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Executive Summary

The NEARDATA project tackles the growing challenge of “extreme data”—massive, heterogeneous,
and geographically distributed datasets encountered in domains such as spatial metabolomics, large-
scale genomic sequencing, and real-time surgical video analytics. Traditional analytics workflows
suffer from network bottlenecks, high latency, and suboptimal resource utilization due to the transfer
of multi-terabyte datasets to centralized compute centers. NEARDATA reverses this paradigm by
pushing computation as close to the data as possible, thereby minimizing data movement, reducing
end-to-end latency, and maximizing overall throughput.

This deliverable (D2.3) marks the public release of stable software modules, provides complete
API specifications, and presents a final description of the different software outcomes produced in the
project. All experimental validation is now included in D3.2 (Extreme Data Hub), D4.2 (Data Broker),
and D5.2 (Use Case Experiments). At its core, NEARDATA comprises the Extreme Data Hub, which
intercepts standard S3 and streaming API calls to perform predicate pushdown, partition pruning,
and incremental aggregation across cloud, edge, and HPC environments.

We categorize our main software outcomes into production-ready components (Lithops, SCONE,
Pravega, Metaspace, PyRun, Dataplug, DataCockpit) and research-project prototypes (Burst, NEXUS,
FaaStream , Glider, Lithops-HPC). Our software outcomes have validated their technical contribu-
tions in the different use cases, including: spatial metabolomics annotation, off-sample detection,
serverless genomic variant calling, and real-time surgical analytics. As we show in D5.2, they demon-
strate core KPIs of this project including substantial reductions in data egress/ingress, improved
latency, and robust security guarantees.

Subsequent sections detail the reference architecture, component analyses, pipeline implementa-
tions, research activities, and final conclusions to guide iterative development and consortium de-
ployment.
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1 Introduction

The NEARDATA project addresses the growing challenges of managing and processing massive, het-
erogeneous, and geographically distributed datasets—collectively referred to as extreme data. These
challenges are particularly evident in data-intensive scientific domains such as metabolomics imag-
ing, genomic sequencing, and real-time surgical video analytics. Traditional analytical workflows
typically involve transferring multi-terabyte datasets from remote object stores to centralized com-
pute clusters, resulting in significant network bottlenecks, latency, and inefficient resource utilization.
NEARDATA aims to reverse this paradigm by bringing computation closer to the data—enabling
low-latency, near-data processing that minimizes movement, reduces energy consumption, and en-
hances overall system throughput.

At the architectural level, NEARDATA defines two complementary platform constructs, whose
functional and experimental details are provided in related deliverables:

• Extreme Data Hub — described in Deliverable D3.2, provides high-performance near-data pro-
cessing for extreme data types through a novel intermediary service between object storage
and analytic platforms. It introduces type-aware, serverless data connectors that support par-
titioning, filtering, aggregation, and incremental querying across cloud, edge, and HPC infras-
tructures, enabling an elastic process-then-compute paradigm that significantly reduces data
movement and improves throughput.

• Confidential Data Broker — described in Deliverable D4.2, provides secure, policy-driven or-
chestration for distributed data access and computation. It leverages Trusted Execution Envi-
ronments (TEEs) and federated learning to ensure confidentiality, integrity, and fine-grained
access control across federated and multi-cloud deployments.

It is important to note that the Extreme Data Hub and the Confidential Data Broker are not imple-
mented as single monolithic components. Instead, they represent compositional architectures that
can be instantiated using different combinations of software components developed within NEAR-
DATA. Depending on the use case or deployment, these components can be assembled into fully
functional Hubs or Brokers. This modular design enables flexibility, reuse, and sustainability across
heterogeneous infrastructures.

Accordingly, this deliverable (D2.3) does not re-describe the functional architectures already de-
tailed in D3.2 and D4.2. Instead, it focuses on the software outcomes produced in the project, doc-
umenting their readiness, interfaces, and integration within the NEARDATA architecture. These
outcomes collectively enable the practical realization of the Extreme Data Hub and the Confidential
Data Broker through interoperable components, services, and execution environments.

In particular, the PyRun platform serves as the primary operational front-end integrating many
of these outcomes—such as Lithops, DataPlug, and DataCockpit—into a cohesive environment for
data exploration, orchestration, and execution of AI and data pipelines. PyRun embodies the princi-
ples of the Extreme Data Hub by enabling users to launch near-data computations, manage runtimes,
and reproduce experiments across the compute continuum without managing infrastructure.

The following sections describe in detail the software components developed within NEAR-
DATA, grouped by maturity level:

• Production-Ready Components: Stable and widely adopted frameworks forming the opera-
tional core of NEARDATA, including Lithops (serverless functions near data), SCONE (confi-
dential computing primitives), Pravega (elastic stream storage), and Metaspace (metadata cat-
alog). PyRun (SaaS front-end for NEARDATA components), DataPlug (data connector library),
and DataCockpit (metadata-driven orchestration dashboard) are also part of this category.

• Research-Prototype Components: Experimental frameworks extending NEARDATA’s capa-
bilities toward new paradigms of computation and orchestration. These include Burst Com-
puting (a near-data, burst-parallel executor), Nexus (metadata-driven control plane for hetero-
geneous backends), FaaStream (serverless stream data connector), Glider (policy-driven data
mover), Lithops-HPC (serverless execution on HPC systems), Flower-Lithops Simulation Back-
end, and FaaSTs (AI-assisted resource predictor for FaaS environments).
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Subsequent sections present how these components can be combined to form reproducible data
pipelines—such as metabolomics annotation, off-sample detection, genomic sequencing, and real-
time surgical analytics—demonstrating their integration within the NEARDATA architecture. Through
this consolidated view, Deliverable D2.3 provides a comprehensive overview of the project’s software
ecosystem, illustrating how its modular outcomes collectively enable the vision of near-data, confi-
dential, and elastic data analytics.

2 Description of Software Components

2.1 Component Classification

The components are categorized into two groups based exclusively on their level of readiness:

• Production-Ready Components: Fully developed and thoroughly tested solutions that are
ready for deployment.

• Research-Project Components: Experimental prototypes produced in scientific articles .
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Table 1: Summary of NEARDATA Software Components and Tools

Component / Tool Category Brief Description
Lithops Production-Ready Serverless function execution framework deployed

close to the data.
Scone Production-Ready Confidential computing framework enabling secure,

policy-driven execution of containerized workloads
in Trusted Execution Environments (TEEs) across
multi-cloud infrastructures.

Pravega Production-Ready Scalable and elastic stream storage system.
Metaspace Production-Ready Metadata catalog designed for large, unstructured

datasets.
PyRun Production-Ready Serverless Python studio that enables users to write,

run, and scale data science or AI workloads effort-
lessly on their own cloud accounts without manag-
ing infrastructure.

DataPlug Production-Project A framework that enables efficient, read-only, cloud-
aware partitioning of unstructured scientific data
in object storage through dynamic, parallel, and
metadata-driven data slicing for elastic workloads.

DataCockpit Production-Project An interactive widget that allows scientists to
browse, partition, and benchmark datasets from
Amazon S3 or Metaspace directly within Jupyter
notebooks for elastic, parallel data processing.

Serverless Vector DB Research-Project Prototype of a serverless vector database enabling
similarity search over large embeddings with elastic
scaling.

Lithops-HPC Research-Project Lithops framework to run on HPC environments.
FaaStream Research-Project Experimental framework combining serverless ex-

ecution with stream-based storage for low-latency,
elastic pipelines.

Nexus Research-Project Data mesh prototype introducing streamlets and
swarmlets to support metadata-driven orchestration
of heterogeneous backends.

Glider Research-Project Serverless system that enables stateful near-data
computation on ephemeral storage, drastically re-
ducing data movement and improving the perfor-
mance and efficiency of serverless data analytics
pipelines.

FaaSTs Research-Project Experimental framework to predict resource usage
on FaaS environments leveraging AI and time-series.

Burst Computing Research-Project Experimental framework extending the serverless
model with group-based invocations and effi-
cient inter-worker communication, enabling syn-
chronized, massively parallel workloads with re-
duced startup latency and data movement.

The table above summarizes the primary software components that form the NEARDATA archi-
tecture, indicating their readiness level and providing a brief functional description. The subsections
below elaborate on each component’s role and key features to support the detailed analyses pre-
sented later in this deliverable.

Page 6 of 53



HORIZON - 101092644 NEARDATA
31/10/2025 RIA

2.2 Production-Ready Components

• Lithops: Lithops is a serverless execution framework for Python functions that operates di-
rectly on data stored in object stores, allowing users to parallelize tasks at scale without man-
aging servers or clusters. It supports pluggable backends such as AWS Lambda, IBM Cloud
Functions, and Kubernetes, providing portability across different infrastructures. Lithops au-
tomatically handles deployment, scaling, and data movement, enabling transparent access to
large datasets and simplifying the execution of distributed workloads. It also integrates seam-
lessly with PyRun to ensure reproducibility, making it suitable for scientific pipelines and AI
applications where consistent results across environments are critical. By combining elastic-
ity, portability, and ease of use, Lithops lowers the entry barrier to serverless computing and
accelerates the adoption of cloud-native data processing.

• Scone: SCONE is a leading confidential computing platform that enables secure execution of
containerized applications inside trusted execution environments (TEEs) such as Intel SGX en-
claves. By transparently encrypting files, network traffic, and secrets, SCONE ensures that
sensitive data and code remain protected even in untrusted or cloud environments, without
requiring changes to application source code. It provides robust attestation mechanisms to ver-
ify code integrity, advanced secret management, and policy-driven access control, making it
possible for organizations to meet strict security and compliance requirements while support-
ing a wide range of use cases, including secure analytics, machine learning, and multi-party
collaboration in regulated industries

• Pravega: Pravega is a CNCF (incubating) open-source storage system designed specifically
for managing continuous and unbounded data streams with strong consistency and durability
guarantees. Developed to support modern stream processing workloads, Pravega introduces
the concept of stream as a first-class primitive, enabling seamless integration with stream an-
alytics frameworks. Its key features include dynamic stream scaling, which allows automatic
adjustment of stream throughput based on workload, and exactly-once semantics, ensuring re-
liable data delivery even in failure scenarios. Pravega also supports tiered storage, combining
fast in-memory or SSD-based access with long-term persistence on cheaper storage media, mak-
ing it ideal for near-data processing in edge-to-cloud infrastructures. For the EU-NEARDATA
project, Pravega provides a robust foundation for real-time data ingestion and processing, en-
abling efficient and scalable stream-based data management.

• Metaspace: A scalable, open-access metadata catalog and analysis platform for high-resolution
imaging mass spectrometry (MSI) data. It provides a high-throughput metabolite annotation
engine that automatically identifies and maps metabolites from MSI datasets, generating struc-
tured metadata for advanced search and cross-dataset comparison. Beyond annotation, Metas-
pace maintains an extensive spatial metabolite knowledgebase comprising thousands of public
datasets contributed by the scientific community, enabling data reuse and large-scale compara-
tive studies.

Through its RESTful APIs and interactive web interface, users can register datasets, visualize
annotations, and explore spatial metabolomics results interactively. The platform supports the
open imzML format, ensuring interoperability with all major mass spectrometer vendors. By
combining open standards, rich metadata indexing, and com

• PyRun: PyRun is a web-based SaaS platform that unifies access to NEARDATA components
such as Lithops, Pravega, Metaspace, DataPlug, and DataCockpit. It democratizes scalable
cloud computing for Python users by automating infrastructure provisioning, scaling, and
cleanup on AWS and IBM Cloud, allowing the execution of data analytics and AI workloads
without requiring cloud expertise.

Seamlessly integrating distributed frameworks like Dask, Lithops, Ray, and Cubed, PyRun en-
ables effortless parallelism and serverless execution through a browser-based development en-
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vironment. As part of NEARDATA’s control plane, it acts as an orchestration layer that bridges
experimentation and production workflows, ensuring reproducibility and efficient resource uti-
lization across heterogeneous infrastructures.

• DataPlug: DataPlug is a client-side Python framework that enables efficient, read-only parti-
tioning of unstructured scientific data stored in object storage systems such as Amazon S3. It
introduces the concept of data slicing, allowing users to create lightweight, lazily evaluated par-
titions without moving or rewriting data. By exploiting S3’s byte-range requests, DataPlug per-
forms massively parallel reads on large cold datasets, achieving high throughput despite stor-
age latency. Through its plug-in interface, it supports multiple scientific domains—including
genomics, geospatial, metabolomics, and astronomy—and allows data slices to be distributed
seamlessly to parallel computing environments such as Dask, Ray, or PySpark for near-data
processing.

• DataCockpit: Is an interactive IPython widget built on top of the DataPlug framework that
enables scientists and engineers to efficiently upload, browse, and explore datasets on Ama-
zon S3. It provides a user-friendly interface to access curated public and Metaspace collections,
benchmark data access performance to determine optimal batch sizes, and perform dataset
partitioning through DataPlug’s cloud-aware slicing mechanisms. Fully integrated into Jupyter
notebooks, DataCockpit streamlines data exploration and preparation for elastic, parallel work-
loads across distributed infrastructures.

2.3 Research-Project Components

• Serverless Vector DB: Serverless Vector DB is a research prototype that explores the implemen-
tation of similarity search over embeddings within serverless environments. In contrast to tra-
ditional vector databases relying on persistent clusters, it decouples query execution from stor-
age and leverages elastic cloud-native infrastructure to automatically scale resources according
to demand. The system supports large embedding datasets such as DEEP, SIFT, and GIST,
making it directly relevant for AI and machine learning pipelines requiring nearest-neighbor
retrieval at scale. Integrated with frameworks like Lithops, it provides portability and repro-
ducibility across heterogeneous backends while taking advantage of autoscaling and pay-per-
use models. As a prototype, it also exposes the challenges of applying serverless principles
to stateful workloads, including query latency, index warm-up times, and memory efficiency.
These insights position Vector DB Serverless as a foundation for on-demand, scalable AI search
services in NEARDATA.

• FaaStream: FaaStream is an experimental framework that unifies function-as-a-service execu-
tion with stream-based storage systems such as Pravega, S3, and NVMe-backed object stores.
Its main contribution is enabling inter-function communication and state management through
streams, introducing shuffle and state primitives that improve elasticity, reliability, and devel-
oper productivity. By leveraging stream semantics, it supports workloads such as online ma-
chine learning, feature extraction, and real-time analytics that require large-scale, low-latency
dataflows. Validation through benchmarks—including ImageNet embedding extraction, Wiki-
pedia wordcount, and a 100GB TeraSort workload—demonstrates its applicability to both com-
pute - and I/O-intensive scenarios. Beyond performance, FaaStream incorporates mechanisms
for dynamic scaling, automatic recovery, and transparent partitioning, offering a promising
approach for reproducible, low-latency pipelines spanning both cloud and edge environments.

• Nexus: Nexus is a prototype for a data management mesh that enables programmable tiering
and metadata-driven orchestration of streaming workloads. Its architecture revolves around
two abstractions: streamlets, lightweight functions for data transformation, and swarmlets, scal-
able groups of streamlets for distributed execution. Together, they translate high-level manage-
ment policies into concrete execution plans. Nexus intercepts tiering operations from Kafka,
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Pulsar, or Pravega into object stores such as S3, applying transformations such as compression,
filtering, or routing before persistence. It integrates Redis for metadata management and ex-
poses an S3-compatible API via S3Proxy to simplify downstream consumption. By abstracting
the tiering boundary, Nexus enables declarative policies that support compliance enforcement,
anonymization of sensitive data, and dynamic cost optimization. This demonstrates the feasi-
bility of programmable, near-data management at the storage interface and aligns closely with
NEARDATA’s vision of extreme data infrastructures.

• Glider: Glider is a research prototype designed to provide transparent and policy-driven data
movement across heterogeneous storage and compute environments. Its primary objective is
to abstract the complexities of transferring data between object stores, stream systems, and
compute backends, ensuring portability and efficiency in multi-cloud scenarios. Unlike ad-
hoc solutions bound to specific providers, Glider introduces a unified model that automates
replication, caching, and placement decisions based on performance and cost constraints. It
is engineered to interoperate seamlessly with other NEARDATA components such as Lithops,
PyRun, and Pravega, thereby facilitating reproducible and elastic workflows across distributed
infrastructures. In practice, Glider addresses challenges such as heterogeneous API semantics,
variable network latencies, and fluctuating workload demands by adapting transfers dynami-
cally to maintain throughput and minimize overheads. Beyond its immediate functionality, the
prototype highlights open research challenges in areas such as cross-cloud optimization, policy
conflict resolution, and integration with confidential computing technologies. By abstracting
low-level data logistics, Glider enables developers to focus on high-level pipeline design while
ensuring efficient and reliable near-data processing, making it a key enabler for NEARDATA’s
broader vision of extreme data management.

• FaaSTs: FaaSTs is a novel approach that combines time series forecasting and the FaaS model
to handle demanding workloads. First, the application is split into multiple tasks that are then
executed on the available resources. A time series model continuously monitors the system and
predicts the system workload, where extra workers can be temporarily deployed and assigned
a pending task from the queue. This framework has been integrated, deployed, and tested into
the Lithops-HPC architecture. It is currently still under continuous testing and development of
enhancements.

• Burst Computing: Burst Computing is an experimental framework that extends the serverless
paradigm to support massively parallel, synchronized workloads through group-based invo-
cations known as flares. It introduces efficient inter-worker communication mechanisms and
shared-memory coordination to minimize startup latency and data movement, overcoming
the isolation and fragmentation limitations of traditional Function-as-a-Service (FaaS) systems.
Built as an extension of Apache OpenWhisk, it incorporates a lightweight communication mid-
dleware implemented in Rust that enables collective operations such as broadcast and reduce
among workers. This approach allows the execution of data-intensive analytics, graph process-
ing, and model training tasks with improved elasticity and resource utilization. Evaluations
on workloads such as PageRank and TeraSort demonstrate significant reductions in synchro-
nization time and communication overhead, positioning Burst Computing as a step towards
scalable, low-latency “serverless cluster” architectures within the NEARDATA ecosystem.

• Lithops-HPC: Lithops-HPC is a platform developed based on Lithops, allowing leveraging su-
percomputers and other HPC resources on top of the Lithops framework. The novelty of the
project is to hide the complexities of resource management found in HPC environments from
the end-user, allowing for easy resource configuration through a YAML file. The framework au-
tomatically handles the amount of resources required for the HPC environment and distributes
the workloads’ tasks accordingly, transparently to the user.

• Flower-Lithops Simulation Backend: it is a new extension added to the Flower federated
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learning framework, which provides a simulation backend powered by Lithops. This addition
provides an alternative to Flower’s default Ray-based backend, which is designed for serverful,
cluster-based execution. The new backend enables more elastic, on-demand, and cost-effective
federated learning simulations by leveraging the serverless computing paradigm.

• Flower-Lithops Simulation Backend: it is a new extension added to the Flower federated
learning framework, which provides a simulation backend powered by Lithops. This addition
provides an alternative to Flower’s default Ray-based backend, which is designed for serverful,
cluster-based execution. The new backend enables more elastic, on-demand, and cost-effective
federated learning simulations by leveraging the serverless computing paradigm.

3 Architecture Summary and Component Alignment

3.1 NEARDATA Architecture at a Glance

The NEARDATA architecture has been designed to confront the challenges posed by extreme-scale,
distributed, and privacy-sensitive data management. Its design philosophy rests on three funda-
mental pillars: scalability, to handle massive and heterogeneous data volumes efficiently; flexibility,
to support diverse workloads across cloud, edge, and HPC infrastructures; and confidentiality, en-
suring that data remains protected throughout its lifecycle — at rest, in transit, and in use.

The architectural model, illustrated in Figure 1, follows a layered and modular organization
that promotes interoperability and composability across different components. It is structured into
four horizontal layers—representing the progressive flow of data from sources to advanced analyt-
ics—complemented by a vertical control plane that provides governance, security, and orchestration
capabilities across all layers. This organization reflects NEARDATA’s guiding principle of separat-
ing data concerns (ingestion, transformation, and analysis) while ensuring tight integration through
metadata-driven, AI-enhanced coordination.

Figure 1: High-level NEARDATA architecture, structured into four horizontal layers and a vertical
control plane.

Edge/Cloud Data Sources. At the foundation of the architecture lies a heterogeneous ecosystem of
data origins, encompassing raw datasets stored in cloud object stores, continuous IoT streams, and
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edge compute nodes that generate, capture, or pre-process data prior to ingestion. This layer embod-
ies the data gravity principle, bringing computation closer to where data is produced. By supporting
hybrid ingestion patterns—batch and streaming alike—it ensures the adaptability of NEARDATA to
both real-time and large-scale analytic scenarios. The layer establishes the foundation for the upper
tiers, providing the raw inputs that drive the entire pipeline.

Data Plane. The Data Plane constitutes the core of data transformation and preparation. It is re-
sponsible for converting raw, heterogeneous inputs into structured, analytics-ready assets while pre-
serving provenance, lineage, and semantic consistency. It encompasses several critical subsystems:

• Data Catalog: Offers a comprehensive metadata management service that supports indexing,
annotation, and discovery of datasets, including schema information, partition structures, and
provenance metadata. This facilitates transparent data access and traceability across federated
environments.

• Data Connectors: Provide interoperability mechanisms for interacting with multiple storage
backends and data formats. They handle dynamic partitioning, caching, and format conversion
on-the-fly, minimizing data transfer overheads and enabling seamless data movement between
cloud, edge, and HPC resources.

• Stream Operators: Enable low-latency, near-source processing of continuous data streams, such
as sensor feeds or video analytics pipelines. They support fundamental stream operations (fil-
tering, windowing, aggregation) to reduce the volume of data transmitted upstream while pre-
serving the information’s analytical value.

• Data Programming Abstractions: Define unified APIs and dataset interfaces that abstract the
complexity of distributed data management. These abstractions allow developers and resear-
chers to interact with remote datasets as if they were local, simplifying integration with diverse
analytics and AI frameworks.

Analytics Layer. The Analytics layer serves as the execution environment for data-driven work-
loads. It integrates multiple paradigms—federated, serverless, and HPC computing—to provide
flexible execution modes that adapt to the nature of the task and the infrastructure available. Server-
less engines enable interactive analytics and on-demand scalability; federated frameworks allow for
cross-domain computation without data centralization; and HPC backends support large-scale sim-
ulations and scientific workloads requiring high performance. Together, these engines empower
NEARDATA to support a continuum of analytics—from edge intelligence to cloud-scale process-
ing—while ensuring reproducibility and resource efficiency.

• Data Broker: Acts as the central policy and metadata coordinator, responsible for dataset regis-
tration, access control, and secure data exchange. It enables federated data governance across
administrative domains, aligning with FAIR data principles.

• Trusted Execution Environments (TEEs): Introduce confidential computing primitives for pro-
tecting data-in-use via hardware-level isolation (e.g., Intel SGX). These mechanisms ensure that
sensitive data can be processed securely even in untrusted environments.

• Confidential and Federated Orchestration: Provides policy-driven orchestration of distributed
pipelines, ensuring compliance with data sovereignty, privacy regulations, and institutional
governance rules. It also enables multi-party computation scenarios where execution policies
are dynamically enforced.

• AI-Enabled Orchestration: Incorporates machine learning-based telemetry and adaptive op-
timization to improve scheduling, resource utilization, and performance predictability. This
component transforms the orchestration process into a feedback-driven system capable of self-
tuning according to observed workload patterns.
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Together, these components form a cohesive ecosystem where data can seamlessly flow from het-
erogeneous sources to confidential, AI-optimized analytics pipelines, all under a unified governance
and security model.

3.2 Mapping Software Components to Architectural Blocks

This section establishes the correspondence between NEARDATA’s conceptual architecture and its
concrete software ecosystem. Building upon the high-level model described in the previous subsec-
tion, each architectural block is now mapped to the software components that realize its function-
ality through a combination of mature open-source frameworks and research prototypes developed
within the project.

Figure 2 illustrates this alignment, organizing the NEARDATA ecosystem into four horizontal
layers—Edge/Cloud Data Sources, Data Plane, Analytics, and the vertical Control Plane. The compo-
nents have been positioned according to the architectural structure previously introduced in Fig-
ure 1, ensuring a one-to-one correspondence between conceptual blocks and their concrete software
realizations. Each element reflects its functional role and interaction within the system, highlighting
both production-grade technologies and experimental innovations that collectively enable scalable,
secure, and adaptive data analytics.

At the foundational level, the Edge/Cloud Data Sources layer represents the external infrastructure
that provides data and computational resources to NEARDATA. This includes Object Storage, IoT
Streams, and Near-Data Computing environments hosting large-scale scientific datasets and real-
time data feeds. Access to these data origins is facilitated through components such as DataPlug
and DataCockpit, which allow users to explore, benchmark, and partition public or private datasets
efficiently.

The Data Plane forms the operational core of NEARDATA, handling data ingestion, transforma-
tion, and management. It integrates several key subsystems:

• DataPlug, a cloud-aware framework for dynamic and read-only partitioning of unstructured
scientific data stored in object storage, enabling parallel and zero-copy data access.

• Glider and the Serverless Vector DB, which enable near-data computation and scalable vector-
based similarity search.

• Pravega and FaaStream, supporting high-throughput stream ingestion and real-time data pro-
cessing for continuous workloads.

• Metaspace and DataCockpit, providing metadata discovery, visualization, and data prepara-
tion capabilities within Jupyter notebooks or PyRun Cloud environments.

The Analytics layer executes computation across heterogeneous infrastructures. It integrates four
complementary paradigms:

• Federated Computing, enabling collaborative analytics across multiple institutions or cloud
domains without centralizing data.

• Massive Parallel Serverless Computing, realized through Lithops and extended with Burst
Computing. While Lithops enables large-scale, embarrassingly parallel execution of unmod-
ified Python workloads across multi-cloud environments, Burst introduces synchronous and
collective execution primitives that allow functions to communicate and synchronize during
execution. This design overcomes the isolation and coordination limits of traditional FaaS
systems, supporting tightly coupled, parallel workloads such as reductions, broadcasts, and
iterative computations.

• High-Performance Computing (HPC), enabled via Lithops-HPC, extending serverless princi-
ples to tightly coupled workloads running on HPC clusters.
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Together, these paradigms support hybrid execution models capable of combining cloud elasticity
with HPC performance and federated data locality.

The vertical Control Plane governs orchestration, optimization, and confidentiality across all
other layers. It encompasses:

• PyRun, which automates infrastructure provisioning, scaling, and cleanup, integrating frame-
works such as Lithops, Dask, Ray, and Cubed within unified, reproducible workflows. In addi-
tion, PyRun plays a central role as the Data Broker, coordinating secure and policy-driven data
exchange between analytics and data management components.

• Nexus, a data mesh prototype introducing streamlets and swarmlets for metadata-driven or-
chestration of heterogeneous backends.

• SCONE which implement trusted execution environments (TEEs) and enforce secure data han-
dling across multi-cloud deployments.

• FaaSTs, an experimental framework leveraging AI and time-series analysis to predict resource
usage in Function-as-a-Service (FaaS) environments, improving scheduling and resource allo-
cation efficiency.

Figure 2: Overview of the NEARDATA software components organized by architectural layer. The
diagram maps production-ready systems (e.g., Lithops, PyRun, Pravega, SCONE) and research pro-
totypes (e.g., DataPlug, Glider, Nexus, FaaStream) to their corresponding functional layers, illus-
trating how NEARDATA achieves secure, elastic, and policy-driven operation across heterogeneous
infrastructures.

Figure 2 provides a holistic view of how these components interact across the four horizontal
layers and the vertical control plane. It highlights both the horizontal flow of data and computa-
tion—from ingestion to analytics—and the vertical orchestration functions that ensure confidential-
ity, compliance, and adaptability across the stack.
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To complement the visual overview, Table 2 summarizes the relationship between each compo-
nent and its corresponding architectural block, detailing its main responsibility within the NEAR-
DATA framework.

Table 2: Component to Architecture Block Mapping

Component Architecture Block Role / Responsibility
DataPlug Data Plane — Data

Connectors
Provides a client-side, cloud-aware Python
framework for dynamic and read-only
partitioning of unstructured scientific data
stored in object storage, enabling efficient,
parallel, and zero-cost data slicing across
multiple scientific domains.

DataCockpit Data Plane — Data
Connectors

Interactive Jupyter-based interface that
leverages DataPlug to enable cloud-aware
browsing, benchmarking, and partitioning
of large scientific datasets in object storage,
simplifying data preparation and
integration within NEARDATA pipelines.

Glider Data Plane — Data
Connectors

Enables transparent, policy-driven data
movement across heterogeneous storage
and compute systems, managing
replication, caching, and placement to
optimize data locality and efficiency in
multi-cloud environments.

Pravega Data Plane — Stream
Operators

Distributed storage system for data streams
with tiered storage, supporting durable
event writing, scaling, and retention
policies.

FaaStream Data Plane — Stream
Operators

Integrates serverless execution with
stream-based storage to manage
low-latency, elastic data pipelines,
facilitating continuous data processing close
to the source.

Metaspace Data Plane — Data
Catalog

Provides a scalable metadata catalog and
knowledge base for spatial metabolomics
datasets, enabling automated metabolite
annotation, open access to
community-contributed imaging mass
spectrometry data, and interactive
exploration of annotated results through a
web-based interface.

Lithops Analytics — Massive
Parallel Serverless
Computing

Serves as the core distributed execution
engine of NEARDATA, enabling
large-scale, serverless, and multi-cloud
execution of unmodified Python workloads
across cloud, HPC, and on-premise
infrastructures, while providing transparent
scaling and infrastructure abstraction for
data-intensive applications.

Continued on next page
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Table 2 (continued)
Component Architecture Block Role / Responsibility
Burst
Computing

Analytics — Massive
Parallel Serverless
Computing

Extends serverless computing with
synchronous and collective execution
primitives that allow functions to
communicate and synchronize during
runtime. This enables tightly coupled
parallel workloads, such as reductions and
broadcasts, overcoming traditional FaaS
isolation constraints.

Lithops-HPC Analytics —
High-Performance
Computing

Extends Lithops to orchestrate Python
functions at massive scale in HPC
environments, handling resource
management transparently to the user, in
contrast to traditional HPC frameworks.

Serverless
Vector DB

Analytics — Data
Connectors

Provides a serverless vector database that
enables similarity search over large-scale
embeddings with elastic scaling and
on-demand compute provisioning.

Flower-Lithops
Simulation
Backend

Federated
Orchestration

Enables more elastic, on-demand, and
cost-effective federated learning
simulations by leveraging serverless
computing

PyRun Control Plane —
AI-Enabled
Orchestration

Automates infrastructure provisioning,
elastic scaling, and cleanup on AWS and
IBM Cloud; integrates Dask, Lithops, Ray,
and Cubed; and provides a unified web IDE
with AI-ready pipelines.

SCONE Control Plane — TEEs
and Confiden-
tial/Federated
Orchestration

Provides confidential computing primitives
based on Trusted Execution Environments
(TEEs) to secure distributed workflows and
enforce privacy-preserving execution across
multiple clouds.

Nexus Control Plane —
Confidential &
Federated
Orchestration

Coordinates metadata-driven orchestration
across heterogeneous backends through
lightweight streamlets and swarmlets,
enabling dynamic and federated data
workflows.

FaaSTs Control Plane —
AI-based
Optimization

Reads resource utilization data to predict
future usage and feeds these predictions to
the analytics plane to improve resource
allocation efficiency.

Each of the components listed above directly implements one or more functional blocks from the
conceptual architecture, jointly realizing NEARDATA’s design principles of near-data processing,
elasticity, and confidentiality. For a detailed description of each component, including repository
organization, code metrics, and integration details, please refer to Section 4.

4 Software Outcomes

This section presents comprehensive profiles for each NEARDATA software component, detailing
repository information, codebase metrics, documentation, quality assurance practices, recent activity,
and integration with the broader ecosystem.
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4.1 Production Ready Components

4.1.1 Lithops

Over the 2023–2025 period, Lithops has undergone a steady and substantial evolution aimed at en-
hancing its robustness, interoperability, and developer experience across heterogeneous cloud and
HPC environments. Throughout this period, the framework progressively incorporated support for
newer Python runtimes (from 3.10 to 3.13) and expanded its ecosystem of execution backends, includ-
ing Azure Virtual Machines, Singularity containers, Oracle Cloud Functions, and Google Cloud Run.
Integration with distributed messaging systems such as Redis and RabbitMQ was also improved,
enabling more reliable and efficient task coordination at scale.

From an operational standpoint, several releases focused on resilience and performance improve-
ments, introducing automatic task retries, refined monitoring and logging capabilities, and fixes for
cache handling and concurrency deadlocks. The Kubernetes backend was significantly upgraded,
adding master-timeout configuration, standalone execution modes, and improved error reporting.
These enhancements were complemented by a more capable command-line interface (CLI) with util-
ities for managing images, jobs, and workers, along with simplified configuration and deployment
across AWS and IBM Cloud environments.

Infrastructure management was streamlined through features such as automatic VPC creation,
refined resource limit definitions, and the introduction of EC2 EBS/CIDR configuration options. Col-
lectively, these advancements have positioned Lithops as a mature, production-ready framework for
large-scale, serverless, and reproducible data analytics workloads, consolidating its role as a corner-
stone of the NEARDATA architecture for near-data computation.

The following subsections provide an overview of the Lithops repository, key software metrics,
major releases between 2023 and 2025, and its supporting ecosystem. They also summarize its contin-
uous integration practices, available documentation, and integration within NEARDATA’s broader
pipeline orchestration through PyRun.

Status: Production ready

Table 3: Lithops Key Metrics by Period

Metric Value Period
Lines of Code 35 060 All time
Forks 115 All time
GitHub Stars 351 All time
Active Contributors 47 All time
Commits 873+ 2023–2025
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Table 4: Lithops Releases (2023–2025)

Version Highlights
3.6.2 (Sep 22, 2025) Fix localhost backend error; make executor retry count configurable.
3.6.1 (Jul 22, 2025) Fixed GCP Functions on long-running operations; fixed k8s and singularity

bug with first execution.
3.6.0 (Feb 22, 2025) Added Python 3.13 support; introduced EBS/CIDR configuration for EC2;

addressed monitoring and invoker issues.
3.5.1 (Oct 22, 2024) Improved core truth-value handling; standalone consume mode; fixed

Azure VM execution.
3.5.0 (Sep 3, 2024) Integrated Singularity backend; added Python 3.11 compatibility; imple-

mented Kubernetes master-timeout; enabled AWS Lambda user tags.
3.4.1 (Jun 7, 2024) Enhanced localhost error logging; resolved worker cache-loading bug.
3.4.0 (May 30, 2024) Updated CLI runtime-list naming; reorganized extras; improved resource

limits; introduced breaking changes.
3.3.0 (Apr 25, 2024) Enabled automatic retry of failed tasks; added Cloud Run login; simplified

AWS/IBM configuration; migrated to pytest.
3.2.0 (Mar 27, 2024) Added Python 3.12 support; implemented Redis work queue; improved CLI

timestamps and resiliency.
3.1.2 (Feb 22, 2024) Added figure sizing and statistics in results; toggled IBM VPC check; fixed

payload-size handling.
3.1.1 (Feb 8, 2024) Supported Kubernetes RabbitMQ; improved Code Engine error reporting;

fixed executor deadlock.
3.1.0 (Dec 5, 2023) Introduced CLI commands for listing and deleting images, jobs, and work-

ers; released localhost v2; enabled VM image deletion.
3.0.1 (Oct 9, 2023) Added OCI Functions and Object Storage support; enabled Redis in Kuber-

netes; optimized Code Engine and Cloud Functions.
3.0.0 (Sep 4, 2023) Added Azure VM backend; supported Python 3.10–3.11; enabled VPC auto-

creation; enhanced CLI and storage features.
2.9.0 (Feb 21, 2023) Public S3 bucket support; added OCI login; updated Kubernetes boto3 de-

pendency; automated IBM VPC provisioning.
2.8.0 (Jan 25, 2023) Config file path support; new CLI flags; GCP triggers; AWS session token

support; wildcard partitioner.

Documentation: Written with Sphinx and hosted on ReadTheDocs (https://lithops-cloud.
github.io/docs/); source files in the docs/ directory. Organized into:

• Overview & Architecture: Introduction, design principles, and portability guidelines.

• Installation & Configuration: Installat, configuration schema, backend setup.

• Compute API: Futures, chaining, execution metrics.

• Storage API: Object store operations and partitioning strategies.

• Data Processing: Auto-partitioning methods; Dask and Joblib integrations.

• Integrations: Multiprocessing, StorageOS, Airflow, and scikit-learn support.

• Advanced Features: Monitoring hooks, custom runtimes, Prometheus integration, shared-
object support.

• Developer Guide: Contribution workflow, code examples, changelog.

• Additional Resources: Blogs, conference talks, academic publications.
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Testing & CI: Four GitHub Actions workflows cover linting, local unit tests, a cross-platform
matrix (7 Python versions × 18 OS–Python combinations), and end-to-end integration tests.

Ecosystem & Integrations: Interfaces with Metaspace, PyRun, and multiple cloud backends;
highlighted in Medium tutorials and conference presentations.

Supported Backends:

• Compute: Localhost; serverless (AWS Lambda, GCF, Azure Functions, Aliyun, Oracle Func-
tions, OpenWhisk); container services (Code Engine, AWS Batch, Cloud Run, Container Apps,
Kubernetes, Knative, Singularity); VMs (IBM VPC, AWS EC2, Azure VM).

• Storage: Object stores (IBM COS, Amazon S3, Google Cloud Storage, Azure Blob, Alibaba OSS,
Oracle COS, Ceph, MinIO, Swift); in-memory stores (Redis, Infinispan).

News:

• July 12, 2025: Beyond ‘Hello World’: Powering Real-World Science and AI with PyRun [1]

• July 11, 2025: Effortless Serverless Python: Get Your Code Running in the Cloud in 3 Clicks
with PyRun [2]

• March 31, 2025: Processing Cloud-Optimized Data in Python with Serverless Functions (Lithops,
DataPlug) [3]

• February 13, 2024: How to Run Lithops over EC2 VMs Using the New Kubernetes Backend [4]

Scientific Papers:

• Serverful Functions: Leveraging Servers in Complex Serverless Workflows [5]

• Enhancing HPC with Serverless Computing: Lithops on MareNostrum5 [6]

• A Seer Knows Best: Auto-tuned Object Storage Shuffling for Serverless Analytics [7]

• Outsourcing Data Processing Jobs with Lithops [8]

4.1.2 Scone

Between 2023 and 2025, SCONE underwent a series of targeted enhancements that were closely
aligned with the NEARDATA project’s stringent requirements for secure, compliant, and high per-
formance confidential computing. The release of SCONE 5.8 marked a foundational shift with the
introduction of a robust governance framework and support for air-gapped operations. These fea-
tures were pivotal for NEARDATA’s Data Broker, enabling the definition, enforcement, and audit-
ing of fine-grained security and compliance policies—capabilities essential for regulated domains
such as healthcare (e.g., surgical AI, federated learning with sensitive patient data) and govern-
ment, where isolated, policy driven deployments are mandatory. The governance extensions allowed
NEARDATA to dynamically update access controls and maintain audit trails, directly supporting its
multi-party data sharing and regulatory compliance objectives.

With SCONE 5.9, the addition of Write Ahead Logging (WAL) and significant improvements to
the Configuration and Attestation Service (CAS) and runtime addressed NEARDATA’s need for data
integrity, durability, and operational resilience. WAL provided tamper-evident, crash-recoverable
logging for all enclave operations, which was especially critical for NEARDATA’s streaming use
cases (such as Pravega-based real-time data pipelines) and federated learning workflows, where the
integrity and recoverability of sensitive data exchanges are non-negotiable. The CAS/runtime en-
hancements enabled NEARDATA to securely orchestrate and attest multi-tenant, multi-application
deployments at scale, ensuring that only authorized and attested workloads could access confidential
data—an essential requirement for the Data Broker’s role as a trusted intermediary.

The release of SCONE 6.0, with its support for Intel DCAP v4, was a mandatory and strategic
upgrade for NEARDATA, guaranteeing continued compatibility with the latest Intel SGX attestation
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protocols and hardware. This ensured that NEARDATA’s confidential computing environments re-
mained secure, verifiable, and future-proof, even as the underlying hardware and cloud platforms
evolved. The adoption of DCAP v4 was particularly important for maintaining robust remote at-
testation—a cornerstone of NEARDATA’s trust model across diverse deployment scenarios, from
on-premises clusters to public cloud environments.

Recent developments have further expanded SCONE’s capabilities in line with NEARDATA’s vi-
sion for zero-trust and multi-vendor interoperability. SCONE’s zero trust architecture, as detailed
in the latest SCONE documentation, enforces strict identity verification, end-to-end encryption, and
policy-driven access control at every layer of the stack. This approach is now fully operational across
heterogeneous, multi-vendor environments, including AWS, Azure, Google Cloud, and on-premises
Kubernetes clusters. SCONE’s support for multiple Trusted Execution Environments (TEEs) such as
Intel SGX, AMD SEV, and Intel TDX enables NEARDATA to deploy confidential workloads seam-
lessly across different hardware and cloud providers, without sacrificing security or compliance. The
platform’s vendor-agnostic attestation and policy management services ensure that data and work-
loads are protected even when orchestrated across untrusted or hybrid infrastructures.

In summary, the evolution of SCONE from 2023 to 2025 was shaped by NEARDATA’s real-world
requirements for secure governance, air-gapped and compliant operations, data integrity and recov-
erability, and hardware-agnostic attestation. The most recent developments in zero trust and multi-
vendor support, as documented in SCONE’s official resources, have empowered NEARDATA’s Data
Broker and streaming applications to meet the highest standards of confidentiality, integrity, and
operational trust in extreme data environments.

Status: Production ready
Repository: https://sconedocs.github.io/

SCONE Releases (2023–2025)

Version Release Date Key Features / Notes
5.8 2023-06-19 Governance, air-gapped operations, many new

features
5.9 2024-08-07 Write-Ahead Logging (WAL), bug fixes,

CAS/runtime improvements
5.10 2025-07-02 New features, bug fixes, CAS/runtime im-

provements
6.0 2025-08-08 Intel DCAP v4 support

SCONE 5.8 (June 19, 2023) Major Features:

• Governance: SCONE 5.8 introduced a comprehensive governance framework, enabling or-
ganizations to define, enforce, and audit security and compliance policies across confidential
workloads. This includes policy management, access control, and compliance features, as well
as improved audit logging and reporting capabilities.

• Air-Gapped Operations: This release added support for running SCONE in air-gapped envi-
ronments, i.e., highly secure, isolated deployments where network connectivity is restricted or
unavailable. This is essential for sectors with the highest security requirements, such as gov-
ernment, defense, and critical infrastructure.

Technical Impact:

• The governance and air-gapped features are critical for organizations with strict security and
compliance requirements, such as those in finance, healthcare, or government sectors.

• The focus on governance and air-gapped support demonstrates SCONE’s commitment to enter-
prise-grade confidential computing and regulatory compliance.
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SCONE 5.9 (August 7, 2024) Major Features:

• Write-Ahead Logging (WAL):

• SCONE 5.9 introduced WAL, a robust mechanism for ensuring data integrity and recoverability
in the event of failures. WAL is a release brought significant improvements to the Configura-
tion and Attestation Service (CAS) and the SCONE runtime. These improvements enhance the
security, scalability, and manageability of confidential workloads.

Technical Impact:

• WAL ensures that all modifications are first recorded in a tamper-evident log before being ap-
plied, supporting atomicity, consistency, and crash recovery.

• CAS/runtime improvements further enhance the platform’s ability to securely deploy and
manage workloads, with a focus on seamless upgrades and backward compatibility.

SCONE 5.10 (July 2, 2025) Major Features:

• SCONE 5.10 continued the trend of incremental improvements, with new features and further
enhancements to CAS and runtime. The specifics of these new features are not detailed in the
news summary, but the focus remains on stability, performance, and feature completeness.

• Bug Fixes: Ongoing bug fixes and further improvements to CAS and runtime.

Technical Impact:

• This release continues the trend of incremental improvements, focusing on stability, perfor-
mance, and feature completeness.

• The emphasis on CAS/runtime suggests ongoing investment in the platform’s core security
and attestation infrastructure.

SCONE 6.0 (August 8, 2025) Major Features:

• Intel DCAP v4 Support: SCONE 6.0 adds support for Intel DCAP v4, a critical update for com-
patibility with the latest Intel SGX attestation infrastructure. This ensures SCONE can interact
with Intel’s attestation services using the latest protocols.

The move to DCAP v4 ensures SCONE remains compatible with the latest hardware and at-
testation standards, bringing security enhancements such as improved certificate management and
updated cryptographic protocols. The mandatory upgrade and deprecation notice highlight the im-
portance of staying current with security infrastructure to avoid service disruptions, especially for
organizations relying on remote attestation for compliance and operational continuity.

Between 2023 and 2025, SCONE has demonstrated steady, security-focused growth, with each
release introducing significant new features, reliability improvements, and expanded platform sup-
port. The most notable trends include a strong emphasis on governance, compliance, and attestation,
as well as a proactive approach to hardware compatibility and lifecycle management. The manda-
tory upgrade to version 6.0.0 in 2025 is a critical milestone for all users, ensuring continued secure
operations in line with evolving hardware and attestation standards.

Table [7] presents a list of images of sconified applications. Federated learning images, however,
are not listed because they were not pushed to registry due to being very large. But the reader can
find how to build them in the repository https://github.com/neardata-eu/scone-artifacts.
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4.1.3 MinIO ported

MinIO is a cloud object storage system with S3 compatibility; it provides storage infrastructure for
Lithops and has been increasingly employed in AI. It was ported to confidential computing (also
called sconification) to cover storage protection.

Status: Experimental
Repository: https://github.com/neardata-eu/scone-artifacts

Technical Impact:

• Protection of data in use: every stored data will be written or read sometime; SCONE Runtime
protects this mechanism;

• Protection of data at rest: if an adversary inspects a file directly on volumes protected by
SCONE File Shield will not reveal anything from its original content; and it is transparent to
authorized users;

• Protection of data in transit: files uploaded to or downloaded from MinIO traversing the net-
work to/from authorized users are protected by SCONE File Shield;

• Authorization via attestation: secrets are only provisioned to an application if they are running
supported by TEE security hardware; hence the communicating parties can reassure they are
interacting with authentic party.

MinIO Version SCONE Version Key Features / Notes
RELEASE.2025-07-18T21-56-31Z 5.9.0-831-g2f59cb75a /

2025-06-20
Sconification of both server
and client applications

Table 7: Confidential images made available
“experimental” due to not yet part of latest SCONE release

System Image
Lithops Singular-
ity + Metaspace

registry.scontain.com/sconecuratedimages/experimental/lithops:3.6.1-
metaspace-5.9.0-239-g941a371d1

MinIO registry.scontain.com/sconecuratedimages/experimental/minio:master-
alpine3.21-sconectl-5.9.0-831-g2f59cb75a

Keycloak registry.scontain.com/sconecuratedimages/experimental/keycloak:26-
alpine3.20-sconectl-5.9.0-rc.5

MariaDB registry.scontain.com/sconecuratedimages/experimental/mariadb:10.4.24-
sconectl-keycloak-5.8.0

Pravega Clients registry.scontain.com/sconecuratedimages/experimental/pravega:client_ben-
alpine315-5.9.0

Pravega Clients registry.scontain.com/sconecuratedimages/experimental/pravega:omb-
benchmark-alpine315-5.9.0

Pravega Clients registry.scontain.com/sconecuratedimages/experimental/pravega:prb-
benchmark-ubuntu2004-5.9.0

Pravega Clients registry.scontain.com/sconecuratedimages/experimental/pravega:rust-
benchmark-ubuntu2004-5.9.0-rc.7

4.1.4 Pravega

Since 2023, the Pravega core repository has undergone significant enhancements aimed at improving
scalability, resilience, and cloud-native integration. Major updates include support for Azure and

Page 21 of 53

https://github.com/neardata-eu/scone-artifacts


HORIZON - 101092644 NEARDATA
31/10/2025 RIA

GCP bindings in the Long-Term Storage (LTS) layer, expanded data integrity checks, and perfor-
mance optimizations such as segment-to-host mapping caching and improved checkpoint logging.
The CLI tooling was also extended with recovery commands and diagnostics for stream metadata
and transactions. These developments have strengthened Pravega’s role as a foundational compo-
nent for real-time, durable data streaming in distributed environments, aligning with NEARDATA’s
architectural needs for reliable data ingestion and processing.

Complementing the core, the Pravega ecosystem has evolved to support diverse deployment and
analytics scenarios. The Rust client added stream cut APIs and reader tracking, broadening language
support for developers. The Zookeeper Operator was updated for Kubernetes compatibility and multi-
arch builds, while the Pravega Operator introduced Helm chart improvements and support for newer
Kubernetes versions. Notably, Dell contributed to the GStreamer Pravega connector, enabling real-
time video ingestion and analytics pipelines, as demonstrated in the NCT PoC. These ecosystem
components collectively enhance Pravega’s usability and integration with AI and edge workloads,
reinforcing its role in NEARDATA’s intelligent data space architecture.

Status: Production ready

Table 8: Pravega Key Metrics

Metric Value Period
Lines of Code ≈ 300, 000+ (Java) All time
GitHub Stars 2,000+ All time
Forks 409 All time
Contributors 100+ All time
Releases 89 (latest: v0.13.0) All time
Commits 3,297+ All time

Documentation: Hosted at https://pravega.io/docs/latest/, the documentation includes ar-
chitecture guides, deployment instructions, metrics API, and integration examples. It is maintained
using Docusaurus and GitHub Pages.

Major Features:

• Stream Abstraction: Pravega treats streams as durable, append-only byte sequences with strong
consistency and ordering guarantees.

• Auto-Scaling: Streams dynamically scale based on ingestion rate, avoiding static partitioning
limitations.

• Exactly-Once Semantics: Ensures reliable delivery and processing of events even under failure
conditions.

• Tiered Storage: Supports seamless data movement between fast local storage and long-term
cloud backends (e.g., S3, HDFS, Azure).

• Transaction Support: Enables atomic writes across multiple events, critical for distributed
stream processing.

• Security: TLS support and pluggable role-based access control.

• Metrics Framework: Built on Micrometer, supports StatsD and InfluxDB for observability.

Recent Releases:

• v0.14.x Series (Pre-release): Pravega introduced enhanced long-term storage support (Azure,
GCP), improved CLI tooling, integrity checks in Segment Store, and expanded client language
bindings (Rust, Python).
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• v0.13.0 (Sep 2023): Added support for Azure and GCP storage backends, improved CLI tooling,
and introduced integrity checks in the Segment Store.

• v0.12.x Series: Focused on performance improvements, native client bindings (Rust, Python),
and simplified long-term storage (LTS) configuration.

Ecosystem Tools:

• GStreamer Connector: The gstreamer-pravega repository provides plugins to read and write
Pravega streams using GStreamer. It includes:

– pravegasink and pravegasrc for ingesting and retrieving video/audio streams.
– pravegatc for transaction coordination.
– Integration with NVIDIA DeepStream for writing metadata (e.g., bounding boxes) to

Pravega event streams.
– Support for HTTP Live Streaming via the Pravega Video Server.

• Kubernetes Operators:

– Pravega Operator: Manages Pravega clusters on Kubernetes, automating deployment,
scaling, and upgrades.

– Bookkeeper Operator: Handles Bookkeeper clusters, which provide the underlying log
storage for Pravega.

– Zookeeper Operator: Manages Zookeeper clusters used for coordination and metadata
services.

• Rust Client with Python Bindings: The pravega-client-rust project offers a native Rust
client for Pravega. It is designed to support bindings to other languages, including Python,
enabling lightweight and performant access to Pravega streams from non-Java environments.

• Flink Connectors: Enables integration with Apache Flink for stream processing.

• Pravega Sensor Collector: Ingests sensor data into Pravega streams, supports disconnected
operation with local buffering.

Scientific and Technical Impact:

• Gracia-Tinedo, Raúl, Flavio Junqueira, Tom Kaitchuck, and Sachin Joshi. "Pravega: A tiered
storage system for data streams." In ACM/IFIP Middleware’23, pp. 165-177. 2023.

• Gracia-Tinedo, Raúl, Flavio Junqueira, Brian Zhou, Yimin Xiong, and Luis Liu. "Practical
storage-compute elasticity for stream data processing." In ACM/IFIP Middleware’23 (Industrial Track),
pp. 1-7. 2023.

• Jundi, Omar, Raúl Gracia-Tinedo, Sean Ahearne, Pascal Spörri, and Bernard Metzler. "Towards
Multi-Tier Stream Data Tiering in the Cloud-Edge Continuum." In IEEE ICNP’24, pp. 1-6. 2024.

• Finol, Gerard, Arnau Gabriel, Pedro García-López, Raúl Gracia-Tinedo, Luis Liu, Reuben Do-
cea, Max Kirchner, and Sebastian Bodenstedt. "StreamSense: Policy-driven Semantic Video Search
in Streaming Systems." In ACM/IFIP Middleware’24 (Industrial Track), pp. 29-35. 2024.

• Gracia-Tinedo, Raúl, Flavio Junqueira, and Tom Kaitchuck. ""Back to the Byte": Towards Byte-
oriented Semantics for Streaming Storage." In ACM/IFIP Middleware’24 (Industrial Track), pp.
43-49. 2024.

In addition to these publications related to NEARDATA, we have found 4 external publications using
Pravega in the last 3 years.

License: Apache 2.0.
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4.1.5 Metaspace

Over the 2023–2025 period, the METASPACE platform has continued to evolve as a central open
infrastructure for spatial metabolomics data management, annotation, and sharing. Originally de-
signed to democratize access to imaging mass spectrometry (IMS) datasets, it now serves as a mature
and extensible system supporting automated, large-scale molecular annotation and metadata-driven
exploration across laboratories and research institutions. Its modular design—comprising data inges-
tion pipelines, machine learning annotation services, and a collaborative web interface—has enabled
efficient integration with other NEARDATA components such as Lithops, DataCockpit, and PyRun.

During this period, METASPACE introduced several key advancements aimed at improving scal-
ability, usability, and analytical accuracy. These include enhanced support for multiple ML-based an-
notation models, the introduction of auto-refresh dataset comparison tools, and a fully production-
ready machine learning annotation engine. Additionally, the platform refined its metadata handling,
optimized user management, and expanded its APIs for broader programmatic interoperability.

The following sections present a comprehensive overview of METASPACE’s software metrics,
version history, documentation structure, testing setup, and integration within the NEARDATA
ecosystem. Together, these components highlight METASPACE’s role as the metadata and anno-
tation backbone of the NEARDATA architecture, ensuring reproducible, high-quality metabolomics
workflows.

Status: Production ready

Table 9: Metaspace Key Metrics by Period

Metric Value Period
Lines of Code ∼439,329 All time
Forks 12 All time
GitHub Stars ∼50 All time
Active Contributors 17 All time
Commits 171+ 2023–2025

Table 10: Metaspace Releases (2023–2025)

Version Highlights
2.1.6 (Aug 12, 2024) Production-ready ML annotation support:

• Multiple ML model annotations.

• Dataset comparison page filter with auto-refresh.

• Removed dataset updates on email change.

• Fixed annotation page layout on XS devices.

Documentation: Hosted on the METASPACE Wiki (https://github.com/metaspace2020/metaspace/
wiki), including:

• Overview: Objectives, architecture, core modules.

• End-User Guides: Data upload workflows; CSV export; Webapp and GraphQL API usage.
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• Developer Reference: REST/GraphQL specs; data model schemas; engine internals; perfor-
mance notes; integrations.

• Installation & Deployment: Docker Compose; Helm charts; Ansible playbooks; Lithops scripts.

• Client SDKs: Python and JavaScript libraries with examples.

• How-To Guides: Adding databases; SQL migrations; release procedures.

• Developer Tips: Local development and testing best practices.

• Additional Resources: Publications, presentations, workshops.

Testing & CI: GitHub Actions for linting, unit/integration tests ( 80% coverage), and schema
migration checks across multiple Python versions.

Ecosystem & Integrations: Integrates with Lithops, DataCockpit, and various visualization tools;
cited in several publications.

Scientific Papers:

• METASPACE-ML: Context-specific metabolite annotation for imaging mass spectrometry using
machine learning [9]

4.1.6 DataPlug

Over the 2023–2025 period, DataPlug has evolved into a lightweight yet powerful client-side frame-
work designed to facilitate efficient and scalable access to unstructured scientific data stored in object
storage systems. By dynamically partitioning datasets and enabling parallel read operations, it al-
lows researchers to process large volumes of data transparently across heterogeneous infrastructures.

The framework natively supports a diverse range of scientific formats, reflecting its multidis-
ciplinary scope. These include generic formats such as CSV and raw text; genomics data formats
like FASTA, FASTQ, and VCF; geospatial standards such as LiDAR, Cloud-Optimized Point Cloud
(COPC), and Cloud-Optimized GeoTIFF (COG); metabolomics imaging formats such as ImzML; and
astronomy datasets based on the MeasurementSet specification. This broad compatibility enables
seamless integration of DataPlug into NEARDATA’s data plane, serving as a bridge between hetero-
geneous storage systems and high-performance analytics pipelines.

Status: Production ready

Table 11: DataPlug Key Metrics by Period

Metric Value Period
Lines of Code 3,491 All time
Forks 12 All time
GitHub Stars 11 All time
Active Contributors 7 All time
Commits 156+ 2023–2025

Documentation: Available at https://github.com/CLOUDLAB-URV/dataplug/tree/master/docs,
covering:

• DataPlug API Overview

• Scaling Preprocessing with Joblib

• Developing Custom Plugins
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• Supported Formats:

– General: CSV, raw text

– Genomics: FASTA, FASTQ, VCF

– Geospatial: LiDAR, Cloud-Optimized Point Cloud

– Metabolomics: ImzML

– Astronomics: MeasurementSet

News:

• 2025: Processing Cloud-Optimized Data in Python with Serverless Functions (Lithops, DataPlug)
[3]

Scientific Papers

• 2024: DataPlug: Unlocking Extreme Data Analytics with On-the-Fly Dynamic Partitioning of
Unstructured Data [10]

4.1.7 DataCockpit

Over the 2023–2025 period, DataCockpit has evolved into an interactive IPython widget that enables
scientists and engineers to explore, partition, and benchmark datasets stored in cloud environments.
It allows users to browse and access both public datasets — such as those available in METASPACE
or the AWS Open Data Registry — and their own private S3 buckets, providing a unified view of
heterogeneous data sources within a single interface.

Built on top of the DataPlug framework, DataCockpit integrates benchmarking tools to evaluate
partitioning strategies and identify the optimal data slice configuration for downstream processing.
Once partitioned, the resulting data slices can be directly passed to frameworks such as Lithops for
large-scale, parallel execution. This enables users to intuitively control the degree of parallelism
based on the number of generated slices, without requiring manual infrastructure configuration.

As part of NEARDATA’s data plane, DataCockpit serves as a bridge between data exploration
and distributed computation, simplifying access to cloud-stored datasets and accelerating near-data
analytics through interactive, visual, and reproducible workflows.

Status: Production ready

Table 12: DataCockpit Key Metrics by Period

Metric Value Period
Lines of Code 9,580 All time
Forks 0 All time
GitHub Stars 0 All time
Active Contributors 1 All time
Commits 7 2023–2025

Documentation: Available at https://docs.pyrun.cloud/features/data-cockpit, including:

• Overview of DataCockpit features

• Integration with PyRun Cloud

• Monitoring and visualization dashboards

• Deployment and usage instructions
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4.1.8 Extreme Data Hub front-end

PyRun represents the unifying front-end of the NEARDATA ecosystem, providing a seamless en-
vironment where users can design, execute, and monitor large-scale data analytics and AI work-
flows. It acts as the main operational interface that integrates several core components developed
within the project—most notably Lithops, DataPlug, and DataCockpit—into a single, coherent, and
user-friendly platform. By abstracting the underlying infrastructure, PyRun allows scientists and
engineers to focus entirely on logic and experimentation rather than cloud provisioning or system
configuration.

Conceptually, PyRun embodies NEARDATA’s vision of the Extreme Data Hub: a unified envi-
ronment that combines data repositories and data pipelines under a single orchestration layer. This
concept was initially introduced to bridge the gap between cloud-based data storage and distributed
computation, enabling near-data analytics and cross-domain interoperability. Within this framework,
PyRun materializes as the control and execution plane that connects diverse data sources, streamlines
workflow execution, and ensures reproducibility and transparency in large-scale data-driven exper-
iments.
Architectural Overview

At its core, PyRun is a web-based Software-as-a-Service (SaaS) platform that allows users to run
Python workloads directly on their own cloud accounts, currently supporting both AWS and IBM
Code Engine. The platform automatically provisions, scales, and tears down resources as needed,
eliminating manual infrastructure management. It provides a full-featured web IDE, runtime man-
agement, real-time monitoring, and integrated data access, offering a consistent user experience
across all execution environments.

The architecture of PyRun is modular and extensible. Its backend orchestrates distributed execu-
tion through a microservice-based design, exposing APIs for job submission, runtime configuration,
and resource tracking. The frontend integrates these capabilities into a unified interface that ab-
stracts complex infrastructure details while preserving full transparency and control. Thanks to its
tight integration with Lithops, PyRun supports function-based and data-parallel workloads at scale,
leveraging serverless or HPC backends depending on the nature of the computation.
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Figure 3: High-level architecture of PyRun, showing the integration of the Unified Web IDE with
DataCockpit and DataPlug for data exploration and partitioning, and Lithops for distributed execu-
tion and monitoring.

As shown in Figure 3, users interact through the Unified Web IDE, which connects seamlessly
with the DataCockpit to browse and benchmark datasets across heterogeneous storage sources (e.g.,
S3, METASPACE, AWS Open Data Registry). DataPlug performs on-the-fly partitioning, generat-
ing data slices that are dispatched to Lithops for massively parallel execution. Results and metrics
are collected back into the IDE, providing a fully integrated, reproducible workflow for near-data
analytics.
Integration with NEARDATA Components

PyRun acts as the central hub interconnecting multiple NEARDATA software outcomes:

• Lithops: Provides the distributed computing backend for function execution. PyRun seam-
lessly integrates with Lithops to launch tasks across heterogeneous environments, including
AWS Lambda, Kubernetes, and IBM Code Engine.

• DataPlug: Facilitates dynamic data access and partitioning across unstructured datasets stored
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in S3-compatible object storage. PyRun uses DataPlug to prepare data slices and feed them into
parallel workflows.

• DataCockpit: Embedded directly in the PyRun interface, it enables users to visually browse
public and private datasets, explore metadata, benchmark partitioning strategies, and trigger
distributed processing pipelines.

• Metaspace: Integration with public repositories such as METASPACE enables transparent ac-
cess to annotated metabolomics datasets for large-scale analysis pipelines.

By connecting these components, PyRun provides a consistent environment where NEARDATA’s
data plane and compute plane converge. It transforms the individual software modules of the project
into a cohesive operational platform capable of executing reproducible, large-scale workflows with
minimal configuration. Many of the integrated components—such as Lithops—are maintained by
active open-source communities, ensuring long-term sustainability, continuous updates, and external
contributions that strengthen the reliability and evolution of the NEARDATA ecosystem.
Core Functionalities

PyRun offers a comprehensive suite of functionalities designed for both research and production
environments. At its center lies a Unified Web IDE, a browser-based environment that integrates
code editing, runtime configuration, and job monitoring into a single workspace. Users can write
standard Python code and execute it directly on the cloud, without leaving the interface.

Through its Runtime Management system, PyRun ensures reproducibility and portability across
environments by supporting definitions through Dockerfile, requirements.txt, or environment.yml.
Each runtime can be built, versioned, and deployed automatically, guaranteeing consistent results
across multiple executions.

The platform also incorporates Real-Time Monitoring, offering detailed visibility over job exe-
cution with live logs, performance metrics, and aggregated views from distributed workers. This
facilitates debugging, profiling, and optimization of complex workloads.

A key component is the DataCockpit Integration, which connects PyRun with both user-managed
and public data repositories. Through this interface, users can explore file structures, benchmark ac-
cess speeds, and launch dynamic partitioning operations using DataPlug. The resulting data slices
can then be seamlessly executed on distributed compute frameworks such as Lithops or Dask. Fig-
ure 4 illustrates the DataCockpit interface embedded in PyRun, providing a graphical and interactive
layer for dataset exploration, benchmarking, and slicing.

Furthermore, PyRun includes a curated collection of Templates and Pipelines, which offer ready-
to-run workflows for common use cases such as image classification, audio recognition, hyperparam-
eter tuning, and text analytics. These pipelines act as both pedagogical examples and reproducible
baselines for further research.

Finally, the system provides AI-Ready Workflows—preconfigured setups for machine learning
and deep learning tasks, including retrieval-augmented generation (RAG), embedding extraction,
and distributed model training—bridging serverless computing with state-of-the-art AI frameworks.
Combined with its Elastic Scaling capability, which dynamically provisions cloud resources accord-
ing to workload intensity, PyRun offers an adaptive environment ideal for both exploratory and
production-scale computation.
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Figure 4: DataCockpit interface embedded within PyRun, enabling interactive exploration and par-
titioning of datasets.
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In addition to its data exploration capabilities, PyRun provides an integrated view of available
computational workflows. Figure 5 illustrates the PyRun frontend, where a subset of ready-to-run
pipelines can be launched directly from the interface. These include AI-oriented workflows such as
image classification, hyperparameter optimization, and data preprocessing, as well as NEARDATA-
related pipelines such as spatial metabolomics analysis and serverless geospatial processing. This
visual layer enables researchers to deploy complex pipelines with minimal configuration effort.

Figure 5: PyRun frontend showing a subset of available pipelines ready for execution.

Relation to CLOUDLESS
PyRun has been developed through the joint efforts of the NEARDATA and CLOUDLESS projects.

While conceived within NEARDATA as a unified frontend integrating its software components, its
continuous development within CLOUDLESS has further expanded its capabilities as a general-
purpose orchestration and execution platform for distributed and serverless computing.
Deployment and Extensibility PyRun’s architecture supports seamless extensibility through mod-
ular APIs. New pipelines or datasets can be registered through simple metadata definitions, while
existing components can be connected through the internal orchestration layer. The platform na-
tively supports Python-based workflows but also exposes REST and SDK interfaces for integration
with external systems. This flexibility allows PyRun to function both as a standalone experimentation
environment and as a front-end to hybrid cloud infrastructures.

Moreover, PyRun hosts several NEARDATA pipelines directly in production-ready form. Work-
flows involving distributed image analysis, spatial metabolomics annotation, and serverless geospa-
tial analytics have been deployed and validated within PyRun. The platform thus not only serves as
an interface but also as the execution venue where the project’s research outcomes are demonstrated
and benchmarked.
Impact and Outlook

PyRun consolidates NEARDATA’s mission of simplifying access to extreme-scale data analytics
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by merging data access, orchestration, and execution under a unified control plane. Its combination
of runtime management, real-time monitoring, and integrated data exploration represents a signif-
icant step toward transparent, reproducible, and scalable scientific computing. Beyond its role in
NEARDATA, PyRun’s co-development within CLOUDLESS positions it as a general-purpose hub
for serverless and multi-cloud experimentation, offering a blueprint for future European research
infrastructures focused on open, cloud-native science.

In summary, PyRun is both a technological integrator and a functional demonstrator: it connects
the diverse results of NEARDATA into a single operational environment, while also standing as a
mature software product that embodies the project’s vision of a truly interoperable and data-centric
Extreme Data Hub.

4.2 Research Projects

4.2.1 FaaSTs

FaaSTs is a novel approach that combines time series forecasting and the FaaS model to handle de-
manding workloads. First, the application is split into multiple tasks that are then executed on the
available resources. A time series model continuously monitors the system and predicts the system
workload, where extra workers can be temporarily deployed and assigned a pending task from the
queue. This framework has been integrated, deployed, and tested into the Lithops-HPC architecture.
It is currently still under continuous testing and development of enhancements.

Status: Research prototype

Documentation: the documentation is available at https://gitlab.bsc.es/datacentric-computing/
lithops_telemetry_forecasting. It contains several subrepositories with the different elements
(telemetry predictor, scrapper and agent as well as the scripts to deploy the infrastructure with ex-
amples). Each of the repositories contains its own README.md with documentation on how it is
distributed.

Ecosystem & Integrations: this prototype it is directly integrated into Lithops-HPC. Although the
telemetry predictions and data gathering could be run standalone, the integration within an archi-
tecture using it is only done with Lithops-HPC. Nonetheles,s anybody could integrate it with other
architectures.

Repository & Activity:

Table 13: FaaSTs Key Metrics by Period

Metric Value Period
Lines of Code +8700 All time
Forks 0 All time
GitHub Stars 1 All time
Active Contributors 3 All time
Commits 253 All time

Key Features:

• Effortless Execution: integrated within Lithops-HPC it runs transparently to the end-user, no
configuration needed.

• Automatic scalability: automatically adjusts resources to the Lithops-HPC backend according
to availability and predicted resource usage.

4.2.2 Lithops-HPC

Status: Research-Prototype
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Table 14: Lithops Key Metrics by Period

Metric Value Period
Lines of Code 2,916 All time
Forks 1 All time
GitHub Stars 0 All time
Active Contributors 2 All time
Commits 35 All time

Documentation: The documentation is available at github.com/neardata-eu/lithops-hpc. It
contains an easy-to-follow guideline for writing the configuration file and how to run. Documenta-
tion on how to develop workflows is the same as for the Lithops framework described above.

Ecosystem & Integrations: It allows running in a wide range of environments: from accelerated
HPC resources (i.e, GPU, FPGAs) to cloud environments such as Amazon AWS. It allows mixing
different resources in the same environment, so the user can either choose or run their workloads in
all of them at once, at their convenience.

With the integration of FaaSTs, it is also possible to automate the decision on which backend to
run each of the workloads’ tasks.

News:

• March 1, 2024: First release of Lithops-HPC [6]

Scientific Papers:

• Enhancing HPC with Serverless Computing: Lithops on MareNostrum5 [6]

4.2.3 Serverless Vector DB

Description: Retrieval-Augmented Generation and similar workloads use vector databases for un-
structured data analysis, but traditional cluster-based systems struggle with elastic scaling under
variable workloads. Serverless vector databases built on cloud functions offer a promising alter-
native but face challenges due to statelessness and dynamic data. This research project evaluates
these challenges, showing that traditional clustering-based partitioning performs poorly in server-
less setups. A block-based partitioning method is proposed, which handles dynamic data better and
matches popular cluster-based solutions in performance—at lower cost—for sparse workloads.

Core Components:

• Lithops: Orchestrates workers on ingestion and vector search, balancing data load and en-
abling support for different backends.

• Compute Backends: Enable data ingestion, data indexing, search and data aggregation in a
stateless way.

• Storage Backends: Are responible for data and index storage in a managed way.

Inputs: The vector database has been benchmarked with 3 popular datasets listed below. Those
inputs must be preprocessed into a suitable format for the prototype. Stored in CSV files, entries
must consist of two elements ( the id and the vector space-separated) and each entry be written in a
separate line.

• DEEP: from which are extracted subsets of 100k, 1M, 10M, and 100M embeddings of the
Deep1B with 96 dimensions normalized with L2 distance extracted from the last fully-connected
layer of a GoogLeNet model trained with the ImageNet dataset. https://www.tensorflow.
org/datasets/catalog/deep1b
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• SIFT: consists of 10M embeddings with 128 dimensions, the Scale Invariant Feature Transform
(SIFT) transforms the image data into a large number of features (scale invariant coordinates)
that densely cover the image features. https://archive.ics.uci.edu/dataset/353/sift10m

• GIST: consists of 1M embeddings with 960 dimensions, a gist represents an image scene as a
low-dimensional vector. https://huggingface.co/datasets/fzliu/gist1m/tree/main

Repository & Activity:

Table 15: Serverless Vector DB Key Metrics by Period

Metric Value Period
Lines of Code 1,580 All time
Forks 1 All time
GitHub Stars 2 All time
Active Contributors 4 All time
Commits 18 All time

• Last update: October 27, 2025

It should be noted that most of the work was conducted in a private repository with other contribu-
tors prior to the creation of the aforementioned repository (65 commits, four total contributors).

Documentation:

• Comprehensive README and detailed paper published in .

• No formal unit tests; validated via example and additional experiments found in https://
github.com/neardata-eu/serverless-vdb-experiments

Reproducibility: Guidelines are provided in the README with small demo-prepared files to run
a basic example of the vector db. Lithops supports multiple backends, out of which AWS Lambda
with AWS S3 and Kubernetes with MinIO have been tested and used for experimenting. Any data
source adapted to the specified format can be used with the prototype perfectly.

Status: Research-Prototype

4.2.4 FaaStream

Description: The project introduces FaaStream, a serverless data processing framework designed
to simplify Function-as-a-Service (FaaS) workflows by using elastic, tiered data streams as a unified
storage solution. Traditional FaaS systems rely on multiple external storage options, which com-
plicates development due to trade-offs in performance and scalability. FaaStream addresses this by
providing dataflow-style features—such as inter-function communication, data shuffling, and state
management—built on top of streaming storage. The framework demonstrates improved perfor-
mance, efficiency, and fault tolerance, highlighting the value of stream-based storage in unifying
serverless computing environments.

Core Components:

• Pravega: Used as an elastic and tiered storage system between worker stages on the pipeline.
Constitues a part of the storage layer.

• S3 and NVMe Volumes: Used as sinks, object storage and write-ahead logs, they constitue a
part of the storage layer.

• Lambda: Used as workers for processing data on each step of the pipeline through user defined
functions. This constitues the computing layer.
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• FaaStream Manager: Used as a coordinator for workers on the different stage of the pipeline,
this component constitutes the coordination layer.

Inputs: The FaaStream project has been tested and benchmarked with subsets from different
publicly available datasets listed below.

• ImageNet: composed by images organized following the WordNet hierarchy, it has been used
to benchmark Embeddings Generation process with a subset of images having an approximate
size of 35KB each. Raw bytes from those image are extracted to additionally benchmark Hash-
ing process. https://www.image-net.org/download.php

• Plain Text Wikipedia 2020-11: composed by Wikipedia entries from which 120 files’ text are
extracted for the conducted benchmarks over WordCount process. https://www.kaggle.com/
datasets/ltcmdrdata/plain-text-wikipedia-202011

• TeraGen/TeraSort/TeraValidate: The dataset is generated randomly and subsequently sorted
by the key. Following prior works, a 100GB dataset is used for evaluating the TeraSort bench-
mark.

Repository & Activity:

Table 16: FaaStream Key Metrics by Period

Metric Value Period
Lines of Code 20,270 All time
Forks 1 All time
GitHub Stars 0 All time
Active Contributors 2 All time
Commits 132 All time

• Last update: May 19, 2025

Documentation:

• Comprehensive README.

• No formal unit tests; benchmarks are provided in the repository with additional instructions.

Reproducibility: Guidelines are provided in the README to deploy the pipeline. Multiple
benchmarks are provided as well to evaluate the performance.

Status: Research-Prototype

4.2.5 Nexus

Description: Nexus is a data management mesh designed to transparently mediate storage opera-
tions between streaming systems and external tiered storage. It introduces a programmable substrate
for advanced data management during the tiering process, enabling location-aware, extensible, and
policy-driven stream data handling. Nexus supports stream-aware processing, routing, and caching
through modular components that operate on tiered data chunks.

Core Components:

• Streamlets: Executable data management functions (e.g., compression, routing, filtering) ap-
plied to tiered data chunks.

• Swarmlets: Sets of Nexus worker instances deployed across Edge/Cloud infrastructures to
execute streamlets.
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• Policies: Declarative rules that orchestrate streamlet execution pipelines, including location
constraints and hardware requirements.

Inputs: Nexus operates on tiered data offloaded by streaming systems such as Apache Kafka and
Apache Pulsar. It intercepts storage operations via standard APIs (e.g., AWS S3) and processes only
the relevant data files:

• Kafka: Operates on .log files offloaded to S3-compatible storage; preserves indexing logic for
compatibility.

• Pulsar: Operates on -ledger-<id> files; indexing files are (by default) left untouched.

• Pravega: Operates on segment data chunks; metadata files are (by default) left untouched.

Repository & Activity:

Table 17: Nexus Key Metrics by Period

Metric Value Period
Lines of Code 13,043 All time
Forks 1 All time
GitHub Stars 3 All time
Active Contributors 4 All time
Commits 65 All time

• Last update: September 2025

Documentation:

• README includes architecture overview, deployment guides for Kafka and Pulsar, and local
simulation instructions.

• Metadata management and streamlet descriptors are documented in the docs/ folder.

Reproducibility: Nexus can be run locally using a filesystem backend to simulate tiered storage
interception. Full deployment guides are provided for Kafka and Pulsar, including configuration
examples and supported file formats. Nexus supports standard S3 APIs via S3Proxy and uses Redis
for metadata management.

Status: Research-Prototype

4.2.6 Confidential Data Exchange Platform: Advanced Security Modules

Research prototype enabling secure, policy-driven brokering and exchange of sensitive data between
providers and consumers. Integrates advanced confidential computing and security research:

• CRISP:Provides robust confidentiality, rollback protection, and integrity for persistent storage
by encrypting data at rest, binding versions with hardware monotonic counters, and detecting
tampering or unauthorized modifications.

• LLD (Last-Level Defense):Ensures application-level integrity and confidentiality by running
sensitive workloads inside hardware-enforced TEEs, with runtime attestation, memory encryp-
tion, and defense-in-depth against privileged attacks.

• TICAL:Secures the software supply chain by enforcing trusted, integrity-protected compilation,
using cryptographic attestation and reproducible builds to guarantee that only verified code is
deployed and executed.
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• SinClave:Enforces hardware-assisted singleton properties for critical TEE-based services, pre-
venting state forking and duplication, and ensuring unique, trusted execution of sensitive op-
erations.

• Latency-Security Tradeoff: Informs the platform’s design for streaming and real-time analytics,
balancing TEE-based security with practical performance through batching, multi-threading,
and enclave-aware buffering. Supports federated analytics, real-time AI, and regulatory com-
pliance in distributed, multi-tenant environments, with end-to-end auditability and policy-
driven access control.

Table 18: Research Outcome Integration into NEARDATA’s Confidential Data Broker

Scientific Paper &
Repository

Security Integration
Contribution

Integration Point to
Data Broker

Integration with
NEARDATA
Ecosystem

CRISP: Confidential-
ity, Rollback, and
Integrity Storage
Protection for Confi-
dential Cloud-Native
Computing
[Paper (IEEE S&P
2024)]

Ensures data-at-rest con-
fidentiality, integrity,
and rollback protection.
Integrates with file sys-
tem shield to transpar-
ently encrypt and au-
thenticate persistent
data.
Prevents rollback attacks
on stored data.

Storage subsystem
(via SCONE FS
shield or similar
TEE-backed storage
layer).

Integrated as the
storage security
layer, ensuring all
persistent data han-
dled by the broker
is protected and
auditable.

Last-Level Defense
for Application In-
tegrity and Confi-
dentiality (LLD)
[Paper (ACM 2024)]

Provides runtime in-
tegrity, memory safety,
and side-channel mitiga-
tion.
Implements control-flow
integrity and dynamic
attestation.
Ensures sensitive logic/-
data is only accessible
within the enclave.

In-enclave run-
time (application
logic and analytics
modules).

Embedded in the
TEE runtime, pro-
viding a last line of
defense for all sen-
sitive computations
within the broker.

TICAL: Trusted and
Integrity-protected
Compilation of Ap-
pLications
[Paper (IEEE S&P
2024)]

Secures the software
supply chain by en-
suring only trusted,
integrity-checked code is
executed.
Enables remote attesta-
tion of code provenance.
Supports regulatory
compliance and opera-
tional trust.

Build/deployment
pipeline (attested
binaries, prove-
nance metadata).

Used in the CI/CD
pipeline to pro-
duce attested,
integrity-checked
broker components;
supports remote
attestation for
data owners and
auditors.

Continued on next page
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Table 18 continued from previous page
Scientific Paper &
Repository

Security Integration
Contribution

Integration Point to
Data Broker

Integration with
NEARDATA
Ecosystem

SinClave: Secure
and Efficient In-
Network Key Man-
agement for Multi-
Tenant Datacenters
[Paper (arXiv 2023)]

Enforces singleton prop-
erties for critical TEE-
based services (e.g., key
managers, policy en-
forcers).
Prevents state forking
and service duplication.
Maintains state conti-
nuity and trust in dis-
tributed deployments.

Critical service
coordination (key
management, pol-
icy enforcement
modules).

Integrated as a sin-
gleton enforcement
mechanism for crit-
ical broker services,
ensuring state
continuity and pre-
venting split-brain
scenarios.

Understanding the
Latency-Security
Tradeoff
[GitHub]

Provides empirical anal-
ysis of performance
overheads in TEE-based
streaming.
Guides system design
for batching, multi-
threading, and enclave-
aware buffering.
Ensures predictable
performance under high
data rates.

Streaming/data
processing layer
(Pravega, federated
learning orchestra-
tion).

Used to tune the
broker’s stream-
ing and analyt-
ics modules for
optimal security-
performance bal-
ance, ensuring
practical deploya-
bility in real-world
workloads.

4.2.7 Glider

Glider is a research prototype designed to provide transparent and policy-driven data movement
across heterogeneous storage and compute environments. Its main objective is to abstract and auto-
mate data transfers between object stores, stream systems, and compute backends, ensuring porta-
bility and performance in multi-cloud and hybrid infrastructures. By leveraging metadata-aware
decision mechanisms, Glider dynamically optimizes replication, caching, and placement based on
workload profiles, cost models, and performance constraints.

Unlike ad-hoc scripts or platform-specific data movers, Glider introduces a unified model that
integrates with NEARDATA components such as Lithops, PyRun, and Pravega, facilitating repro-
ducible and elastic workflows. It supports on-demand data movement, dynamic adaptation to net-
work fluctuations, and transparent cross-cloud coordination, positioning it as a key enabler for near-
data execution in distributed environments.

Status: Research-Prototype

Table 19: Glider Key Metrics

Metric Value Period / Notes
Lines of Code 26,740 All time
Forks 1 All time
GitHub Stars 2 All time
Active Contributors 11 All time
Commits 4 (2023—2025)
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• Last update: December 11, 2024

Documentation: Available in the README.md file of the official repository (https://github.com/
CLOUDLAB-URV/glider-store), which provides installation instructions, architectural overview, and
usage examples.

Integration with NEARDATA Ecosystem: Glider serves as a bridge between the Data Plane (ob-
ject and stream storage) and the Analytics Plane (serverless and HPC computing), providing the
substrate for efficient near-data execution. Through its policy-based transfer orchestration, it sup-
ports hybrid workflows that span multiple infrastructures, seamlessly linking storage locations to
execution backends. Its design aligns with the NEARDATA vision of enabling extreme data analyt-
ics through composable, elastic, and transparent middleware.

Scientific Papers

• Glider: Serverless Ephemeral Stateful Near-Data Computation [11]

4.2.8 Burst Computing

Burst Computing is an experimental executor that enhances the serverless paradigm by introduc-
ing group-based invocations (flares) and efficient inter-worker communication, aiming to support
tightly coupled, high-performance workloads in near-data environments. Developed to address the
limitations of traditional FaaS isolation and fragmentation, Burst enables synchronous collective op-
erations (e.g. broadcast, reduce) among stateless functions, improving coordination and reducing
data movement.

Status: Research-Prototype

Repository: Available at https://github.com/Burst-Computing/lithops-burst. The organiza-
tion also maintains multiple supporting repositories, including:

• burst-communication-middleware — implements the core communication layer in Rust.

• openwhisk-burst — integration with Apache OpenWhisk to enable flare invocations.

• lithops-burst — bridges Burst primitives with Lithops for seamless invocation.

• Additional repositories such as burst-validation and burst-doc provide validation tools and
documentation.

Table 20: Burst Computing Key Metrics

Metric Value Period / Notes
Lines of Code 51,571 All time
Forks 1 All time
GitHub Stars 0 All time
Active Contributors 4 All time
Commits 214 (2023–2025)

• Last update: Novembre 16, 2024

Documentation: Basic documentation is available via the repository’s README and sub-modules.
Integration with NEARDATA Ecosystem: Burst is intended to integrate with Lithops (via lithops-

burst) to enable advanced synchronous parallelism in workloads managed through PyRun. It com-
plements DataPlug by enabling complex analytics to run closer to data, especially when tasks require
inter-node synchronization or collective communication.
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4.2.9 Flower-Lithops Simulation Backend

The Flower federated learning framework was extended with a simulation backend powered by
Lithops. This addition provides an alternative to Flower’s default Ray-based backend, which is de-
signed for serverful, cluster-based execution. The new backend enables more elastic, on-demand,
and cost-effective federated learning simulations by leveraging the serverless computing paradigm.

The integration allows Flower to run federated learning clients as ephemeral, stateless functions
across a wide range of cloud providers (e.g., AWS, Google Cloud, IBM Cloud) and HPC environ-
ments managed by Lithops. This approach removes the need to maintain persistent infrastructure
for simulations, which aligns with NEARDATA’s objective of promoting scalable, near-data AI work-
loads with minimal operational overhead. This component connects Flower’s federated learning
capabilities with the multi-cloud execution power of Lithops, making large-scale simulation envi-
ronments more accessible.

Status: Research-Prototype
Repository & Contribution: The component is a direct contribution to the main Flower frame-
work (https://github.com/adap/flower), with the development branch for this feature available
at https://github.com/janprz/flower/tree/add-lithops-backend-support. The integration was
implemented as a new LithopsBackend module, submitted to the upstream project to expand its core
capabilities. As an extension of a major open-source project, its metrics are encompassed within the
broader Flower ecosystem.

Key Features:

• Dynamic Scalability: Federated learning clients are executed as serverless functions, enabling
simulations to scale automatically to thousands of clients without manual provisioning.

• Cost-Efficiency: The serverless model operates on a pay-per-use basis, drastically reducing
costs compared to maintaining dedicated virtual machines or clusters for the duration of a
simulation.

• Multi-Cloud Flexibility: By building on Lithops, a single Flower simulation can orchestrate
clients across different cloud backends simultaneously, enhancing resilience and avoiding ven-
dor lock-in.

• Seamless Integration: The backend implements Flower’s native Backend interface, making it a
drop-in replacement for the existing Ray backend with minimal changes to user code.

Technical Implementation: The core of the contribution is the LithopsBackend class, which ab-
stracts the execution logic. It maps the lifecycle of a Flower simulation client to a serverless function
invocation managed by Lithops. This design allows Flower’s simulation engine to offload client ex-
ecution requests to the Lithops framework, which in turn handles the function deployment, data
serialization, execution, and result retrieval from the underlying cloud or HPC infrastructure.
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4.3 Consolidated Software Metrics Across Components

This subsection consolidates repository-level metrics reported in Section 4 for all NEARDATA soft-
ware outcomes. Periods are indicated when the commit counts refer to a specific timeframe (e.g.,
2023–2025); otherwise, values are all-time.

Table 21: Consolidated repository metrics for NEARDATA components (as reported).

Component Category LOC Stars Forks Contrib. Commits
(Period)

Lithops Production-Ready 33,217 351 115 47 873+ (2023–2025)
SCONE Production-Ready — — — — —
Pravega Production-Ready ∼300,000+ 2,000+ 409 100+ 3,297+ (all time)
Metaspace Production-Ready ∼439,329 ∼50 12 17 171+ (2023–2025)
DataPlug Production-Project 3,491 11 12 7 156+ (2023–2025)
DataCockpit Production-Project 9,580 0 0 1 7 (2023–2025)
Lithops-HPC Research-Prototype 2,916 0 1 2 35 (all time)
Serverless Vector DB Research-Prototype 1,580 2 1 4 18 (all time)
FaaStream Research-Prototype 20,270 0 1 2 132 (all time)
Nexus Research-Prototype 13,043 3 1 4 65 (all time)
Glider Research-Prototype 26,740 2 1 11 4 (2023–2025)
Burst Computing Research-Prototype 51,571 0 1 4 214 (2023–2025)
FaaSTs Research-Prototype 8700+ 0 0 3 250+ (all-time)

4.4 Repository Index of NEARDATA Components

4.4.1 Production Components

Table 22: Repository Links for NEARDATA Production Components

Component / Tool Repository URL
Lithops https://github.com/lithops-cloud/lithops
SCONE https://sconedocs.github.io/
Pravega https://github.com/pravega/pravega
Metaspace https://github.com/metaspace2020/metaspace
DataPlug https://github.com/CLOUDLAB-URV/dataplug
DataCockpit https://github.com/CLOUDLAB-URV/data-cockpit
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4.4.2 Research Prototypes

Table 23: Repository Links for NEARDATA Research Prototypes

Research Prototype Repository URL
Lithops-HPC https://github.com/neardata-eu/lithops-hpc
Flower-Lithops Simulation Backend https://github.com/janprz/flower/tree/

add-lithops-backend-support
Serverless Vector DB https://github.com/neardata-eu/serverless-vdb
FaaStream https://github.com/neardata-eu/FaaStream
Nexus https://github.com/neardata-eu/nexus
Glider https://github.com/CLOUDLAB-URV/glider-store
Burst Computing https://github.com/Burst-Computing
FaaSTs https://gitlab.bsc.es/datacentric-computing/

lithops_telemetry_forecasting
SCONE-Flower simulation https://github.com/neardata-eu/nct_tud_fl_demo

5 Pipelines

This section describes representative data-processing pipelines that combine NEARDATA’s produc-
tion frameworks (Lithops, Scone, Pravega, Metaspace) with research prototypes (DataPlug, Data-
Cockpit) to deliver end-to-end analytic workflows. For each pipeline, we detail:

• Overview: Scientific or functional objective.

• Core Components: NEARDATA modules employed.

• Repository & Activity: GitHub URL, commit count (2023–2025), contributors, stars and forks.

• Documentation: Available docs, unit tests, CI setup.

• Reproducibility: Invocation via PyRun.

• Status: Research prototype or production-ready.

5.1 Metabolomics (EMBL)

5.1.1 Metabolomics Annotation Pipeline

Overview: Executes the METASPACE spatial metabolomics annotation engine on cloud resources
using Lithops for both serverless and hybrid compute.

Description: Lithops enables scalable, cost-efficient execution of METASPACE’s annotation work-
flow on large imaging mass spectrometry datasets. METASPACE—developed by the Alexandrov
group at EMBL Heidelberg—identifies metabolites and lipids in imzML data with confidence scores
and false-discovery rates. By offloading compute to serverless functions (e.g. AWS Lambda, GCF,
Azure Functions, IBM Cloud Functions, OpenWhisk) or VMs, the pipeline avoids multi–CPU-day
runtimes and large local storage demands. Lithops auto-scales to hundreds or thousands of paral-
lel invocations during highly parallel stages, then scales down for sequential steps, optimizing both
performance and cost.

Core Components:

• Lithops: Distributes annotation tasks across cloud functions and VMs.

• Metaspace: Provides RESTful APIs for data ingestion and annotated-molecule retrieval.
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• PyRun: Packages the workflow in a reproducible runtime, capturing dependencies, configura-
tion, and outputs.

Implementations:

• Serverless Only: All stages run as Lithops functions on a FaaS backend.

• Hybrid: Memory-intensive stages on pre-provisioned VMs; parallel stages on serverless func-
tions (IBM Cloud or on-premise).

Repository & Activity:

• URL: https://github.com/metaspace2020/Lithops-METASPACE

• Last update: March 19, 2021

Table 24: Metabolomics Annotation Pipeline Key Metrics by Period

Metric Value Period
Lines of Code 5,070 All time
Forks 4 All time
GitHub Stars 12 All time
Active Contributors 7 All time
Commits 288 All time

Documentation:

• Detailed README and Jupyter notebooks for both serverless and hybrid modes.

• Example configurations and step-by-step tutorials.

• No formal unit tests; validated via example runs and integrated with PyRun.

Status: Production-ready.

5.1.2 Off-Sample Detection Pipeline

Overview: Filters “off-sample” ion images—those not originating from the biological specimen—using
ML and DL classifiers on METASPACE annotation outputs.

Description: This workflow ingests METASPACE’s annotated ion images and applies a gold-standard
dataset—curated by expert labeling—to train and evaluate models that distinguish on-sample versus
off-sample spectra, improving downstream analysis accuracy.

Gold-Standard Creation:

• Retrieved ion images from public METASPACE datasets.

• Expert curators labeled images as on-sample or off-sample.

• Gold standard supports both classical ML and CNN approaches.

Model Development:

• Biclustering & Co-localization: Method from Ovchinnikova et al. (2020) to detect spatial off-sample
artifacts.

• Deep Learning: CNN trained on the curated dataset for high-accuracy classification.
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TagOff Web App:

• Front end built on the METASPACE webapp for manual curation.

• URL parameters: db (molecular database), ds (dataset timestamp), max (max images), user
(annotator ID).

• Exports curated labels back into METASPACE’s “Annotations” page.

Repository & Activity:

• URL: https://github.com/metaspace2020/offsample

• Last update: October 8, 2020

Table 25: Off-Sample Detection Pipeline Key Metrics by Period

Metric Value Period
Lines of Code 38,173 All time
Forks 0 All time
GitHub Stars 6 All time
Active Contributors 4 All time
Commits 52 All time

Documentation:

• Comprehensive README, plus notebooks for gold-standard creation, training, and evaluation.

• Automated tests for data loading and inference; CI ensures reproducibility.

Scientific Paper: [12] introduce an AI-driven workflow that recognizes and filters off-sample ion
images in imaging MS data with F1-scores up to 0.97.

Status: Research prototype.

5.2 Genomics

5.2.1 Genomic Analysis Pipeline (UKHSA)

Overview: Implements a serverless, scalable variant-calling workflow for whole-genome and tar-
geted sequencing using Lithops on AWS Lambda. By partitioning FASTA/FASTQ files into fine-grained
chunks, alignment and variant-calling tasks run in parallel without managing HPC clusters.

Description: Traditional HPC pipelines suffer queue delays and fixed capacity. Serverless com-
puting provides instant elasticity and pay-per-use billing but requires careful data partitioning, I/O
orchestration, and fault tolerance. This pipeline demonstrates migrating a complex bioinformatics
workflow to FaaS with minimal developer effort while ensuring accuracy and reproducibility.

Core Components:

• Lithops: Orchestrates AWS Lambda invocations for preprocessing, alignment (BWA), sorting
(SAMtools), and variant calling (FreeBayes).

• S3: Stores reference genomes, read chunks, and intermediate files.

• PyRun: Bundles the workflow in a versioned runtime for bit-for-bit reproducibility.

Datasets:

• Trypanosoma brucei: 35 MB FASTA (TritrypDB); reads SRR6052133 (668 MB).
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• Human (hg19): 905 MB FASTA GZip (UCSC); reads SRR15068323 (1.2 GB), ERR9856489 (12.1 GB).

• Bos taurus: 781 MB FASTA GZip (Ensembl); reads SRR934415 (16.5 GB, single mate).

Engineering Challenges:

• Partitioning: Balancing chunk size with Lambda limits (15 min, 10 GB RAM).

• I/O Orchestration: Reducing cold starts and S3 latency via pre-warmed Lambdas and tuned
concurrency.

• Fault Tolerance: Idempotent tasks and retry logic for transient failures.

Repository & Activity:

• URL: https://github.com/CLOUDLAB-URV/serverless-genomics-variant-calling

• CI: GitHub Actions for linting, unit, and integration tests.

• Last update: May 23, 2024

Table 26: Genomics Analysis Pipeline (UKSHA) Key Metrics by Period

Metric Value Period
Lines of Code 4,325 All time
Forks 2 All time
GitHub Stars 0 All time
Active Contributors 5 All time
Commits 174 All time

Documentation:

• Detailed README.md with end-to-end examples and tuning tips.

• Docstrings in serverlessgenomics/pipeline.py for API reference.

• Published in WoSC ’23: “Scaling a Variant Calling Genomics Pipeline with FaaS” (ACM DL:
10.1145/3631295.3631403).

Scientific Paper: The design and implementation of this serverless genomics pipeline are de-
scribed in detail by Arjona et al. [13], highlighting data partitioning, I/O orchestration, and fault-
tolerance challenges when migrating a variant-calling workflow to FaaS.

Status: Research prototype.

5.2.2 Genomic Analysis Pipeline (BSC)

Overview: Development of a high-performance processing pipeline for the discovery of variants
interaction and its association with complex disorders

Description: Identifying associations between multiple genomic variants and specific disorders
is essential for advancing our understanding of disease mechanisms. However, this task remains
challenging due to the vast volume of data that must be simultaneously stored, processed, and anal-
ysed. To address this, the integration of scalable, dynamic, and distributed computational tools is
critical for managing complex data analytics workloads efficiently. The proposed workflow ingests
and partitions genomic datasets, enabling a machine learning-based approach to analyse the data in
a combinatorial fashion. This orchestration facilitates parallel processing of data segments, thereby
enhancing analytical throughput and precision.

Core Components:
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• MPI: Parallelized HPC processing.

• Lithops-HPC: Serverless scalable platform adapted to run on HPC environments.

• Dataplug: Dynamic partitioning tool.

• RabbitMQ: Queue management system.

• GekkoFS: Lightweight, temporary distributed file system for high-throughput HPC.

• Dask: Parallel framework for distributed tasks, with a library to distribute XGBoost (Random
forest algorithm) into multiple GPUs.

• NVIDIA: High-performance computing, deep learning, and AI workloads.

Datasets:

• 70KforT2D: 1.285 TB; 1.5 ∗ 106 million variants; 22,802 paired case-control individuals

• UK Biobank: 3.286 TB; 1.5 ∗ 106 million variants; 55,438 paired case-control

Engineering Challenges:

• Partitioning: Shuffling the dataset into disordered partitions.

• I/O data ingestion: Effectively read extreme amounts of data and distribute it across readers in
multiple nodes/cores.

Repository & Activity:

• URL: https://gitlab.bsc.es/datacentric-computing/lithops-hpc-genomics

Last update: September 1st, 2025

• URL: https://gitlab.bsc.es/datacentric-computing/lithops-hpc-examples

Last update: July 1st, 2025

Table 27: Genomics Analysis Pipeline (BSC) Key Metrics by Period

Metric Value Period
Lines of Code 8,916/1,998 All time
Forks 0/1 All time
GitHub Stars 0/1 All time
Active Contributors 6/5 All time
Commits 29/15 All time

Documentation:

• Detailed documentation on how to deploy Lithops-HPC is found in the repository https://
gitlab.bsc.es/datacentric-computing/lithops-hpc-examples.

• The source code for the GWD use case is available in https://gitlab.bsc.es/datacentric-computing/
lithops-hpc-genomics, explaining how to launch.

• The source code for MDR use case with Ltihops-HPC is available in https://gitlab.bsc.es/
datacentric-computing/mpi-genomics-mdr along with its documentation.

Page 46 of 53

https://gitlab.bsc.es/datacentric-computing/lithops-hpc-genomics
https://gitlab.bsc.es/datacentric-computing/lithops-hpc-examples
https://gitlab.bsc.es/datacentric-computing/lithops-hpc-examples
https://gitlab.bsc.es/datacentric-computing/lithops-hpc-examples
https://gitlab.bsc.es/datacentric-computing/lithops-hpc-genomics
https://gitlab.bsc.es/datacentric-computing/lithops-hpc-genomics
https://gitlab.bsc.es/datacentric-computing/mpi-genomics-mdr
https://gitlab.bsc.es/datacentric-computing/mpi-genomics-mdr


HORIZON - 101092644 NEARDATA

31/10/2025 RIA

• The scientific method pre-print is published in MedRxv: "Genetic Profiling and Early Detec-
tion of Type 2 Diabetes Subtypes through Sex-Stratified GWAS and Explainable AI" (DOI:
https://doi.org/10.1101/2025.07.24.25332120)

Scientific Paper: The design and initial implementation of Lithops-HPC is available by [6], ex-
plaining the adaption process of the Lithops framework into supercomputers that resulted into the
Lithops-HPC architecture. On the other hand, [14] explains the biological side of the use-case.

Status: Research prototype.

5.2.3 Genomic Analysis Pipeline (Sano)

Overview: Implements a resource-intensive pipeline in the cloud in order to create the Transcrip-
tomics Atlas by processing publicly available RNA-sequencing data from NCBI-NIH/ENA.
Description: The goal of this use case is to create the Transcriptomics Atlas, in which data from a
representative set of human tissues were uniformly processed. This resource can be of use in a wide
range of scientific applications. The pipeline which is designed for this task consists of accessing
FASTQ data, alignment of RNA sequences, and a normalization step. Alignment is expensive in
terms of compute resources and time. Processing hundreds of terabytes of such data is challenging
and requires a cost-efficient approach and thoughtful optimizations.
Core Components:

• AWS services: EC2, S3, Lambda, ECS (Fargate mode), DynamoDB, SQS

• Terraform - Management of cloud infrastructure

• Boto3 - Python library for AWS services

• Lithops - For serverless processing of sequences with Salmon-based pipeline

Datasets:

• NCBI NIH Sequence Read Archive - largest public biological data repositories, containing
petabytes of sequencing data from millions of experiments (part of International Nucleotide
Sequence Database Collaboration (INSDC)).

Engineering Challenges:

• Resource-intensive application - STAR aligner (requires over 30GB of memory within node and
is CPU-intensive)

• Human genome index distribution to nodes

• Cost-efficient processing of large dataset

Repository & Activity:

• URL: https://github.com/neardata-eu/transcriptomics-atlas-sano

Last update: September 30th, 2025

• URL: https://github.com/neardata-eu/salmonless

Last update: July 7th, 2025
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Table 28: Genomics Analysis Pipeline (Sano) Key Metrics by Period

Metric Value Period
Lines of Code 10,427/8,729 All time
Forks 0/0 All time
GitHub Stars 0/0 All time
Active Contributors 1/1 All time
Commits 273/13 All time

Documentation:

• 4 publications about Transcriptomics Atlas

– Optimizing Star Aligner for High Throughput Computing in the Cloud - [15]

– Serverless Approach to Running Resource-Intensive STAR Aligner - [16]

– Accelerating Cloud-Based Transcriptomics: Performance Analysis and Optimization of the STAR
Aligner Workflow - [17]

– Novel Approaches Toward Scalable Composable Workflows in Hyper-Heterogeneous Computing
Environments - [18]

• Comprehensive README

• Unit tests in Docker

Status: In Development.

5.3 Surgery (NCT)

5.3.1 Semantic Video Search

Overview: A policy-driven semantic video search solution that exploits tiered storage in streaming
systems.

Description: Streaming systems are an increasingly appealing substrate for managing video data
via stream abstraction. However, if we consider a large stream collection, it can be hard for data scien-
tists to discover and locate relevant videos, let alone specific video fragments. Knowing this problem,
StreamSense is proposed, which allows users to deploy AI models that generate embeddings from
video frames via policies.

Core Components:

• Pravega: Handles video stream ingestion and provides real-time and historical access to frames.

• GStream: Provides a mechanism to decode and process video streams in realtime.

• Milvus: Stores embeddings of key frames in two separate collections: a global one (containing
a fraction of the frames) and a specific one (containing all key frames). This structure enables
both intravideo and intervideo similarity search.

Repository & Activity:

• URL: https://github.com/neardata-eu/video-stream-indexing

• Last update: July 14, 2025
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Table 29: Surgery (NCT): Semantic Video Search Key Metrics by Period

Metric Value Period
Lines of Code 6,887 All time
Forks 0 All time
GitHub Stars 0 All time
Active Contributors 2 All time
Commits 97 All time

Documentation:

• Comprehensive README and detailed paper published in https://dl.acm.org/doi/10.1145/
3700824.3701097.

• Video demos in /media.

• No formal unit tests; validated via example.

Status: Production-ready.

5.3.2 Federated Learning within SGX Enclaves Using SCONE (TUD)

Overview: A secure and confidential federated learning solution leveraging SCONE and Trusted
Execution Environments (TEEs) to protect computation and data in adversarial settings.

Description: Federated Learning (FL) enables collaborative model training while keeping raw
data confidential. This project integrates SCONE to run FL inside Intel SGX enclaves, using dynamic
attestation, network/file shielding, and confidential orchestration. Memory inspection experiments
confirm that sensitive data remains protected even against privileged attackers. Performance over-
head primarily arises from enclave startup, which is mitigated for longer-running workloads.

Core Components:

• Federated Learning Application: Python-based client/server FL logic.

• SCONE Runtime: Provides TEE support and enclaves for confidential execution.

• SCONE CAS (Configuration & Attestation Service): Manages network shielding and attesta-
tion.

• Kubernetes Orchestration: Deploys and scales FL workloads securely with confidential or-
chestration.

• Security Features:

– Network Shield: Encrypts and authenticates network traffic between FL clients and server
enclaves.

– File System Shield: Encrypts training data at rest with dynamic key rotation.

– Dynamic Attestation: Continuous verification of enclave integrity and policy compliance.

– Confidential Orchestration: Ensures deployment metadata and secrets remain inside en-
claves.

Repository & Activity:

• URL: https://github.com/neardata-eu/scone-artifacts/tree/main/images/flowerml/FederatedChallengeSetup

• Last update: July 17, 2025
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Documentation:

• SCONE official documentation: https://sconedocs.github.io/

Table 30: Federated Learning within SGX Enclaves Using SCONE - Key Metrics

Metric Value / Note Period
Lines of Code 808

Includes Python scripts, configuration files, for setting up and validating
the federated learning workflow within SCONE.

All time

Forks 0 All time
GitHub Stars 0 All time
Active Contributors 2 All time
Commits 54 All time

Status: Operational and validated. Security experiments confirm confidentiality and integrity.

6 Conclusions

The NEARDATA project has resulted in the creation of an extensive software ecosystem that collec-
tively embodies the principles of high-performance near-data computing, secure orchestration, and
reproducible research. Spanning more than a dozen software components, the project’s outcomes
cover the full data lifecycle—from acquisition and transformation to analysis, visualization, and
governance—thus enabling a unified approach to managing and processing extreme, distributed,
and heterogeneous datasets.

A central contribution is the establishment of the Extreme Data Hub as a practical and extensi-
ble construct realized through modular components such as DataPlug, DataCockpit, and PyRun.
PyRun in particular plays a pivotal role by acting as a user-facing frontend that integrates and ex-
poses many of the project’s core results, including pipelines developed with Lithops, Lithops-HPC,
Burst Computing, and other backend systems. Through this unified interface, researchers and prac-
titioners can execute, monitor, and reproduce data-driven workflows across heterogeneous infras-
tructures, bridging experimental research and operational deployment.

The software stack demonstrates a strong emphasis on reproducibility and transparency. Each
component has been released in public repositories with clear documentation, containerized run-
times, and reproducible deployment scripts. The integration of continuous integration (CI) pipelines,
Docker-based environments, and version-controlled configurations ensures that computational ex-
periments can be re-executed deterministically, thus reinforcing the scientific rigor of the project’s
results. In addition, PyRun provides a reproducibility layer by standardizing how runtimes, data
connectors, and pipelines are executed across multiple infrastructures.

Another distinguishing achievement of NEARDATA is the coexistence of production-grade frame-
works and research prototypes within a single architectural vision. Mature components such as
Lithops, Pravega, SCONE, and Metaspace are already maintained by active open-source communi-
ties and deployed in real production settings. These communities contribute continuously to code
maintenance, bug resolution, and new feature development, ensuring long-term sustainability be-
yond the project’s funding period.

Complementing these mature systems, several research prototypes—including Nexus, FaaS-
tream, Glider, Burst Computing, and Lithops-HPC—have been developed as exploratory platforms
to validate new paradigms such as serverless HPC, streaming-based orchestration, and cross-cloud
near-data computing. These prototypes have been validated experimentally in publications and in-
tegrated where possible into PyRun, allowing them to be executed alongside production-ready com-
ponents.
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The project’s approach has also fostered significant synergies with other research projects in the
DataNexus cluster and with URV’s CLOUDLESS project, where shared development efforts have
strengthened PyRun’s orchestration layer and runtime management capabilities. This collaboration
has yielded a unified, scalable, and multi-cloud execution framework that now serves as a reference
implementation, demonstrating the benefits of cross-project integration in European research initia-
tives.

In summary, NEARDATA delivers a comprehensive portfolio of interoperable software artifacts
that collectively advance the state of the art in extreme data management and confidential computing.
These software outcomes are:

• Open and Reproducible: Each component is publicly accessible, version-controlled, and doc-
umented to ensure transparent reproducibility of results.

• Integrated and Interoperable: Through PyRun and shared data connectors, components can be
composed into reproducible end-to-end pipelines across cloud, edge, and HPC infrastructures.

• Sustainable: Production-ready frameworks are supported by active open-source communities,
ensuring ongoing maintenance and growth.

• Innovative: Research prototypes explore novel directions in near-data execution, serverless
elasticity, and cross-cloud orchestration.

The result is a robust, modular, and extensible software foundation that not only fulfills NEAR-
DATA’s objectives but also lays the groundwork for future research and industrial exploitation in
large-scale distributed analytics, secure data sharing, and AI-driven cloud orchestration.
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