffling
	Stateful Pipelines upon Failures

	Related Work
	Conclusions

	XtremeHub Security and Streams
	Secure Streaming in Action
	Summary

	XtremeHub Stream Connectors: Nexus
	Introduction
	Motivation: Beyond Tiered Data Streams
	Data Management Challenges
	Contributions

	Background
	Event Streaming Systems
	The Shift towards Streaming Storage

	Nexus Design
	Design Principles and Insights
	Abstractions

	Nexus Architecture
	System Metadata
	Streamlet Execution
	Streamlet State
	Mesh-like Data Routing
	Fault Tolerance and Correctness

	Nexus in Action
	Streamlet API

	Implementation
	Validation
	Experimental Setup
	Interception Performance
	Enhancing Event Streaming Systems

	Related Work
	Conclusions

	XtremeHub HPC Connectors
	Introduction
	The Lithops-HPC framework
	Architecture Implementation
	Programming model

	Evaluation
	Setup
	Complexity
	Lithops-HPC Overhead
	Time to service
	High-performance
	Scaling
	Resource management
	Multi-cluster deployment

	Related Work
	Discussion
	Future Work

	Conclusions and Next Steps

