
HORIZON EUROPE FRAMEWORK PROGRAMME

NEARDATA
(grant agreement No 101092644)

Extreme Near-Data Processing Platform

D2.1 Initial Architecture Specifications

Due date of deliverable: 30-06-2023
Actual submission date: 30-06-2023

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 92

WP/Task related to this document WP2 / T2.1

WP/Task responsible Universitat Rovira i Virgili (URV)

Leader Xavier Roca (URV)

Technical Manager Josep Lluís Berral (BSC), Raúl Gracia (DELL) and Pedro
García (URV)

Quality Manager André Martin (TUD) and Daniel Barcelona (URV)

Author(s) Pedro García (URV), Xavier Roca (URV), Josep Lluís Berral
(BSC), Aaron Call (BSC), Gonzalo Gomez (BSC), Lorena
Alonso (BSC), André Martin (TUD), Zhaoyu Chen (NCT),
Max Kirchner (NCT), Theodore Alexandrov (EMBL), Ma-
ciej Malawski (SANO), Jan Przybyszewski (SANO), En-
rique Chirivella-Perez (KIO), Daniel Ramirez (KIO), An-
dré Miguel (SCO), Raúl Gracia (DELL) and Paolo Ribeca
(UKHS)

Partner(s) Contributing URV, BSC, TUD, NCT, EMBL, SANO, KIO, SCO, DELL,
UKHS

Document ID NEARDATA_D2.1_Public.pdf

Abstract Deliverable D2.1 "Initial Architecture Specifications" aims
to present in detail the initial specifications of the overall ar-
chitecture, the description of the use cases, the experiments
and the benchmarking frameworks that we proposed in
the NEARDATA project. Specifically, this deliverable con-
tains the identification of the requirements and the descrip-
tion of the main components and their integration with
the different use cases. On the other hand, the use cases
will be presented together with the necessary modifications
to adapt and integrate them to the described components.
Next, the different benchmarking frameworks and their re-
quirements will be provided, together with the test envi-
ronments to perform the experiments. Finally, ethical and
confidentiality measures have been established to prevent
and secure the treatment of extremely sensitive data.

Keywords Architecture, components, confidential computing, use
cases, experiments, extreme data, sensitive data, ethical re-
quirements.

History of changes

Version Date Author Summary of changes

0.1 15-05-2023 Xavier Roca (URV) First draft.

0.2 18-06-2023 Xavier Roca (URV), Josep
Lluís Berral (BSC), Aaron
Call (BSC), Gonzalo Gomez
(BSC), Lorena Alonso (BSC),
André Martin (TUD), Zhaoyu
Chen (NCT), Max Kirchner
(NCT), Theodore Alexandrov
(EMBL), Maciej Malawski
(SANO), Jan Przybyszewski
(SANO), Enrique Chirivella-
Perez (KIO), Daniel Ramirez
(KIO), André Miguel (SCO),
Raúl Gracia (DELL) and
Paolo Ribeca (UKHS)

Contributions.

0.5 21-06-2023 Daniel Barcelona (URV),
Pedro García (URV), Xavier
Roca (URV), Aaron Call
(BSC) and Raúl Gracia
(DELL)

Internal review of the deliverable.

1.0 29-06-2023 Xavier Roca (URV) Final version.

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Table of Contents

1 Introduction 3

2 Initial architecture specifications 5
2.1 Proposed theoretical architecture . 5

2.1.1 Data plane: Data Catalog and Data Connectors 6
2.1.2 Control Plane: Data Broker and Confidential Data Orchestration 7

2.2 Proposed Architecture . 8
2.3 NEARDATA Architecture Life Cycle . 10
2.4 Data Plane components . 13

2.4.1 Lithops: Serverless data processing platform . 13
2.4.2 Serverless data connector for dynamic unstructured data partitioning 16
2.4.3 Pravega: A Tiered Storage System for Data Streams 18

2.5 Control Plane components . 28
2.5.1 Confidential Technologies . 28
2.5.2 Confidential data exchange . 32
2.5.3 Confidential orchestration . 34
2.5.4 AI-based optimization of Cloud/Edge Workflows 37

3 Description of use case scenarios 41
3.1 Clinical sequencing of human pathogens . 41

3.1.1 Description of the use case . 41
3.1.2 Datatypes and datasets . 42
3.1.3 Data connectors . 42
3.1.4 Experiments . 43
3.1.5 Technical challenges . 44

3.2 Variants interaction analyses in massive genomics datasets 44
3.2.1 Description of the use case . 44
3.2.2 Datatypes and Datasets . 46
3.2.3 Data connectors . 46
3.2.4 Experiments . 46
3.2.5 Technical challenges . 47

3.3 Transcriptomics Atlas Use Case . 47
3.3.1 Description of the use case . 47
3.3.2 Datatypes and Datasets . 48
3.3.3 Data connectors . 48
3.3.4 Experiments . 49
3.3.5 Technical challenges . 49

3.4 Metabolomics Use Case . 50
3.4.1 Description of the use case . 50
3.4.2 Datatypes and Datasets . 51
3.4.3 Data connectors . 51
3.4.4 Experiments . 52
3.4.5 Technical challenges . 53

3.5 Surgery Use Case . 54
3.5.1 Description of the use case . 54
3.5.2 Datatypes und Datasets . 54
3.5.3 Data Connectors . 54
3.5.4 Experiments . 55
3.5.5 Technical Challenges . 55

i

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

4 Benchmarking framework 56
4.1 Clinical sequencing of human pathogens . 56

4.1.1 Involved Tools and Systems . 57
4.2 Variants Interaction Analytics in massive genomics datasets 57

4.2.1 Cloud and edge computing environments . 57
4.2.2 Pipeline evaluation . 58
4.2.3 Involved Tools and Systems . 58

4.3 Transcriptomics Atlas Use Case . 59
4.3.1 Atlas Pipeline . 59
4.3.2 Involved Tools and Systems . 60
4.3.3 Federated Learning Pipeline . 61

4.4 Metabolomics Use Case . 62
4.4.1 METASPACE pipeline . 62
4.4.2 Experiment 1 . 62
4.4.3 Experiment 2 . 63
4.4.4 Involved Tools and Systems . 63
4.4.5 Evaluation and impact . 63

4.5 Surgery Use Case . 64
4.5.1 Surgical Navigation Pipeline . 64
4.5.2 Federated Learning Pipeline for Surgical Data 65
4.5.3 Involved Tools and Systems . 66

4.6 Testbed . 66
4.6.1 KIO Networks Cloud Computing Architecture (VDC) 67
4.6.2 KIO Networks Cloud Computing GPU Architecture (VDC-GPU) 68
4.6.3 KIO Networks Cloud Computing S3 Architecture (S3) 68
4.6.4 KIO Networks Cloud Computing Kubernetes Architecture 69
4.6.5 Partners requirements . 70

5 Confidential and ethical requirements for AI technologies 72
5.1 Clinical Sequencing of Human Pathogens Use Case . 73
5.2 Variants Interaction Use Case . 74
5.3 Transcriptomics Atlas Use Case . 75
5.4 Metabolomics Use Case . 75
5.5 Confidentiality and ethical considerations in Surgery Use Case 76
5.6 Summary and Contingency of Ethical Issues . 77

6 Conclusions 79

A Appendix: NEARDATA APIs 80
A.1 Data Plane APIs . 80

A.1.1 Data Catalog APIs . 80
A.1.2 Data Connectors APIs . 80
A.1.3 Streaming APIs . 83

A.2 Control Plane APIs . 87
A.2.1 SCONE CAS API . 88
A.2.2 Keycloak API . 88

ii

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

List of Abbreviations and Acronyms

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

AWS Amazon Web Services

BSC Barcelona Supercomputing Center

CAS Configuration and Attestation Service

CGS Computer-Guided Surgery

CPU Central Processing Unit

CSV Comma-separated values

DAG Directed Acyclic Graph

DMZ Demilitarized Zone

DNA Deoxyribonucleic Acid

DSAD Dresden Surgical Anatomy Dataset

EMBL European Molecular Biology Laboratory

ENA European Nucleotide Archive

ETL Extract, Transform and Load

FaaS Function as a Service

FDR False Discovery Rate

FUSION Finland-United States Investigation of NIDDM Genetics

GDPR General Data Protection Regulation

GENEVA Gene Environment Association Studies initiative

GERA Genetic Epidemiology Research on Aging

GPU Graphics Processing Unit

GWAS Genome-Wide Association Studies

HDFS Hadoop Distributed File System

HPC High Performance Computing

IAM Identity and Access Management

IoT Internet of Things

IPC Inter-Process Communication

LTS Long Term Storage

ML Machine Learning

Page 1 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

MS Mass Spectrometry

NCBI National Center for Biotechnology Information

NCT German Cancer Research Center

NFS Network File System

NHS National Health Service

NIDDM Non-Insulin-Dependent Diabetes

NUgene Northwestern University NUgene project

OLTP Online Transactional Processing

OS Operating System

PII Personally Identifiable Information

REST Representational State Transfer

RNA Ribonucleic Acid

SANO Centre for Computational Medicine

SCO Scontain

SEV Secure Encrypted Virtualization

SLA Service Level Agreements

SLAM Simultaneous Localisation and Mapping

SRA Short Read Archive

SSD Solid State Drive

TEE Trusted Execution Environment

TUD Technical University Dresden

UKHS UK Health Security Agency

URV Universitat Rovira i Virgili

UTM Unified Threat Management

VDC Virtual Data Center

VM Virtual Machine

WAL Write-Ahead Log

WTCCC Welcome Trust Case Control Consortium

Page 2 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

1 Introduction

The NEARDATA project is based on the idea of near-data processing paradigm. We can describe this
concept as the ability to place processing power close to the data, rather than sending the data to the
processor.

The goal of NEARDATA is to create an extreme near-data infrastructure mediating data flows
between Object Storage and Data Analytics platforms across the Compute Continuum. Our novel
Data Plane is an intermediary data service that intercepts and optimises data flows (S3 API, stream
APIs) with high performance near-data connectors (Cloud/Edge). Our unique Data Broker service
will provide secure data access and orchestration of dispersed data sources thanks to TEEs and fed-
erated learning architectures. Our NEARDATA platform is a novel technology for data mining of
large and dispersed unstructured data sets that can be deployed in the Cloud and in the Edge (HPC,
IoT Devices), that leverages advanced AI technologies and offers a novel confidential cybersecurity
layer for trusted data computation.

From this definition three core objectives can be distinguished:

• Provide high-performance near-data processing for Extreme Data Types: The first objective is to create
a novel intermediary data service (Data Plane) between Object Storage and Analytic platforms.
This Data Access Layer will provide serverless type-aware data connectors that optimise data
management operations (partitioning, filtering, transformation, aggregation) and interactive
queries (search, discovery, matching, multi-object queries) to efficiently present data to ana-
lytics platforms. Our data connectors facilitate an elastic data-driven process-then-compute
paradigm which significantly reduces data communication on the data interconnect, ultimately
resulting in higher overall data throughput.

• Support real-time video streams but also event streams that must be ingested and processed very fast
to Object Storage: The second objective is to seamlessly combine streaming and batch data pro-
cessing for analytics. To this end, we will develop stream data connectors deployed as stream
operators offering very fast stateful computations over low-latency event and video streams.
In particular, we want to explore how native stream serialisers for heterogeneous data types
(OMICs) can optimise intensive data flows between Object Storage and analytics services across
the entire Compute Continuum.

• Provide secure data orchestration, transfer, processing and access: The third objective is to create a
Data Broker service enabling trustworthy data sharing and confidential orchestration of data
pipelines across the Compute Continuum. In order to ensure confidentiality and integrity, the
project will develop mechanisms to utilise Trusted Execution Environments (TEEs) along fed-
erated learning architectures. To protect data in flight and rest, the project will develop mech-
anisms for transparent encryption for data transfers as well as storage that require no code
modification and provide high throughput at the same time. Policy-driven mutual authen-
tication mechanisms will furthermore support advanced data access policies for non-trusting
stakeholders which are governed through policy boards so that access rules can be dynamically
updated by human deciders and other entities.

Validating a project like NEARDATA and demonstrating its impact requires a consistent eval-
uation from the main components that form the overall architecture along robust use cases and
benchmarks. To this end, we focus on three health data domains containing large unstructured data:
metabolomics (images), genomics (text), and surgery data (video). The selected data domains comply
perfectly with the definition of extreme data.

OMICs settings have a relevant problem of huge and increasing data volumes that push current
technologies to their limits. Here, there is a strong challenge in the data ingestion from Object Storage
to computing analytics services. As we will see, the ingest-then-compute data-shipping paradigm is

Page 3 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

becoming unfeasible for many OMICs datasets. In this line, moving terabytes of compressed infor-
mation to the memory of analytics clusters just for pre-processing and data manipulation can become
extremely expensive. This is a huge problem inside the Cloud, but it gets even worse if data must be
moved to remote locations (Edge/HPC).

On the other hand, computer-assisted surgery shows an extreme problem of data speed because
it requires low latency real time video analytics and robotic IoT event streams. There is here a strong
challenge to support real-time video streams that must be processed very fast to the Object Storage at
large scale. Furthermore, low-latency requires here near-data processing at the Edge to satisfy real-
time processing requirements.

This document provides an overview of the project and the initial specifications of the novel
NEARDATA platform. In the following sections, the main components of the overall architecture
will be described along with their specifications and approaches to integrations with the use cases
to meet the described objectives and address the problems caused by the massive data ingestion and
low latency real time video analytics. Next, the use cases will be detailed in an extended way to
observe their requirements, datasets and pipelines. Likewise, the benchmarking frameworks will be
defined for their correct evaluation.

Finally, health data in general is highly sensitive, so it has tough privacy and security require-
ments that preclude many hospitals and research labs to share, move, or publish their data openly.
Ethical and confidentiality requirements will be detailed to guarantee a correct use of the data as well
as its protection in the different confidential and federated learning use cases.

Page 4 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

2 Initial architecture specifications

2.1 Proposed theoretical architecture

Figure 1 shows the overall architecture proposed in the NEARDATA project. This solution is inspired
by the Reference Architecture of International Data Spaces1.

Our proposal is based on four main blocks:

• Data Sources. This block encompasses the different data sources found in the NEARDATA
platform. These data sources can be located in different environments, such as Cloud or Edge.
Thus, data can be directly stored in storage services such as Object Storage or collected and
ingested through different IoT devices.

• Analytics. This block is in charge of collecting the different processing platforms to apply the
different computing cases shown in Figure 1, such as Federated Computing, Massive Parallel
Serverless Computing and High-Performance Computing.

• Data Plane. This block is focused on data management within the NEARDATA platform. It
provides data indexing, metadata and semantics through the Data Catalog component, connec-
tion between Data Processing Platforms with Data Sources offering different Data Connectors
and Stream Operators. The Data Plane allows analytic frameworks (Data Pipelines) to ingest
extreme data efficiently.

• Control Plane. As the name indicates, the purpose of this block is to establish control over the
different blocks. It allows the discovery of confidential data through the Data Broker compo-
nent. Thanks to the Trusted Execution Environments component, the different blocks explained
above can be secured to perform confidential execution and data access. Likewise, these secure
executions can be orchestrated by the Confidential & Federated Orchestration component. Fi-
nally, the Control Plane will incorporate an AI-based component to optimize data pipelines.

In addition, we can identify five key entities:

• Data Provider is responsible for making data available for consumption by users. In most
cases, the Data Provider will be the Data Source platforms. Data Sources in Figure 1 are Data
Providers.

• Data Consumer is in charge of retrieving the data from the Data Provider. The Data Consumer
can connect only through Data Connectors or directly to Data Sources to consume the data. In
Figure 1, the different analytics frameworks are Data Consumers.

• The Identity Provider is the element capable of authenticating users to establish secure con-
nections over the Trusted Execution Environment. It is used to control access and manage the
roles of users who wish to use Confidential computing and federated learning. The Identity
Provider is found as an authentication service within the Data Broker in Figure 1.

• The Data Broker is NEARDATA’s main confidentiality and security provider. It contains ele-
ments to guarantee secure executions (applications to protect components), elements capable
of managing and orchestrating user access and roles and provides confidential data discovery
and access. Keeping the same naming convention, this Data Broker concept is related to the
Trusted Execution Environment and the Data Broker depicted in Figure 1.

• The Data Connector allows connections to be established between the Data Provider and the
Data Consumer. Within the context of NEARDATA, the Data Connector will add computation
near the Data Sources so that the data is prepared before being consumed. We extend this
concept also to Stream Operators in Figure 1.

1https://internationaldataspaces.org/

Page 5 of 92

https://internationaldataspaces.org/

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

The integration of all the blocks is based on simple paths, as shown in the Figure 1. The process
starts with use cases presented by users. To carry out the solutions to these problems, Data Pipelines
are developed that use Data Programming Abstractions to connect to the different Data Connectors
or Stream Operators to consume the data they require for their execution. Data Connectors will use
the Data Catalog (obtain the metadata) to understand the data and apply the correct methods to
ingest and prepare it for the computation. By adding the Control Plane functions, the developed
pipelines can be optimized for a more efficient execution while taking full advantage of the resources
offered by the different processing platforms.

On the other hand, users may propose federated computing use cases, where confidentiality is
essential. For this, Trusted Execution Environments will be generated and orchestrated to guarantee
a private and secure execution. Finally, users will be able to establish a connection with the Data
Broker to discover and access encrypted data and start the execution of their TEE.

Figure 1: Proposed Theoretical Architecture

2.1.1 Data plane: Data Catalog and Data Connectors

In our platform, Extreme Data Types are virtual objects that encapsulates Unstructured Data, Meta-
data, and specialised Data Connectors that facilitate its processing and filtering by analytics plat-
forms. Our rich data platform converts bulk unstructured data blobs into semi-structured datasets
that can be queried, filtered and parsed.

The Data Plane includes four core components: Data Catalog, Serverless Data Connectors, Stream
Operators, and Data Programming abstractions (Analytics interconnection layer).

• The Data Catalog includes an indexing layer on top of Object Storage, in which data is stored as
blobs or files in buckets with no semantic information. The Data Catalog layer stores metadata
information relevant for data preparation, partitioning, ETL tasks and data query mechanisms.
The Data Catalog will be based on Object Storage native metadata services, as well as faster
in-memory databases such as Redis.

Page 6 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• The Serverless data connector engine includes an auto-scalable containerised computing ser-
vice including near-data manipulation primitives that intercepts Object Storage APIs (S3). The
connector service leverages the Data Catalog to transform data in an adaptive way and to de-
liver it to the requesting application with minimal delay and in the appropriate format. Each
data type will include a collection of data connectors that will help to provide and transform
data to heterogeneous analytics applications running across the compute continuum. Data
connectors must also support hardware accelerated substrates not available today in existing
serverless Cloud offerings.

• The Stream operator engine provides an auto-scalable containerised computing service includ-
ing stream data manipulation primitives. The stream connector service must deploy connec-
tors as auto-scalable stream operators offering very fast stateful computations over low-latency
event and video streams. To this end, the stream connector service must auto-scale accordingly
to the underlying auto-scalable stream storage service.

• Data Programming abstractions: We will implement a Data Analytics interconnection layer
offering new data abstractions or integrating existing ones (e.g. Ray Dataset, Spark Dataset,
Pytorch Datasets) to facilitate data loading and processing. This key interconnection layer will
facilitate an smooth transition for data scientists using widely accepted toolkits. A clear objec-
tive here is code transparency for legacy applications and allowing to integrate any analytics
(HPC, Edge, Cloud) platform through data and storage wrappers.

2.1.2 Control Plane: Data Broker and Confidential Data Orchestration

The Control Plane is the major front-end of the NEARDATA platform which includes both data dis-
covery, governance and acces but also optimised orchestration and declarative interconnection of
heterogeneous data flows. The Control Plane will be designed as a declarative data analytics inter-
connection platform enabling a radically-simple, efficient execution of analytics over vast amounts
of raw data from heterogeneous sources. This will be done by using the smart and adaptive intercon-
nection of compute and storage data flows thanks to the Data Plane. We will develop a mechanism
to translate the declarative specification into a data interconnect, composing user-provided code and
data connectors, which will be seamlessly interleaved to deliver heterogeneous connectivity, APIs,
and data formats. As a result, this will provide the ability to consume data from anywhere and to
run analysis tasks everywhere, without the need for a complex setup or infrastructure expertise.

The Control plane includes four core components: Data Broker, Confidential Compute layer, Con-
fidential and Federated Orchestrator and Data-Driven AI Optimiser.

• The Data Broker is the cockpit of the NEARDATA platform, exposing and orchestrating all
confidential services in the Data and Control planes. The Data Broker sources the informa-
tion from data providers and provides it to data consumers. It permits to create, register and
federate Data Sources (Datasets) in a particular domain. It is an extensible platform combin-
ing metadata services with data connector services in the Data Plane. Our semantic-rich layer
enables rich data discovery and query mechanisms over unstructured or semi-structured data
sources located in different repositories. The Data Broker incorporates a service to authenticate
the user that will allow the user to access, decrypt and process confidential data. On the other
hand, the Data Broker also encompasses the confidential orchestration services and the inter-
connection of heterogeneous data streams through analytical platforms and services described
below.

• The Confidential Compute layer provides protection of data at rest, in transit as well as in use
in the data plane thanks to Trusted Execution Environments. We want to ensure confidentiality,
integrity and freshness at all times. Confidentiality and integrity can be guaranteed when utiliz-
ing state of the art technologies such as Trusted Executions Environments[1] provided through
Intel SGX. Although the technology is mature and in the process of being widely adopted, it

Page 7 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

is limited to a specific CPU vendor and models like Intel Skylake CPUs. Therefore, an often
overlooked requirement is the support of CPU vendors other than Intel such as ARM, AMD
and edge devices that provide similar security features to allow service providers to run their
applications in an isolated fashion with attestation[2]. We therefore aim at developing a frame-
work that is transparent to the underlying hardware, however, facilitates the available security
features provided at the node the application is running on.

• The Confidential & Federated orchestration layer is a declarative interconnection framework
for extreme data workflows ensuring confidentiality and security in the entire data path. The
orchestration service may leverage Kubernetes orchestration mechanisms but also higher level
workflow definitions such as systems like FedML (Federated Learning). The orchestration
layer must also provide mechanisms for transparent encryption of data flows, and to leverage
privacy-aware data connectors that adapt to data governance policies defined in the Data Cat-
alog. In general, this layer will instrument the different services of the Data Plane to facilitate
confidential data interconnection between data providers, data sources and data consumers
using a variety of analytic tools across the entire Compute Continuum.

• The AI-based Optimiser of Cloud/Edge Workflows is a learning service that focuses on improv-
ing data- driven orchestration of workloads and pipelines defined in the Orchestration layer. It
will use state of the art deep and statistical learning methods to analyse data-bound complex
workloads and optimise resource consumption and KPIs (performance) using telemetry infor-
mation. It will generate efficient execution plans that meet policy constraints and instrument
the orchestration layer.

2.2 Proposed Architecture

Figure 2 shows the proposed architecture based on the theoretical architecture adopting the real com-
ponents that we will present below that form the NEARDATA platform.

Figure 2: NEARDATA Architecture

Our bottom-up approach first focuses entirely on the specific problems in the selected healthcare
domains (OMICS and surgery). In this project, it mainly brings together data scientists from compu-
tational medicine and bioinformatics with computational researchers with expertise in Extreme/Big
Data and Cloud/Edge Computing. Each partner is focused on a different topic developed in one or
more pipelines. We can see the partners presenting use cases in Use Cases - Data pipelines block.

Page 8 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

UKHS, BSC, SANO and EMBL are focused on OMICS and NTC on surgery videos.

The project focuses mainly on extreme health data to increase the impact of results in this field.
This requires extracting large datasets from big data sources. We can distinguish two types of data
sources: data stored in the Cloud or in the Edge. Most of the datasets that partners submit for analysis
are available on different cloud platforms or in specific data centres. EMBL presents its METASPACE
platform that hosts an engine for metabolite annotation of imaging mass spectrometry data, as well
as a spatial knowledge base of metabolites from thousands of public datasets provided by the com-
munity. METASPACE is considered an extensive Data Source for metabolomics data. On the other
hand, different data centres are identified, such as National Center for Biotechnology Information
(NCBI) or UK Biobank for genomics data and CAMMA for surgery videos. Extremely sensitive data
belonging to an organization or hospital cannot be disseminated and confidentiality must be guaran-
teed. For this reason, they must be stored privately in the Edge. This is the case for the BSC partner,
where all the data they analyze must remain within their organization and the Marenostrum2. We
can identify some of the different data sources in the block Edge/Cloud Data Sources.

As mentioned above, the Data Plane facilitates the processing and filtering of extreme data from
unstructured data, metadata and specialised data. To meet this objective, four different components
are proposed that can be completed through four major projects.

• In our NEARDATA platform we find different Data Sources dedicated specifically to each of
the types of health data we present in the project. We can detect that each of these will have its
own specialized Data Catalog to extract the necessary metadata to acquire knowledge about the
data and facilitate the subsequent tasks of ingestion and processing. A clear example of this is
METASPACE, presented as a Data Source for metabolomic data. This platform offers different
storage APIs to perform searches on public datasets and collect their metadata. Therefore,
METASPACE offers its own Data Catalog. We can see METASPACE definition in section 3.4.

• Lithops is a serverless data analytics platform that is ideally suited for massively parallel data
management operations from data in Object Storage, as such, it is an excellent substrate to
implement Data Connectors. It offers an extensible storage and compute architecture that sup-
ports major Cloud Services in major Cloud providers (IBM Cloud, AWS, Google Cloud, Azure)
but also open source on-premise installations (Kubernetes, OpenShift) and Edge platforms (We-
bAssembly). Lithops also offers an extensible partitioner architecture that permits data-driven
parallel processing over Object Storage buckets that leverages the massive aggregate band-
width of Object Storage. A single parallel map in Lithops chunks data dynamically on-the-fly
using the selected partitioner and automatically allocating the required number of parallel func-
tions depending on the data. Lithops already provides data partitioners for different genomics
and metabolomics data types.

• The Serverless Data Connector is a data connector that enables to partition data efficiently and
dynamically on the fly directly from the object storage. Serverless Data Connector will offer
a novel partitioning tool to preprocess scientific data formats. In this way, data consumers
(Partners - Use Cases) can take advantage of this framework to facilitate the partitioning and
ingestion of large volumes of data.

• Dell Pravega is an open source storage system for data streams that translates the unified view
of stream and batch analytics to the data storage via the Stream abstraction. Pravega is a tiered
storage system: data events are first durably stored in tier-1, which is a low-latency, durable
and replicated write-ahead log. Once data is stored in tier-1, the data is cached in memory for
fast real-time access and the client is acknowledged so it can continue writing data. In parallel,
Pravega groups small events into larger chunks and writes them to tier-2 or long-term storage

2https://www.bsc.es/es/marenostrum/marenostrum

Page 9 of 92

https://www.bsc.es/es/marenostrum/marenostrum

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

(Object Stores, HDFS, etc.). This allows Pravega to achieve a sweet-spot in the latency versus
throughput trade-off: writers and real-time processing tasks obtain low latency (thanks to tier-
1 and memory cache, respectively), whereas batch jobs get high throughput thanks to parallel
reads from long-term storage. Not only that, Pravega adds the notion of “auto-scaling” to the
Stream abstraction, which is unique and allows to adapt the degree of parallelism of a Stream
automatically based on the load variations.

The Control Plane will be designed as a declarative data analytics interconnection platform. The
DataBroker will be in charge of establishing a totally secure connection between the different com-
ponents and the partners to store and retrieve private datasets and perform confidential executions
guaranteeing their security. To this end, TUD and SCONTAIN present SCONE, that permits running
unmodified programs inside Trusted Execution Environments (TEE). The technologies presented to
establish TEEs are CAS (Configuration and Attestation Service) to identify whether an application is
trustworthy or not and Keycloak to authenticate users. Finally, BSC presents an AI-based optimiza-
tion model to guarantee the correct orchestration of resources according to the requirements of the
different use cases or data analytics platforms.

All components identified in the proposed architecture will be expanded upon in the following
sections. In addition, an appendix has been added with all the APIs offered by each of these compo-
nents and new ones have been proposed (See Appendix A: NEARDATA APIs) for proper integration
and consistency with the life cycles presented below.

2.3 NEARDATA Architecture Life Cycle

In order to develop more clearly the operation and integration of all the components within the
NEARDATA platform, different life cycles will be detailed.

First of all, we will identify the most basic execution that we can find within the NEARADATA
platform. This will consist of a generic use case for analyzing massive data from a Data Source. To
do this, the user will select a data processing platform which will connect to a Data connector to con-
sume the required dataset through the Data Catalog or by accessing directly from the Data Source.
Figure 3 shows the sequence diagram that identifies the whole process.

This generic use case is divided into two parts, the preprocessing stage and the data processing
stage. The first one is in charge of using the Data Connector to establish a connection between the
Data Processing Platform and the Data Catalog or directly to the Data Source. If the Data Catalog is
used, Data Connectors will collect metadata to understand the data and apply the correct method to
ingest it from the Data Source. If the Data Source is accessed directly, it is considered that the user
already knows exactly the file and where it is located to be processed. Both processes will return
the dataset to the Data Connector so that the Data Processing Platform can start consuming the data.
The second stage initiates the processing steps established within the use case to analyze and extract
all possible value from the data. It should be noted that the Data Processing Platform used will be
optimized thanks to the AI-based optimizations component of BSC.

From this basic life cycle we can identify different variants due to the complexity and natural-
ness of the use cases and data formats used. OMICS data are considered extreme data due to their
large volumes. Trying to ingest them immediately is practically impossible with current technolo-
gies. Therefore, massive job parallelization is necessary to cope with this problem. The dynamic
partitioning offered by the Serverless Data Connector component is absolutely paramount when try-
ing to deal with this type of problem. This Data connector will establish two types of connections
on the Data Source. The first one to collect all possible metadata to generate the partitions and the
second one to extract these dynamically as they are needed in the processing stages.

Page 10 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 3: Basic NEARDATA Life Cycle

If we talk about data in video format as in the case of surgery videos. It is key to establish a
constant data flow between the Data Processing Platform and the Data Source to be able to analyze
the data in real time. It is also necessary to guarantee the minimum latency during this process. In
this case, we would speak of a cyclic pattern between data access and data ingestion and analysis.
The Pravega Stream Data Connector offered by our platform is essential to address this problem.

Next, we will present the life cycle of a use case based on confidential computing or federated
learning that incorporates the basic components to secure the pipeline and authenticate the users
capable of executing them. We will highlight a new key element, the Identity Provider, capable of
authenticating and managing user access to the configured TEEs. Figure 4 represents a sequence di-
agram of the life cycle of a confidential use case on a TEE.

First of all, the use case must be secured with the tools offered by the SCONE platform to establish
a secure execution environment involving the pipeline, the Data Processing Platform and the Data
Connector. In order to access this confidential use case, users will need to have certain keys or certifi-
cates capable of proving that they are a trusted user with execution roles on the pipeline. In addition,
within a secure environment it is extremely necessary that the sensitive data used is not shared or
extracted from the processing platform without preventative measures such as data encryption. This
data can only be decrypted by all trusted users who have keys or certificates that give them authority
over the encrypted data. Likewise, Data Sources must accept encrypted data and maintain policies
to ensure the anonymity, confidentiality and security of the data.

Once a fully secure and configured TEE is available, the user will be able to start the pipeline exe-
cution confidentially. The user must be authenticated through the Identity Provider. This key element

Page 11 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 4: Confidential Computing Life Cycle

will help us to control and manage user identification and access to the TEE. For this, the Keycloak
technology presented by SCO offers the necessary services to meet the established requirements.
Once the user is authenticated, he/she will try to access the TEE through the keys or certificates re-
turned by the Identity Provider. The TEE will check the user’s role in the environment. If the user
has the execution role, the user will be able to perform the necessary tasks to extract and analyze the
data in a secure and confidential way. If not, the user will not be allowed to execute the use case. The
following steps are similar to the previous life cycle of a basic use case. In this case, we can find an
important difference when extracting the data. As we have already mentioned, these are encrypted
in the Data Source and Data Calatog and we will only be able to access them if the user has the keys
or certificates provided by the Identity Provider. Once this data is ingested into the Data Processing
Platform, the user will be able to decrypt it with the keys or certificates. Once the data is completely
clean, the data processing or analysis stage will begin. As mentioned above, it must be ensured that
the data is not extracted from the TEE without being secured through different encryption methods
to ensure confidentiality and privacy.

After reviewing the different life cycles that we can find within the proposed architecture we will
detail in an extended way each of the components that form the Data Plane and the Control Plane
along with its integration within the NEARDATA context and architecture.

Page 12 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

2.4 Data Plane components

2.4.1 Lithops: Serverless data processing platform

Lithops [3] is a Python multi-cloud serverless computing framework. It allows to run unmodified
local Python code at massive scale on the main serverless computing platforms. Lithops delivers the
user’s code into the cloud without requiring knowledge of how it is deployed and run. Moreover,
its multicloud-agnostic architecture ensures portability across cloud providers, overcoming vendor
lock-in.

Lithops provides great value for data-intensive applications like Big Data analytics and embar-
rassingly parallel jobs. It is specially suited for highly-parallel programs with little or no need for
communication between processes.

Also, facilitates consuming data from object storage (like AWS S3, GCP Storage or IBM Cloud Ob-
ject Storage) by providing automatic partitioning and data discovery for common data formats like
CSV. Lithops abstracts away the underlying cloud-specific APIs for accessing storage and provides
an intuitive and easy to use interface to process high volumes of data.

Architecture and implementation. The high-level architecture of Lithops is depicted in Figure 5.
In its most fundamental incarnation, Lithops leverages just two different cloud services: the compute
backend to launch MapReduce jobs; and the storage backend to store all data, including intermediate
results. To keep Lithops completely serverless, the compute backend is typically a FaaS platform (e.g.,
AWS Lambda) and the storage backend is a BaaS storage service (e.g., AWS S3), so that its two main
pillars can scale independently from each other.

Internally, the main components of Lithops are:

• Executor, which allows end users to execute their code in the cloud through simple API calls.
Upon an API call, it serializes and uploads the single-machine user code and input data from a
local machine (e.g., laptop) to the storage backend. When a cloud function finishes its execution,
the output data generated by executing the user code within the cloud function is persisted to
the storage backend. For this reason, the executor monitors the storage backend for the ouput
data and transfers it to the user’s local machine when available.

• Invoker, which performs the “appropriate” number of function invocations against the compute
backend. We say “appropriate” since the number of cloud functions depends on the API call
itself. The invoker can be run on the cloud to hide the high invocation latency when the Lithops
client is very far from the compute backend.

• Worker is the workhorse of Lithops. In short, it runs on the compute backend, typically as a
cloud function, and its main role is to execute the user code associated with the API call that
spinned it up. In essence, it fetches the input data and user code from the storage backend, and
executes it, eventually saving the output to the storage backend.

Lithops can be seen as a dynamic task orchestrator, which can transparently take a user’s code and
input data, save them into the storage backend, and execute it at large scale by dynamically invoking
a generic worker function. This approach removes the overhead for function registration, favors the
reuse of the single registered function in order to mitigate cold starts, and allows to run user code
that exceeds the deployment package size constraints, since dependencies are injected at runtime,
not statically.

The runtime is the environment where the user code runs. As of today, all the compute backends
supported by Lithops permit to run functions in containerized environments. Leveraging Docker
technology allows developers to create their own custom runtimes. Simply put, a user may prepare
a Docker image with the required packages (Python modules, system libraries and binaries), and
then store it to a container registry (e.g., Docker Hub registry). The compute backend service will get
the container from the registry the first time is needed. From thereon, the image is cached on a local
registry to speed up subsequent invocations. To avoid side effects, both the client and server must

Page 13 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 5: Lithops Architecture

use the same version of Python. To fulfill this need with zero user overhead, Lithops automatically
detects the Python version of the client and accordingly deploys the runtime based on this informa-
tion.

Programming Model. One fundamental principle behind Lithops is programming simplicity.
The objective was to make this tool as much usable as possible, irrespective of whether the program-
mer is a cloud expert or not. As mentioned above, Function Executor is the core object in Lithops.
This object allows to perform calls to the Lithops API to run parallel tasks. When an instance of the
executor is created, a unique ID is assigned to the instance. This unique ID is used later to keep track
of function invocations and the results stored in the storage backend. The executor loads the config-
uration (e.g., account details) required to grant Lithops access to the compute and storage backends
necessary to launch Lithops.

Lithops is shipped with two different high-level Compute APIs, and two high-level Storage APIs.
Compute APIs. Users can perform calls using this API to run parallel tasks that will be executed

in the computation backend selected. The first Compute API is the Futures API, which is based on
the Python concurrent.futures library [4]. It includes methods to run user code in the cloud, track
function executions and download the final results from the storage backend. In addition, the user
can create automated plots of the execution trace of the different function invocations.

The second compute API is the Multiprocessing API. Lithops implements Python’s multiprocessing
API [5] to transparently run local-parallel applications but using serverless functions for Processes
and a Redis instance for shared state and Inter-Process Communication (IPC). Processes and Pool
are the abstractions used in multiprocessing to parallelize computation. They interact internally with
Lithops’s Futures API. Lithops also implements all stateful abstractions from Python multiprocessing:
Queue, Pipe, Shared memory, Event... . Since FaaS lacks mechanisms for function-to-function com-
munication, a Redis database is used.

Storage APIs. The Storage API makes it straightforward to operate the storage backend with calls
similar to those of the Python boto3 library [6]. Lithops allows to create a Storage instance and ab-

Page 14 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

stract away the backend implementation details. Lithops also incorporates another API, Storage OS
API, which mimics the os and the built-in function open to access Cloud Storage as if it were a local
file system.

Data partitioning. To provide an easy-to-use Map and MapReduce execution platform, a key
ingredient is a built-in data partitioner. The only action that a user has to do is to supply the list of
object keys comprising the dataset. Once data discovery has finished, the data partitioner enters the
scene to seamlessly generate the partitions based on a configurable chunk size parameter. If no chunk
size is specified, each object will be processed by a single executor. The great advantage of using this
data partitioner is that it is done on the fly without the need to create static partitions stored in the
storage backend. As partitions are created, they are distributed among the different map functions.
In this way, dividing a file into smaller chunks allows the user to take advantage of the parallelism
provided by the compute backends to process the data.

Execution Modes. Lithops compute backends can be classified in three different execution modes
depending on the backend the user chooses. The execution mode allows the user to decide where
and how the functions are executed.

• Localhost. This mode allows users to run functions in their local machine, by using processes.
This is the default mode of execution if no configuration is provided.

• Serverless Mode. This mode allows users to run functions by using publicly accessible Server-
less compute services, such as IBM Cloud Functions, Amazon Lambda, among others. In this
mode of execution, each function invocation equals to a parallel task running in the cloud in an
isolated environment.

• Standalone Mode. This mode allows users to run functions by using one or multiple Virtual
machines (VM), either in a private cluster or in the cloud. On each VM, functions run using
parallel processes like in the Localhost mode.

Multi-cloud support. Lithops provides an extensible backend architecture that is designed to
work with different compute and storage services available on Cloud providers and on-premise back-
ends. In this sense, you can code your application in Python and run it unmodified wherever your
data is located at. All services supported by Lithops are described in Figure 6.

Figure 6: Compute and Storage services compatible with Lithops

Integration of Lithops with NEARDATA and use-cases. The role of Lithops within NEARDATA
is defined as a serverless data processing platform.

• Integration with object storage and compute backends. Lithops is implemented on top of both the
object storage and the compute backends offering an abstraction layer and wrappers that al-
low users to easily run local code on any cloud platform offered by the multiple providers of
this service. NEARDATA use cases will benefit from Lithops’ generalizations, abstractions and
APIs to establish communication between object storage and the different compute backends

Page 15 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

to perform their analytics tasks and experiments. Lithops incorporates some benchmarks and
experiments where it demonstrates the efficiency of both object storage calls and the invoca-
tion of multiple functions in parallel. Users will be able to check which Cloud offers better
performance in order to select the one that best suits their needs.

• Integration with use cases. BSC and SANO intend to adapt their use cases to use Lithops as a
Serverless framework. BSC presents a solution completely based on HPC technologies, there-
fore, the objective to pursue is based on the modification and adaptation of the pipeline to be
able to be executed in the cloud through Lithops. This means exploring parallelization oppor-
tunities to take full advantage of functions as a service. Figure 7 depicts Lithops integration
diagram with the BSC use case.

SANO presents a cloud solution based on the processing of transcriptomics data in virtual
machines. Therefore, they will make small modifications to make the pipeline execution easier
through the computation API offered by Lithops. In addition, massively parallelizing jobs
offered by FaaS will be explored to significantly reduce execution time and resource usage.

Figure 7: Lithops integration with the BSC use case

2.4.2 Serverless data connector for dynamic unstructured data partitioning

Object storage is the ideal storage for large volumes of data. Incorporating this service in our applica-
tions allows us to benefit from the great advantages it offers in terms of bandwidth, availability and
durability. It is for this reason that object storage has become the largest source of scientific data in the
cloud. There are different cloud providers that directly offer fully accessible and public repositories
such as Amazon Web Services Registry of Open Data [7].

The increase in the volume of data that we find today has made the tasks of processing and
analysis of these difficult, causing adaptations and modifications to design fully parallelizable archi-
tectures to reduce complexity, costs and execution times. To this end, data preprocessing has become
an essential task when consuming data. Within the preprocessing stage we can introduce the data
partitioning process. In most cases, static partitioning is the most commonly used method for pre-
processing large volumes of unstructured data. Static partitioning is based on defining the size or
number of chunks to be generated from the beginning of the process. The preprocessing algorithm
will use this data to generate the partitions and store them back into the storage system. This type of
method is not susceptible to change, i.e., when scientists wish to modify the size or number of chunks
they must repeat the entire process from start to finish. Therefore, in workflows where the size of par-
titions is continuously modified, applying the static partitioning method is not recommended.

To overcome static partitioning and its issues, we devise a novel Serverless Data Connector for
dynamic partitioning of unstructured data. Serverless Data Connector will allow the user to partition
unstructured data dynamically and in parallel. When we introduce the concept of dynamic we mean
that partitions are susceptible to immediate size changes without the need to redo the computation
required to create them. Within the NEARDATA context, this Serverless Data Connector establishes
a direct connection between the object storage and the data processing platforms allowing the user

Page 16 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

to consume his data directly from the object storage in an efficient and parallel way.

Serverless Data Connector is based on the creation of Generic Partitioning Objects. These objects
have certain tools to preprocess the data and extract all the necessary characteristics to be able to
perform the partitioning as needed for each data processing job. The user defines for each type
of data who will define how the partitions are generated, being able to choose between different
methods such as selecting the number of chunks or establishing certain requirements that the chunks
must follow, for example, a certain number of lines.

The Generic Partitioning Object will be in charge of generating the partitions from the user’s indi-
cations. Thus establishing secure byte ranges to dynamically access the original file through requests
provided by the Storage APIs offered by the different cloud providers.

Figure 8: Serverless Data Connector Architecture

Architecture. Figure 8 shows the Serverless Data Connector Architecture. We can distinguish
two elementary stages within architecture:

• Metadata extraction. In this first phase, the data format will be studied in depth in order to
extract those essential elements that represent the data to be partitioned without modifying or
corrupting its nature. For this purpose, we will take into account the different patterns that we
can find when partitioning an unstructured scientific file.

• Generate partitions. To continue with the workflow, users have the opportunity to decide how
the data should be partitioned according to their needs. For this purpose, the Partitioning
Generic Object must have different methods to suit the user’s requirements. Different partition-
ing methods can be identified, for example, setting a specific number of chunks or specifying a
number of lines per chunk. From the metadata extracted from the original file, the Serverless
Data Connector will create the different partitions by setting a secure byte range to dynamically
access the original file in parallel. Finally, this set of ranges will be distributed in the different
parallel workers in order to directly consume the data through requests to the object storage.

Page 17 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

The Serverless Data Connector will adapt to the different data processing platforms presented in
NEARDATA, offering adaptations to run on backends such as Lithops or Spark according to users’
needs.

Integration of the Serverless Data Connector with NEARDATA and use-cases. The role of the
Serverless Data Connector within NEARDATA will be defined by the implementation of two of the
components specified in the Data Plane, Serverless Data Connector engine and Data Programming
abstractions and Wrappers.

• Integration with the components. The Serverless Data Connector will be implemented on top of
object storage so that it can be defined as a data connector between object storage and dis-
tributed parallel processing frameworks. Through its Generic Partitioning Object, it will pro-
vide an API for on-the-fly data partitioning that will allow users to consume data in a parallel,
efficient and fast manner.

• Integration with Serverless frameworks. Different data processing platforms will be able to take
advantage of Serverless Data Connector’s features. Serverless Data Connector will provide
support for Lithops and Spark, the data processing platforms used in NEARDATA.

• Integration with use-cases. Serverless Data Connector will present different partitioners for genomics-
oriented data format type. Specifically, Serverless Data Connector will be integrated and used
for use cases with this data format. By adding this library, use cases will avoid complex pre-
processing and partitioning tasks such as the creation of static partitions. This will allow you to
take full advantage of the benefits of the Serverless Data Connector to reduce execution times
and resource usage.

The massive genomics analyses use case(s) (Section 3.2) run in a heterogeneous variety of en-
vironments (supercomputers, edge nodes, novel architectures such as RISC-V). In addition, the
data sets are very large. Consequently, traditional static partitioning forces the user to adapt
the size of partitions to each environment. With the help of the serverless data connector, we
will have a set of predefined partition sizes and integrate it with a resource manager to decide
the appropriate partition size for different environments, thus making it user agnostic. Figure 9
shows how this integration is done through the use case resource manager.

2.4.3 Pravega: A Tiered Storage System for Data Streams

Pravega is an open-source, distributed, tiered storage system for data streams that provides the
streaming fabric that connects to object storage in NEARDATA. As such, the primary goal for Pravega
is to allow applications writing and reading events, while durably storing them. Pravega provides
users with client libraries that implement the Pravega APIs, including the event writer and event reader
ones. Note that applications make sense of events using (de)serializers, as internally Pravega does
not keep the notion of events. That is, Pravega manages and stores serialized event data through the
IO path.

Pravega stores events in streams (like a “topic” in messaging systems). A stream is a durable,
elastic, append-only, unbounded sequence of bytes achieving good performance and consistency.
Despite events in a stream cannot be modified, there are other valid operations on streams, such as
seal (i.e., make an stream read-only), truncate (i.e., delete data from an arbitrary point in the stream
up to its “head”), scale (i.e., change in parallelism), and delete. Groups of streams are organized into
scopes, which act as stream namespaces.

Internally, streams are divided into segments. A stream segment is a shard or partition of the
data within a stream. Similarly to the case of streams, the allowed operations on segments include
append, truncate, seal, merge, and delete (but not update). It is worth mentioning that a stream
may have multiple segments open for appending events at a given time, which potentially increases
parallelism and throughput. In the case of working with streams having parallel segments, applica-
tions requiring total order of events are expected to use routing keys for writing data. To wit, parallel

Page 18 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 9: Interaction of VIA with the Serverless Data Connector library, showing how VIA resource
manager will interact with Serverless Data Connector library to partition the dataset according to the
needs of the consumer nodes (BSC use case).

segments in a stream are assigned to partitions of the key space as a result of a hash function (e.g.,
h(k) ∈ [0, 1)). The writer API can accept as input a user-provided routing key to consistently select
the segment for appending events to and, therefore, linearize writes.

An interesting feature of Pravega streams is that they are policy-driven. At the moment, Pravega
provides two types of stream policies: retention policies, which automatically truncate a stream based
on size or time bounds; and auto-scaling policies, which allow the system to automatically change the
segment parallelism of a stream based on the ingestion workload (events/bytes per second). Note
that stream policies can be updated along the stream life-cycle.

Architecture. The architecture of Pravega is illustrated in Fig. 10. We identify the following
components of the system. First, Pravega writers and readers, which can interact with Pravega server
instances either inside the same cluster or from external facilities.

On the server side, we find the Pravega control plane formed by one or multiple controller instances.
The control plane is primarily responsible for orchestrating all stream life-cycle operations, like cre-
ating, updating, scaling, and deleting streams. Furthermore, the control plane takes care of enforcing
stream policies, including truncating streams according to the retention policy defined and orches-
trating the scale up/down of a stream based on the ingestion workload. In the latter case, Pravega
builds a feedback loop between the control and data planes, so the control plane can react to the load
monitored by the data plane. It is worth mentioning that Pravega can manage a large number of
streams. The work associated to managing existing streams is distributed across the available con-
troller instances via a “bucketing” scheme. To wit, streams are associated to a bucket from the number
of buckets defined in the system. Buckets are then distributed and owned by controller instances in
an attempt to balance stream management load. Moreover, controller instances maintain the stream
metadata (which is stored in Pravega itself via the key/value API built on top of streams [8]) and
reply to metadata requests about streams.

The data plane in Pravega handles data requests from clients and is formed by segment store in-
stances. Segment stores play a critical role in making segment data durable and serving it efficiently.
Note that segment stores only work with segments and are agnostic to the concept of stream, which
is an abstraction built at the control plane. Similarly to the concept of bucket in the control plane, the

Page 19 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 10: High-level overview of Pravega.

data plane distributes the segment-related load based on segment containers. Segment containers are
the components that do the heavy lifting on segments and the main role of segment store instances is
to host segment containers. A segment is mapped during its entire life to a segment container using
a stateless, uniform hash function that is known by the control plane. Thus, “segment ids” belong to
a key-space that is partitioned across the available segment containers.

The segment store has two primary storage dependencies: write-ahead log (WAL) and long-term
storage (LTS). The primary goal of WAL is to guarantee that writes are durable with low latency
for recovery purposes. Making a write durable means that once the application is acknowledged
that the write has succeeded, the system guarantees that the data is written on persistent media
and replicated. Currently, Pravega uses Apache Bookkeeper [9, 10] as WAL. Bookkeeper provides
excellent write latency for small appends using quorum-based replication.

Segment stores asynchronously migrate data to LTS. Once some data is moved to LTS, the corre-
sponding log file from WAL is truncated. Pravega has a LTS tier for a couple of key assumptions that
determined its design: first, data streams are potentially unbounded and the system should be able
to store a large number of segments in a cost-effective manner. Consequently, we need a horizontally-
scalable bulk store to accommodate historical stream data, like existing cloud storage services. Sec-
ond, we need to provide high throughput and parallelism for reading historical data if applications need
to catch up with the stream. In fact, the combination of low-latency real-time writes (WAL) and reads
(in-memory cache), plus high throughput historical reads (LTS) allow Pravega to achieve a sweet spot
in the throughput versus latency trade-off.

Finally, Pravega requires from a consensus service. This is basically needed for leader election
and general cluster management purposes. At the moment, Pravega uses Apache Zookeeper [11, 12].

Pravega Streams. Next, we provide an overview of the mechanics involving clients and server-
side instances when operating with streams, such as writing and reading. Also, we describe the
guarantees that Pravega provides, which are critical to modern streaming applications.

Stream Auto-scaling. Stream auto-scaling is a distinguishing feature of Pravega. It allows to au-

Page 20 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 11: Example of stream auto-scaling process.

Figure 12: Controller-writer protocol upon scale-up.

tomatically change the segment parallelism of a stream based on the current load and a policy that
determines when to scale up or down the number of parallel segments. While being a key feature,
it also influences how writers and readers interact with the system. Therefore, it is important to
understand how it works.

An example of stream auto-scaling is depicted in Fig. 11. A Stream starts at time t0 with two
parallel segments. If the rate of data written to the stream segments is below the one defined in the
scaling policy (e.g., 1MBps, 100 e/s), there will be no changes in the number of segments. However,
at time t1, the data plane realized of a sustained increase in the ingestion rate for segment s1. When
notified, the control plane seals s1 (no further writes are allowed) and splits it into two new segments
(stream scale-up). Note that before t1, events written to the stream with a routing key k that hashes to
h(k) ∈ [0.5, 1) belong to s1, whereas events written to routing keys that hash to h(k) ∈ [0, 0.5) belong
to s0. After t1, events with routing key h(k) ∈ [0.75, 1) are written to s3 and those h(k) ∈ [0.5, 0.75)
are written to s2. Fig. 11 illustrates another instance of a scale-up event on s0 at time t2. As one can
infer, this process naturally distributes load across more segment containers.

Interestingly, segments covering a contiguous range of the key space can also be merged in the
case they consistently receive low load (stream scale-down). For instance, at time t3, s2’s range and
s5’s range are merged into a new segment s6 to accommodate a decrease in the load on the stream
on that key range. As we show in the next section, Pravega allows clients to work with auto-scaling
streams while preserving ordering and consistency guarantees.

Page 21 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 13: Reader group dynamics under auto-scaling.

Writing to a Stream. The Pravega writer interacts with the control plane to know the stream seg-
ments available to write at any given moment, as well as the segment store hosts that run the segment
containers owning the segments. With this information, the writer can directly contact the right seg-
ment store host to write events to a given segment.

Pravega guarantees that events with the same routing key are read in the order they were written.
To materialize this guarantee, Pravega enforces that the assignment of routing keys to segments is
consistent even under stream auto-scaling. Between two stream scaling events, all events written
to a stream with the same routing key are mapped to the same segment. The control plane builds
the metadata that orders segments chronologically across scaling events. Let’s retake the example in
Fig. 11. The system scales up from one segment s1 to segments s2 and s3. The key space of s1 exactly
overlaps with the ones of s2 and s3, but s2 and s3 have no intersection. In Pravega, segments s2 and s3
are defined as the successors of s1. As visible in Fig. 12, the protocol between the writer and the control
plane enforces that no append happens to s2 and s3 until s1 is sealed, and this generalizes to any
number of segments before and after a scaling event. Consequently, once segments are sealed due
to a scaling event, future events are appended to the successors of the sealed segments, preserving
routing key order.

Duplicates or missing events in a stream can be problematic: they can induce incorrect results
or incorrect behavior in general. To avoid this problem, writers internally have a writer id used to
determine the last event written upon a re-connection. When the writer has events to append, it
initiates the write of a batch of events. Once finished appending the batch, the writer sends a “batch
end” command with the number of events written and the last event number. The segment store
must maintain the last event number for any given writer id to detect duplicates on segments. To this
end, it persists the 〈writer id, event number〉 pair in a per-segment data structure called segment
attributes as part of processing the append request. Upon a writer re-connection, the segment store
fetches this attribute and returns the last event number written as part of the handshake with the
writer. This response from the segment store enables the writer to resume from the correct event in
the case it had appends outstanding.

Reading from a Stream. Reading a stream requires events to be processed only once, and con-
sequently, a group of readers needs to coordinate the distribution of segments across the group.
To enable multiple readers to read one or more streams in a coordinated manner, Pravega intro-
duces the concept of reader groups. A reader group is a set RG of readers and an associated set of
streams S, such that, for each r ∈ RG, s(r) ⊆ ∪s∈Sc(s). At any time and for any two distinct readers
r, r′ ∈ RG, s(r) ∩ s(r′) is empty. In this definition, s(r) is the set of segments assigned to reader r,
and c(s) is the current set of active segments of a stream (non-sealed segments enabled for reading).
Note that this definition does not imply that all segments in ∪s∈Sc(s) are assigned to some reader
at any time. It is possible that a reader has released a segment while no other has acquired it yet

Page 22 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 14: Overview of Pravega’s write path and batching.

or a new segment has not been acquired yet by any reader. The contract specifies that any segment
in ∪s∈Sc(s) is eventually assigned. As such, the reader group does not guarantee that at any time
∪s∈Sc(s) = ∪r∈RGs(r), although we do guarantee for liveness that for all x ∈ ∪s∈Sc(s), eventually x
is assigned to some reader.

The assignment of segments to readers in the group is built upon the distributed coordination
mechanism we expose in Pravega called state synchronizer [13]. The state synchronizer is an API
built on top of Pravega streams that enables readers to have a consistent view of a distributed state
via optimistic-concurrency. Readers use it to agree on changes to the state of the group; that is, the
assignment of segments to readers. The distribution of segments attempts to achieve fairness (i.e.,
number of segments) across readers.

To guarantee that readers read events with the same routing key in append order, the readers
follow a similar procedure as the writers. As an example, the stream in Fig. 13 has a single segment
s1, and it eventually scales up, resulting in s1 splitting into s2 and s3. Once the reader r1 hits the
end of s1, both r1 and r2 request the successors to the controller, and they start reading from the new
segments s2 and s3. More interestingly, let’s inspect what happens to readers r1 and r2 upon a stream
scale-down event. At this point, r1 is reading s2 and r2 is reading s3. The segments merge into s4
(s2 and s3 are sealed). Reader r1 hits the end of s2 and request its successors, that is, segment s4.
But reader r2 is not yet done with s2. If either r1 or r2 proceed to read s4 before r2 finishes reading
s2, then we could be breaking our promise of reading events with the same key in append order.
Consequently, to satisfy our order guarantee, we put s3 on hold until r2 flags that it is done with s2.
Only then s4 can be assigned and read.

Pravega IO Path. We next describe the design decisions that allow Pravega achieving high IO
performance irrespective of the event size and for high levels of parallelism.

Write Path. In Fig. 14, we illustrate the Pravega write path. Writers append applications’ data
and they batch such data to the extent possible. Conversely to other systems which batch data by
holding it on the client and waiting to transmit it, the Pravega writer starts sending a batch before it
has sufficient data to fill it and batch data is collected on the server-side. The writer controls batch sizes
using a tracking heuristic that does estimates based on input rate and feedback from the responses.
Specifically, the batch size is estimated as the minimum between the defined maximum batch size
(e.g., 1MB) and half the server round trip time. With such estimates, the writer determines when to
close batches. By doing this, the batch data is held not in client’s memory, but is a mix of data in-flight
on the wire and data collected at the server, thus reducing write latency.

In the segment store, every request that modifies a segment is converted into an operation and
queued up for processing. There are multiple types of operations, each indicating a different mod-
ification to the segment (append, truncate, etc.). A segment container has a single, dedicated WAL
log to which it writes all operations it receives. Many segments can be mapped to a single segment
container, so all operations from a container’s segments are multiplexed into that single log. This is a
crucial design feature which enables Pravega to support a large number of segments, as it does not
need to allocate physical resources on a per-segment basis.

Page 23 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 15: A sample cache layout with 3 cache buffers (each with 8 4-KB blocks) and 4 cache entries
stored (in colors).

The segment container aggregates multiple segment operations into a data frame and initiates
the WAL write for it. When WAL acknowledges that write, the segment container asynchronously
accepts all the operations in the data frame into its internal state. In this sense, the segment container
builds a second level of batching by dynamically determining the size of data frames. Concretely, when
the segment container sees that there are no more operations to pick from the processing queue,
it uses recent WAL latency information and write sizes to calculate the amount of time to wait as
follows: Delay = RecentLatency · (1 − AvgWriteSize

MaxFrameSize). The delay to keep adding operations to a data
frame is directly proportional to the recent WAL latency and inversely proportional to the recent
average write size. If recent data frames had a high “fill rate”, then the system is already maximizing
throughput. On the other hand, if recent data frames were underutilized, it is desirable to wait a
little longer (up to some defined bound), so that more operations may arrive and be batched together,
potentially improving throughput.

WAL logs in Pravega are a metadata abstraction built on top of Apache Bookkeeper ledgers. A
bookie, which is the Bookkeeper storage server, journals requests to append data to a ledger, and it
performs another level of aggregation before appending to its journal. This third level of aggregation
is another opportunity to batch data coming from different segment containers.

Read Path. Readers issue read requests to segment store instances. In this sense, the read index
is an essential component of the segment container that provides a transparent view of all the data
in a segment, both from WAL and LTS, without the external caller having to know where such data
resides. The read index can access segment data in a random fashion and contains an entry per
active segment in the segment container. When a read request is received, the read index returns a
read iterator that will return data until the read request parameters are satisfied. The iterator will
either fetch data that is immediately available in the in-memory cache, or request data from LTS (and
bring it to cache) or, if it reached the current end of the segment, return a future that will be completed
when new data is added (thus providing tail reads). At the heart of the read index lies a sorted index
of entries per segment (indexed by their start offsets) which is used to locate the requested data. The
index is implemented via a custom AVL search tree with a goal of minimizing memory usage while
not sacrificing insert or access performance. The entries themselves contain some small amount of
metadata that is used to locate the data in the cache and to determine usage patterns to favor cache
evictions.

The read index is backed by a local in-memory cache designed from scratch for Pravega. In our
experience, traditional cache solutions treat each entry as an immutable blob of data, which poses
problems for the append-heavy ingestion workloads that are common in streaming scenarios. Each
event appended to a stream would either require its own cache entry or need an expensive read-
modify-write operation to be included in the cache.

We divide our cache into equal-sized cache blocks, where each block is uniquely addressable
using a 32-bit pointer. Cache blocks are daisy-chained together to form cache entries. Each cache
block has a pointer to the block immediately before it in the chain. Since each block has an address,
we can choose the address of the last block in the chain to be the address of the entry itself. We can

Page 24 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

then reference this address from the read index. While a bit counter-intuitive, pointing to the last
block enables us to immediately locate that and perform appends, by either writing directly to it (if it
still has capacity) or find a new empty block and add that to the chain. Similarly to the blocks used in
cache entries, empty cache blocks are also chained together, which makes locating an available block
an O(1) operation. To prevent memory fragmentation and keep metadata overhead low, the cache
pre-allocates during initialization contiguous regions of off-heap memory into cache buffers (e.g., a
2MB buffer can hold 512 4KB blocks). Regarding empty cache blocks, keeping a single list of such
blocks across all buffers would would quickly run into concurrency issues while modifying it. Thus,
we have chosen to only keep a list of empty cache blocks within each buffer (smaller concurrency
domain). Across buffers, the cache uses a queue of cache buffers with available blocks that are added
and removed based on whether they have available blocks or not. For clarity, Figure 15 depicts a
cache with four entries (colored blocks) and three buffers following the described cache layout, along
with a tabular representation of the metadata.

Storage Tiering. WAL is by no means the final destination of data. Instead, one of the key goals of
Pravega is to asynchronously move data to LTS (e.g., S3, HDFS, NFS) for cost and throughput reasons.
And it does so in a unique manner: to wit, the storage tiering process is integrated in the write path.
This implies that if LTS is not available or is temporarily too slow, Pravega is able to throttle writers
to prevent backlogs of data to grow indefinitely waiting to be moved to LTS.

In the segment container, the storage writer is the component in charge of de-multiplexing the op-
erations written to WAL, grouping them by segment, and applying them in LTS. It performs several
optimizations along the way to maximize throughput, such as buffering smaller appends into larger
writes. Once the storage writer flushes a set of operations to LTS, it notifies the segment container
that the WAL log can be truncated up to that point. This translates into deleting Bookkeeper ledgers
when needed.

The storage writer interacts with the storage subsystem in charge of writing data to LTS and
keep the metadata of segments in LTS. In LTS, Pravega stores chunks (i.e., contiguous range of seg-
ment bytes) and segments are made up of a sequence of non-overlapping chunks. Note that chunks
themselves do not include additional metadata. Similar to the case of the control plane storing the
metadata of streams, the metadata of chunks in LTS is also stored in Pravega itself via key/value
tables API. All LTS metadata operations are performed using conditional updates and using a single
transaction that updates multiple keys at once. This guarantees that concurrent operations will never
leave the metadata in inconsistent state.

Failure Handling. Pravega should assume the occurrence of failures in its own instances or in
its dependencies. First, segment containers adopt a fail fast approach: if a severe error is detected
within a segment container (e.g., out of memory) or with a dependency (e.g., Bookkeeper or LTS are
unreachable), the segment container shuts down. This implies that no further operation is allowed
and it attempts to perform a recovery. A recovery is part of the initialization process of a segment
container and it consist of i) starting its internal components, and ii) read the WAL log to rebuild the
internal state just before the crash. In fact, the main goal of WAL is to persistently store the opera-
tions not yet written to LTS to recover the segment container’s state. It is worth mentioning that the
segment container periodically writes a special operation to the WAL log called metadata checkpoints,
which are a snapshot of the segment container metadata at a given point in time. To recover its state,
the segment container just needs to read the last metadata checkpoint and sequentially apply the
subsequent operations in the WAL log.

If a whole segment store instance crashes, all the segment containers it was running are redis-
tributed across the remaining instances. In this scenario, there can be cases in which more than one
segment store instance attempts to run the same segment container, thus leading to potential data
corruption. Pravega guarantees that a segment container writes data to WAL and LTS exclusively at
any moment by: i) Pravega keeps the assignment of segment containers to segment stores in a con-
sistent store (i.e., Apache Zookeeper); ii) Segment containers implement a technique called “fencing”
to ensure exclusive access to WAL logs3.

3https://bookkeeper.apache.org/docs/development/protocol

Page 25 of 92

https://bookkeeper.apache.org/docs/development/protocol

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (minutes)

0

200

400

600

800

M
B

p
s

1 Stream/Topic - 16 Segments/Partitions - 10KB events

Pulsar Readers (S3, random keys, 64 storage threads)

Pulsar Readers (S3, no keys, 64 storage threads)

Pulsar Writer

Pulsar Readers (S3, random keys, 2 storage threads)

Pravega Writer

Pravega Readers (EFS, random keys)

Release readers after
accumulating 100GB of
backlog data.

Figure 16: Historical read performance of Pravega compared with Pulsar. In this experiment executed
on AWS, writers write 10KB events until generating a 100GB data backlog. At this point, readers are
released and they are expected to catch up with writers by reading a large fraction of data from a
external storage system. Visibly, the approach in which Pravega implements storage tiering provides
much higher historical read performance than Pulsar.

Streaming Connectors. Pravega offers a wide range of connectors to manage stream data from
data processing engines. The most relevant connectors for the project are the following ones:

• GStreamer Connector4: GStreamer is a pipeline-based multimedia framework that links together
a wide variety of media processing systems to complete complex workflows. Pravega provides
a GStreamer sink and source to allow GStreamer multimedia flows to be stored and served via
Pravega. This connetor will be extensively used in the computer-assisted surgery use-case with
NCT Dresden.

• Flink Connector5: The Flink Connector enables building end-to-end stream processing pipelines
with Pravega in Apache Flink. This also allows reading and writing data to external data
sources and sinks via Flink Connector. We will work with this connector to perform stream
processing tasks with Pathogen workloads provided by UKHSA.

• Spark Connector6: Connector to read and write Pravega Streams with Apache Spark, a high-
performance analytics engine for batch and streaming data. The connector can be used to build
end-to-end stream processing pipelines that use Pravega as the stream storage and message
bus, and Apache Spark for computation over the streams.

Among other tasks, in the context of the project, we will work on improving, extending, and ex-
ploiting these connectors to satisfy the needs of NEARDATA use-cases.

Integration of Pravega with NEARDATA and use-cases. Let us revisit the role that Pravega
plays within the NEARDATA use cases and how it will be of great help to our use-cases:

• Integration with object storage: Pravega is the only streaming storage system that fully integrates
the movement of stream data to an external storage in the write path. This means that Pravega
was designed since day 0 for migrating small events coming into the system to larger chunks to
be eventually stored in external storage, like object stores. The fact that NEARDATA is built on
top of object storage provides a natural alignment between the project and the original design
of Pravega. To give a sense on this, we refer to Fig. 16. As can be observed, Pravega provides a

4https://github.com/pravega/gstreamer-pravega
5https://github.com/pravega/flink-connectors
6https://github.com/pravega/spark-connectors

Page 26 of 92

https://github.com/pravega/gstreamer-pravega
https://github.com/pravega/flink-connectors
https://github.com/pravega/spark-connectors

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 17: Integration of Pravega with NCT use-case.

better historical read performance than Pulsar due to their different implementations of storage
tiering. NEARDATA use cases will benefit from high historical read performance by exploiting
high throughput and parallelism of object stores when executing batch analytics on historical
stream data via Pravega.

• Integration with use-cases: Pravega will allow our use-cases requiring stream analytics to trans-
parently exploit object storage. As depicted in Fig. 17, NCT requires low latency video analyt-
ics on real-time video being collected in operating rooms during surgery. Such video is being
generated in real time and needs to be durably stored and processed. Pravega satisfies the
storage requirements, while the GStreamer connector for Pravega allows us to read and write
video streams from Pravega, as well as feeding video analytics engines with such data. But,
at the same time, NCT may also need to read old surgery video for training analytics mod-
els. Pravega unifies access to recent and historical stream data under the same APIs, so NCT
data scientists will be able to access historical stream data with good performance. Another
interesting use-case that will benefit from Pravega is UKHS. UKHS generates large amounts of
genomic sequencing files from pathogens. Naturally, the rate of genomic files being generated
may vary along time depending on daily patterns or sudden virus outbreaks. In this regard,
Pravega streams have a unique property: they are elastic. That is, the parallelism of a Pravega
stream (i.e., number of parallel segments or partitions) can change based on the load received
and the scaling policy configured by the user. This yields that Pravega streams can adapt their
parallelism to the workload fluctuations of pathogen files generated by UKHS. We believe that
Pravega can be an excellent fit for the UKHS workload as it may i) exhibit significant fluctu-
ations, ii) requires fast results, and iii) uses a file format that can be exploited by streaming
computations (e.g., FASTQ).

• Integration with serverless frameworks: Pravega provides a wide variety of useful APIs in addition
to the streaming ones (e.g., state synchronizer, K/V, atomic variables). In fact, DELL and URV
are exploring the suitability of Pravega APIs for serving stateful serverless analytics. This col-
laboration will help to further integrate the streaming and serverless fabrics for NEARDATA,
which will certainly provide a solid integration of the core data plane components of the project.

Research challenges ahead. During the project, we will investigate several aspects related to
our use-cases that go beyond the state-of-the-art in streaming storage systems. i) Coordination of data
stream and processing parallelism: Pravega streams are elastic and can auto-scale based on policies if the
ingestion workload fluctuates, as may happen with the rate at which genomic data files are generated
in UKSHA. However, if we think of a stream processing pipeline, the parallelism of the processing
engine may need to change accordingly. Unfortunately, finding practical and effective ways of coor-
dinating auto-scaling of source data streams and processing engines is still an open question. ii) Data
streams as storage substrate for FaaS pipelines: As of today, FaaS pipelines normally exchange results us-
ing object storage. Recently, some research works started to explore using write-ahead logs for FaaS
pipelines [14]. We believe that streaming storage systems can be the next natural storage substrate

Page 27 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

for FaaS pipelines and Pravega may have a key role in this regard. We will need to understand the
trade-offs of using data streams for FaaS pipelines, as well as novel Pravega APIs that can improve
programmability in this scenario. iii) Multi-dimensional stream content indexing: Streaming storage
systems or messaging systems can normally use “time” as a dimension to index a data stream. While
this is useful, we believe that we could index streams on arbitrary dimensions related to its contents.
For instance, it would be useful for NCT to index the points in a video stream where a tumor is iden-
tified, so researchers can quickly locate that part of the video and work with it. This implies setting
up mechanism that “identifies” the object to index, and interacts with the streaming storage system
to efficiently build that index. We will investigate practical and extensible mechanisms to implement
this, as it would be of great help for our use-cases, specially regarding video analytics. iv) Data re-
duction in streaming storage systems: Currently, systems like Apache Kafka and Apache Pulsar just
provide simple and static client-side data compression for reducing storage consumption. However,
we believe that there could be multiple other options to perform data reduction in streaming storage
systems like Pravega, as this topic remains largely unexplored.

2.5 Control Plane components

The Data Broker provides a user authentication service that grants access to confidential data, which
can be decrypted and manipulated. Additionally, the Data Broker includes orchestration services and
connects different types of data streams through analytical platforms and services. First, we discuss
the Confidential Compute layer with confidential technologies, then the Confidential Data Exchange
layer, in which we focus on how the data broker accesses and discovers confidential data, and finally,
in the Confidential & Federated orchestration section, we elaborate the declarative interconnection
framework for extreme data workflows that ensures confidentiality and security throughout the en-
tire data path.

2.5.1 Confidential Technologies

SCONE framework. When it comes to securely exchanging and managing confidential data, we pro-
pose utilizing SCONE, a framework that simplifies the utilization of Trusted Execution Environments
(TEEs) [15] like Intel SGX [16]. The objective here is to protect data at rest, i.e., stored on persistent
storage, data in use, i.e., while being processed, and data in transit, while it is exchanged/transferred
between nodes. Technologies such as Intel SGX enable users to isolate their processes such that even
privileged users cannot access the encrypted memory region ensuring confidentiality and integrity
for the data being processed.

Different levels of abstractions for such TEEs exist. While Intel SGX provides isolation on function-
/process-level as shown in Figure 18, other approaches such AMD SEV provide such protection on
VM-level. Each of these abstractions have different advantages and disadvantages such as the size of
the trusted computing base vs. configure-ability, and ease of orchestration. Furthermore, the use of
such technologies requires either binary modifications or re-compilations making their use challeng-
ing for novice users.

Page 28 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 18: Isolation on process-level using Intel SGX

In order to use TEEs, developers have to be furthermore familiar with the different hardware
capabilities in order to utilize the provided features by enriching the existing source code such that
functions or the whole executable will run in trusted compartments, i.e., enclaves.

Within NEARDATA, we propose and envision a transparent approach where native applications
are transformed into confidential ones using the SCONE tool chain. This approach will be further-
more complemented by an automatic configuration which ensures that processes exchange data in
a secure fashion including mutual authentication. Furthermore, we propose transparent file system
encryption that neither requires any modification of the existing code base nor the use of overlay
file system encryption techniques such as provided by fuse [17] etc. This approach will ensure that
encryption and decryption will be carried out within the trusted compartment providing the desired
confidentiality and integrity aspects.

Network and File System Protection. In addition to the components described above, we envi-
sion the use of shields provided in SCONE. In Figure 19 gives an overview of the shields that target
the prevention of low-level attacks and ensure the confidentiality and integrity of shared data in
NEARDATA. We plan to utilize the following two shielding mechanisms that SCONE provides.

Figure 19: SCONE Architecture-Interface Shielding

The main objective of the shields is to:

Page 29 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

1. Prevent low-level attacks, such as the OS kernel controlling pointers and buffer sizes passed to
the service

2. Ensure the confidentiality and integrity of the application data passed through the OS.

The shields to be used are as follows: File System Shield ensures the confidentiality and integrity
of files. In the file system shield, a container image creator must define three disjoint sets of file path
prefixes: prefixes of (1) unprotected files, (2) encrypted and authenticated files, and (3) authenticated
files. When a file is opened, the shield determines the longest matching prefix for the file name. De-
pending on the match, the file is authenticated, encrypted, or just passed through to the host OS. The
file system shield splits files into blocks of fixed sizes. For each block, the shield keeps an authentica-
tion tag and a nonce in a metadata file. The metadata file is also authenticated to detect modifications.
The keys used to encrypt and authenticate files as well as the three prefix sets are part of the config-
uration parameters passed to the file system shield during startup. Network Shield. In order to
protect the confidentiality of secrets transferred from CAS to computation components running in-
side enclaves, we need to protect the network communication between CAS and the components to
make sure that an attacker cannot observe the network traffic to steal the secrets. To achieve this goal
we plan to utilize the network shield for data processing components that wraps the communication
between all peers and ensures that all data passes to the connection is TLS-encrypted. The certificates
for TLS connections are saved in a configuration file protected by the file system shield mentioned
previously.

SCONE Attestation. Service (CAS) technologies. Three components have been introduced here:
CAS – configuration and attestation service, – which provides the means to tell whether an applica-
tion is trustworthy or not; Keycloak – an identity and access manager, – that generates access tokens
with configuration to allow or deny access to resources and validates them; and the Certifier – cer-
tificate and private and public keys generator, – that can be used by applications that do not have a
TEE available.

CAS is responsible for registering the policies (a.k.a. sessions) and their subsequent validation,
such that an application can run attested. It is a key decision-maker, that tells whether an application
can be trusted or not. Policies comprise a set of configurations that only an attested application can
read. Elements such as the specific command-line parameters to load the system, environment vari-
ables that are not subject to external influence, private keys and certificates, and configuration files.
For example, if the same configuration file is within the policies and also present in the filesystem,
the latter is ignored by the attested application and the former is used invariably.

The CAS performs the following tasks:

• Code attestation - local or remote.

• Configuration provisioning.

• Management of SCONE policies.

• Perform configuration of the target application.

• Provision secrets.

• Configure network as well as file system encryption/shielding.

The Figure 20 image describes the high-level architecture of the SCONE Runtime as well as
the interaction of CAS. Note that the SCONE runtime is weaved into the binary code of the mi-
croserver/application.

In the following section, we will provide additional information regarding the functionality and
security guarantees of SCONE CAS. Following a brief overview of CAS’s purpose, we describe its
various functionalities, such as key generation and management and access control. SCONE CAS

Page 30 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 20: SCONE CAS (Configuration & Attestation Service)

manages an application’s secrets, particularly its keys. Only services with explicit permission from
the application’s policy are granted access to keys, encrypted data, encrypted code, and application
policies. SCONE CAS can generate keys on an application’s behalf. The generation occurs within
a secure execution environment. Access to keys is governed by an application-managed security
policy. The keys and security policies are inaccessible to root users and SCONE CAS administrators.
Currently, SCONE CAS operates within SGX enclaves.

Access control mechanism use to modify or read a policy, a client must demonstrate, via TLS, that
it possesses the private key corresponding to a policy-specified public key. SCONE CAS grants these
clients access to this policy without exception. Typically, the client’s access to a private key is also
governed by a policy, possibly the same policy. Note that a client can only access their private keys
following a successful attestation.

In Management, SCONE CAS administration can be delegated to a third party. CAS itself ensures
the confidentiality and integrity of the policies and their secrets. Since the entity that creates a policy
has full control over who can read or modify it, no administrator managing the CAS can alter the
application’s access control to a policy.

Encrypted Code, On a trusted host, one can generate images using encrypted Python, Java,
JavaScript, C#, or any other JIT or interpreted code. This code could alternatively be generated within
an enclave. One can verify and decrypt the code contained within an enclave transparently. This is
possible without changing the Python engine or the Java, etc. virtual machine. Notably, SCONE CAS
certifies both the Python engine and Python code.

Keycloak is an open-source approach for identity and access management that focuses primarily
on applications and services. Users can authenticate via Keycloak as opposed to specific applica-
tions. Therefore, applications are not required to deal with login forms, authenticating users, or
storing users. Once a user has authenticated into Keycloak, they are not required to sign in again
to access other applications. The Keycloak is an additional mechanism for enforcing the authentic
identification of system operators within NEARDATA and their corresponding access level to other
systems and resources. Keycloak will issue access tokens with the particular responsibilities that a
system administrator has assigned to the requesting user. The other system that receives this token
will obtain a validation token from Keycloak that attests to its authenticity and verifies that the roles
contained within are accurate.

The Keycloak is safeguarded by confidential computing mechanisms, such as an enclave com-
bined with SGX, which ensures confidentiality. It also has an added layer of protection through CAS,
which ensures that all configuration, credentials, and keys are securely provisioned via attestation.
It is additionally protected by CAS, so all configuration, credentials, and keys are provisioned via at-
testation. Access tokens and validation tokens are issued via REST communication using an HTTPS
server with a TLS-enabled secure channel.

Certifier is a RESTful application that returns a payload consisting of a certificate, its private key,

Page 31 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

and its corresponding public key. If an application is running on hardware without a TEE to authen-
ticate and obtain a certificate and private key from CAS-registered policies, you can use Certifier in a
"para-attestation" setup. This allows adjacent applications to be trusted, even if they don’t meet the
same level of trustworthiness required for handling sensitive data.

2.5.2 Confidential data exchange

Threat Model. In NEARDATA we target to harness Edge cloud resources as well as edge devices to
conduct data analytic tasks in addition to traditional cloud resources, which shifts a significant part
of the workload from the cloud to edge devices. Due to the rapid growth in streaming data volume,
many applications are leveraging edge cloud platforms these days to efficiently store and analyze
data. Such platforms must be trusted to protect data privacy and security from malicious insiders or
outside attacks when hosting applications in these environments.

For the threat model, we consider classical cloud application as well as edge platform services
capturing and analyzing, e.g. telemetry data. We also recognize the significance of mission-critical
IoT with tight control loops but do not target them in our threat model. Our target scenario includes
source sensors, edge platforms, and cloud servers. We assume a potentially malicious environment in
which privileged processes such as the operating system have full control over system call arguments
and their results. In such a compromised system, an attacker can not only modify the system data
but can also eavesdrop on system activities. Apart from that, we assume that access to the hardware
is strictly regulated and that an adversary cannot mount physical attacks on the otherwise trusted
CPU.

In addition, we consider the scenarios of malicious field nodes trying to access other users’ re-
sources and malicious remote nodes trying to access data from field IoT devices in addition to reg-
ular cloud nodes. The first scenario includes legitimate, but compromised, nodes trying to access
resources and applications in the edge node or in the cloud for which they are not authorized. In
the second scenario, an external attacker tries to access data generated by devices in the field or even
take control of the devices. Also in this scenario, the attacker can be authorized to access some data
but wants to access data or perform actions for which they have no authorization. We furthermore
assume untrusted edge-cloud links that require encryption of uploaded data. We consider malicious
adversaries capable of identifying IoT data, tampering with edge processing outcomes, or obstruct-
ing processing progress as in-scope threats. Based on the assumption that powerful adversaries exist:
they control all applications on the edge by exploiting weak configurations or bugs in the edge soft-
ware; they control the entire OS as well as all applications on the edge. For cloud nodes, we assume
an adversary has full control over all processes and all hardware components except the CPU, based
on the Intel’s SGX threat assumption. The adversary can check the Memory trace of all processes ex-
cept those running within the enclaves. Also, they can monitor or interfere with the communication
between edge servers and cloud servers.

Attacks In The Context of NEARDATA. Considering the above-listed threats, a malicious user
can drive the following attacks in the context of NEARDATA applications: In order to gain access to
sensitive data that is used for training purposes such as radiomics imaging data, etc., an infrastruc-
ture administrator with root privileges can simply copy the locally stored files out of the running VM
image. Although this attack can be prevented by using end-to-end encryption, i.e., encrypting the
files beforehand, the Python processes running the training software such as Pytorch, TensorFlow,
etc., need to access this data, i.e., require access to the private key used to encrypt the data at rest.
An attacker can therefore create a memory dump of these processes in order to reveal the key and
perform the en/decryption him-/herself.

It is also worth noting that training data is a precious resource that can be monetized and con-
veyed to multiple entities also in real time directly from the edge. As a variation of the above attack,
an external malicious user can attempt to access data from the field devices by exploiting their low
complexity and lack of support for fine-grained access control policies. In NEARDATA, we tackle
this attack by means of a Data Provider node, which intermediates any exchange between the de-

Page 32 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

vices and the users.
Besides gaining access to confidential data, another attack vector is the malicious introduction of

wrong information in order to tamper with training results. This can be achieved by a malicious user
pretending to be a legitimate collaborator if we consider federated learning. Although this attack
seems to be not that easy at first as it requires access to certificates as well as keys in order to pass the
mutual authentication when establishing TCP connections between the collaborator as well as the
aggregator, such keys, as well as certificates, can be easily retrieved as described previously.

Another way of tampering with training results is through the modification of the training code
itself. This type of attack can be prevented through the use of integrity protection mechanisms at the
file system level such that the code is signed beforehand. Another type of attack are so-called rollback
attacks: For these attacks, a malicious user provides the software with an older version of either the
training data or the trained model such that, e.g., classifiers do not correctly detect/recognize certain
items any more. This requires, as before, access to the file system as well as the capability to stop
processes and resume them which is easily achievable by administrators with root privileges and
hypervisor access.

In stream processing systems, network communication patterns directly reflect the structure of
the streaming applications. These applications typically consist of multiple processing stages orga-
nized into a Directed Acyclic Graph (DAG) that runs on a collection of networked machines. In gen-
eral, each stage is partitioned into multiple nodes that are executed in parallel. Each node performs
local computations on the input streams from its in-edges and produces output streams to its out-
edges. By observing network-level communication between the different stages of the DAG, an ad-
versary may be able to extract information about the data being processed by the application. In ad-
dition, stream processing systems are susceptible to side-channel attacks, which compromise users’
data security and privacy using any publicly accessible information that is not privacy-sensitive in
nature, namely side-channel information. Such public information is typically correlated “secretly”
with certain privacy-sensitive data that should be protected. Attackers then explore the hidden cor-
relations to finally infer the protected data from the side channels. Since any public information can
have the potential to link to some sensitive data, side-channel attacks can happen anywhere in the
edge computing architecture. These side-channel attacks happen both at the memory level and net-
work level.

Confidential Data Exchange through Data Broker. This section describes how sensitive and
encrypted data is accessed and decrypted by the data broker. Based on the NEARDATA architecture
as depicted in [fig 2 of the Proposal, a UML components diagram [fig. 21]is presented to guide the
development, configuration, modification, and deployment of artifacts in relation to their interaction
with confidential computing resources.

In this context, CAS, Keycloak, and Certifier are utilized as mentioned earlier in the section. As
we mentioned in the previous section the Keycloak is an Identity and Access Management system
(IAM) that provides means to control identities and their corresponding permissions within specific
domains of serviced applications. The sequence diagram [fig 22] represents an entity (a person or an
application on behalf of this person) using an application and requesting its roles from the IAM The
application, in turn, will check the roles provided by this entity and validate them against the IAM.
The serviced application will check with the IAM the information the entity has provided and allow
or deny the requested access, accordingly. This workflow will be aborted and the entity will have
denied the service if: the entity cannot identify itself to the IAM; or if it doesn’t have appropriate
roles; or if, having the roles, the IAM does not recognize its validity.

As mentioned in the previous section the Certifier can be employed in an arrangement that adja-
cent applications can be trusted upon a method called "para-attestation", whence the trustworthiness
of these adjacent applications is lenient to the extent of what sensitive information they are allowed
to handle. [fig 23] shows an example of how a Data Connector can employ such a mechanism.

The three new elements introduced above not only enable confidential computing in a distribut-
ing systems environment (with CAS), but also offer alternatives to enforce accountability and trace-

Page 33 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 21: Components diagram representing confidential computing resources

ability (with Keycloak) – that can again be improved with auxiliary applications. It also offers the
means to enable confidentiality in applications running in the edge side, near the data being origi-
nated, i.e. in hardware that doesn’t support TEE (especially SGX). They are all running on the cloud
side [fig. 21] as confidential computing applications, therefore attested executions of trustworthy sys-
tems. And this is essential to the method of para-attestation to work and to be trusted in conjunction
to the Policy Boards to determine the extent of trustworthiness of edge endpoints.

2.5.3 Confidential orchestration

Data Broker provides confidential orchestration services and connects different data streams through
analytical platforms and services. With regards to orchestration, we envision leveraging a container-
based approach based on state-of-the-art container-runtimes such as Docker [18]. This will allow for
easy orchestration of the different service entities through modern orchestrators such as Kubernetes.
Furthermore, we will investigate the use of service meshes such as Istio [19] for confidential data ex-
change handled transparently to the orchestrated applications. This will impose several challenges
such as automatic configuration as well as seamless integration such that no modifications to the
original application and services are required while still providing the highest level of protection.

Page 34 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 22: Sequence diagram representing a simplified workflow of authorization of services usage
upon proof of identity

Figure 23: Data Connector class implementing methods of the Data connector interface

Confidential execution of Apache Spark pipelines. The rapid growth in streaming data volume
has prompted many applications to utilize edge cloud platforms for efficient storage and analysis
of large amounts of data. While deploying applications in the edge cloud requires trusting cloud
platforms to safeguard data security and privacy against malicious insiders and external attackers.
In order to process data securely in the cloud, hardware-based approaches, such as Intel SGX, are
the most practical solution, but we need to address several challenges when processing streaming
data applications on Intel SGX to provide databroker-like capabilities. The streaming data analytics
are extremely memory-intensive, since these systems are almost always based on Java Virtual Ma-
chine (JVM). Intel SGX still suffers from side-channel attacks. Moreover, Intel SGX requires users to
heavily modify the source code of their application to run inside enclaves. Therefore, transparently
supporting an unmodified distributed streaming data analytics framework to run inside enclaves is
not trivial.

To overcome these challenges we envision integrating PySPARK with SCONE. It consists of two
main components: (i) Configuration and attestation service (CAS) component that will carry out au-
thentication, authorization and secret injection, and (ii) PySpark with integration with the SCONE
runtime to run inside enclaves. The objective is to execute only sensitive parts, i.e., the computation
parts that process the input-sensitive data, inside enclaves as well as to control data sharing. The
computation parts outside of enclaves can only access encrypted data. Hence, the driver and the
Python processes execute inside Intel SGX enclaves using SCONE. Moreover, when utilizing PyS-

Page 35 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 24: Federated Learning Architecture

PARK, we need to ensure the confidentiality and integrity of the driver as it is responsible for split-
ting and scheduling tasks in the system. This can be achieved by protecting the Python processes
since they are the sensitive computation parts which directly decrypt and process the sensitive input
data. Note that within this approach, we would not only encrypt the input sensitive data but also
the computation over it (Python code of analytics jobs). In addition, we envision combining this with
remote attestation to ensure the code and data integrity.

When utilizing remote attestation, we need to make sure that the shared secrets such as certifi-
cates, passwords to launch data processing substrates such as PySpark, or keys for encrypt/decrypt
the input data and computations will never be revealed to untrusted components. To achieve these
goals, we envision the use of a configuration and attestation service (CAS) that securely transfers
secrets only to the components that have authenticated themselves successfully against it. The CAS
enhances the Intel attestation service to bootstrap and establish trust across the machines running
this platform and maintain a secure configuration for the system. In detail, CAS remotely attests
the driver and worker processes of such a process running inside enclaves, before providing encryp-
tion/decryption keys and other configuration parameters. The CAS itself runs inside a TEE such as
an Intel SGX enclave. A user of this platform first encrypts the input data and his data analytics job
and then uploads these secrets (cryptographic keys) and system configurations to the CAS. Using
policies, it is furthermore possible to control access We also envision designing and implementing an
auditing service in CAS to keep result logs during runtime for accountability. This auditing service
targets the protection of the data analytics system against rollback attacks.

Confidential Orchestration of the federated environment. The orchestration service may lever-
age Kubernetes orchestration mechanisms but also higher level workflow definitions such as systems
like FedML (Federated Learning). Federated Learning strategies that employ SCONE in the context
of Machine Learning using data from multiple healthcare centers. This is primarily associated with
NCT. The architecture of confidential federated learning can be observed in Figure 24. The main goal
of the layer is not only to ensure the confidentiality, integrity and freshness of input data, code, and
machine learning models but also to enable multiple clients (who do not necessarily trust each other)
to get the benefits of collaborative training without revealing their local training data.

The main goal of our hardened version is not only to ensure the confidentiality, integrity and
freshness of input data, code, and machine learning models but also to enable multiple clients (who
do not necessarily trust each other) to get the benefits of collaborative training without revealing
their local training data. In the confidential setup, each client performs the local training also in-
side TEE enclaves to make sure that no one tampers with the input data or training code during the
computations. To govern and coordinate the collaborative machine learning training computation
among clients, we design a trusted management component, called Configuration and Attestation
Service which maintains security policies based on the agreement among all clients to define the ac-
cess control over global training computation, the global training model, also the code and input data

Page 36 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

used for local training at each client. The Configuration and Attestation Service automatically and
transparently perform remote attestation to make sure the local computations are running the correct
code, correct input data, and on the correct platforms as per the agreement. It only allows clients to
participate in the global training after successfully performing the remote attestation process. It also
conducts the remote attestation on the enclaves that execute the global training in a cloud, to ensure
that no one at the cloud provider side modifies the global training aggregation computation. In addi-
tion to remote attestation, it encrypts the training code, and the Configuration and Attestation Service
only provides the key to decrypt it inside enclaves after the remote attestation. Secrets including keys
for encryption/decryption in each policy are generated by the Configuration and Attestation Service
also running inside Intel SGX enclaves and cannot be seen by any human or client. Examples of the
policies can be found in [20, 21].

After receiving the agreed security policies from clients, the Configuration and Attestation Service
strictly enforce them. It only passes secrets and configuration to applications (i.e., training compu-
tations), after attesting them. The training computations are executed inside Intel SGX enclaves and
associated with policies provided and pre-agreed by clients. The training computations are identi-
fied by a secure hash and the content of the files (input data) they can access. Secrets can be passed
to applications as command-line arguments, or environment variables, or can be injected into files.
The files can contain environment variables referring to the names of secrets defined in the security
policy. The variables are transparently replaced by the value of the secret when an application that is
permitted to access the secrets reads the file.

We design the Configuration and Attestation Service in a way that we can delegate its manage-
ment of it to an untrusted party, e.g., a cloud provider, while clients can still trust that their security
policies for protecting their properties are safely maintained and well protected. In the confidential
version of the federated learning application, clients can attest to the Configuration and Attestation
Service component, i.e., they can verify that it runs the expected unmodified code, in the correct
platform before uploading security policies.

We implemented the federated learning prototype using Intel OpenFL [22]- a distributed feder-
ated machine learning framework. We ran the local and global training computations inside SGX
enclaves using SCONE - a shielded execution framework to enable unmodified applications to run
inside SGX enclaves. In the SCONE platform, the source code of an application is recompiled against
a modified standard C library (SCONE libc) to facilitate the execution of system calls. The address
space of the application stays within an enclave. In our prototype, the input training data and code
are encrypted using the file system shield of SCONE, and then decrypted and processed inside SGX
enclaves which cannot be accessed even by strong attackers with root access. We rely on our previous
works[20, 23] to implement the Configuration and Attestation Service.

2.5.4 AI-based optimization of Cloud/Edge Workflows

In the context of extreme-health use cases, we have massive amounts of varied data. Variety is a key
challenge, as it implies the need to use different kinds of resources for proper processing. Moreover,
each use case processes and uses data differently. Thus, we find a situation of heterogeneous require-
ments regarding computing and data collection. Consequently, orchestration policies are needed to
distribute that data to the different resources according to the use case requirements.

On the other hand, traditional approaches apply heuristics to assign resources on demand with-
out applying prediction techniques regarding future demands. While the approach allowed us to
meet SLAs in most situations, when there is a peak demand, those SLAs may be impossible to ful-
fill. Approaches applying heuristics on-demand lack to consider future demands; thus, while the
allocation decision might be close to optimal under a given scenario, it may be quite inefficient in a
scenario happening a few minutes later after new requests arrive. This situation worsens with the
described heterogeneity.

On top of this challenges, some of our use cases apply novel techniques for computational opti-
mization using specialized resources such as GPUs or FPGAs. Such resources are limited in quantity,
as they are pricey compared to computational power. Consequently, they are typically found only

Page 37 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

on a subset of nodes. Moreover, the data producer may usually be located in other nodes. There-
fore we find yet another challenge regarding data dispersion and resource heterogeneity that our
orchestration policies must solve.

In the context of NEARDATA, we will explore the development of AI-enabled orchestrator that
predicts future demands and requirements and assigns resources based on that knowledge. Thus,
granting close-to-optimal allocations most of the time. Moreover, our orchestrator will be further im-
proved by applying specific AI-based algorithms to consider the heterogeneity of resources, consid-
ering performance boosts via using specialized resources. This performance boost will be analyzed
not only in terms of computational time but as well in terms of energy consumption. Thus, while
it might be that a given workload gets the worst time on a given allocation, that allocation might
be more energy-efficient. On the other hand, extreme-health use case data comes from many loca-
tions (hospitals, laboratories) at once. Traditionally that data is moved to centralized data centers
where the computational power lies for faster processing. The time spent on data transfer is typically
not considered when reporting performance. In NEARDATA, we propose minimizing data move-
ment by applying novel techniques such as hardware disaggregation [24, 25], which allows virtually
possessing specialized resources on any node simultaneously. Applying this technique allows us
to compute the data where it is, i.e., in the edge nodes (hospitals or laboratories). This can reduce
the computational time spent on data transfer. While this solution can achieve some gains, there are
many occasions when there is no alternative to using a cloud provider. Thus, for those situations, and
specifically in the serverless context, we will make use of the Floki framework [26], which enables
direct communication between functions in our use cases and significantly improve performance by
reducing time spent by moving data in and out from the shared object storage.

Our initial proposal connectors to solve the aforementioned challenges are as follows:

• Machine-learning training connector: this connector will enable different machine-learning
models. It will receive an input dataset and the selected model. As an output, it will deliver the
trained model so inference can be applied.

• Machine-learning inference connector: this connector will apply the inference based on a
given trained model and the input data.

• Resource management connector: this connector will provide several resource management
policies. As an input will receive the workload requirements in terms of resources, as well
as SLA requirements to be met. As an output will deliver the proposed selection for resource
allocation.

• Scheduling policy connector: this connector will provide scheduling policies for the work-
loads. It will take as input the workload, the current situation of the system’s resources, and
SLA. As an output will provide the suggested resource allocation.

While initially, we plan to split the machine-learning connectors in this manner; we may unify
both into a single machine-learning connection depending on the needs of use cases that might arise
from the several modifications planned in the project. On the other hand, scheduling and resource
management policies will be connectors used by our orchestrator. The connectors will suggest the
resources and workloads; however, the orchestrator will ultimately decide where and when to assign
the resources.

We propose to integrate this schema and policies on the Lithops framework as depicted in Fig-
ure 25. The figure shows the shadowed Lithops architecture on the background, and the new build
architecture highlighted on the foreground. We can observe how, initially, the Lithops framework
interacts with our resource management recommending system prior launching tasks, requesting
predictions and configurations to be enforced. This is to ensure proper SLAs are met on all the work-
loads arriving into the data center.

Such recommending system is Machine Learning-based, and obtains data from the system us-
ing data-retrieval connectors providing telemetry metrics, while trains or adjusts statistical learning

Page 38 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 25: AI-enabled Lithops framework

models, and returns recommendations on placement, quotas or scheduling through a data-prediction
connector. Once workloads are in a running stage, telemetry will be fed to the modeler/predictor as
a ML-data connector, fitting a model for the workload behavior, characterizing its properties towards
predicting or forecasting future behaviors. The obtained model will be available for the modules in
charge of provisioning resources and placing workloads, asking for specific predictions towards de-
ciding the best possible resource allocation and workload placement. Following the classic machine
learning strategies for model maintenance, results from placement and provisioning can be collected
to refine or reinforce the machine learning models, also evaluate and retrain them.

For such architectures, current technologies developed at the Barcelona Supercomputing Cen-
ter, in collaboration with IBM, focus on different techniques for learning and planning from exe-
cuted workloads. As an example, AI4DL [27] is a characterization algorithm for multi-variate time-
series (e.g., telemetry traces for CPU, memory and I/O), used to discover workload behaviors along
time. The algorithm uses a an encoder (i.e., a Conditional Restricted Boltzmann Machine) to embed
the multiple dimensions plus time into a reversible hashing code, maintaining similarities between
codes generated from similarly behaved time-series. When maintaining the similarity relation, such
hashing codes can be clustered using traditional clustering methods (i.e., k-means). In addition, the
method can be used for time-series forecasting. Therefore, time-series can be characterized, fore-
casted and compared (clustered) for similarity detection. The obtained clustering model determines
the number of behaviors that can be detected, and from each we can extract the statistical charac-
teristics per variable in the time-series. Such information can be leveraged by resource provisioning
policies towards expecting sudden behavior changes or behaviors with high variance (like sudden
bursts). Figure 26 shows an example of a trace with different behaviors automatically detected and
clustered by similarity.

Aside of AI4DL, at this time we are researching different aspects of workload characterization
with respect resource management:

• New methods for characterization that involve complex behavior patterns, with less interac-
tion from human operators (remove the human in the loop), with less computational costs on
training and predictions, and with better generalization and accuracy for models.

Page 39 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 26: Automatically detected behaviors across a workload using CPU and Memory usage, in-
cluding warm-up (green), low resources demand (blue), high variation on demand (red), and high
demand (gray)

• How to apply characterization information (AI4DL and other models) into policy enforcement,
for resource provisioning and application placement. This involves how to design and deploy
data connectors that link “smart” components making predictions and decisions with the com-
ponents controlling the computing environment.

For this, NearData will also research on the sub-specification data-connectors that should be designed
to integrate these learning components in the proposed data-spaces environment.

Page 40 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

3 Description of use case scenarios

As mentioned above, NEARDATA is based entirely on problems specific to healthcare domains. In
the following section, we will detail each of the use cases presented by the different partners on dif-
ferent healthcare topics. The description and objectives of each one will be presented along with
the technical requirements to carry them out, such as the data types, datasets and the data connec-
tors. Finally, the experiments to be performed will be presented along with the integrations with the
different components presented above.

3.1 Clinical sequencing of human pathogens

3.1.1 Description of the use case

UKHSA is the UK Health Security Agency, the government body charged with taking care of pub-
lic health in the UK. As such, it routinely sequences a number of different human pathogens, both
viral and bacterial, in order to produce clinical reports and respond to outbreaks. The number of
pathogens sequenced can be estimated in the range of 10,000-20,000 each week, or 500,000-1,000,000
year. Using a conservative estimate whereby the sequencing of each pathogen generates 1 GB of data,
that would amount to 0.5-1 PB/year just for the input data, which should then be multiplied by a rel-
evant factor if intermediates and results of the analysis are considered. This scenario is complicated
by the following requirements:

• The patient metadata (name, age, address, clinical history, NHS number, etc.) contains per-
sonally identifiable information. Under the reasonable assumption that the computational en-
vironment is not secure, such information must be removed from the data processing flow at
the beginning of analysis and added back to it in the end, when the results of the analysis are
uploaded to secure servers accessible to clinicians.

• The computational workflow needed for each pathogen is in principle different, as it depends
on its genomics and its population structure and dynamics. That translates into the need for a
modular library of analysis components, that UKHSA will then assemble as needed in order to
obtain a suitable and optimized workflow for each pathogen.

• The computational requirements for the analysis of each pathogen are typically very diverse,
depending on both the pathogen and the analysis stage. The first stages are usually based on
read alignment and assembly; they are CPU- and/or memory-intensive operations, and require
computational platforms with high data throughput. The following stages are usually less
computationally demanding and based mostly on databases, communication and visualization,
with a number of exceptions depending again on the pathogen.

• The generation and querying of samples for clinical analysis happens across a number of public
bodies (hospitals, regional health agencies), which makes bespoke data processing and feder-
ation paramount. While some public bodies might perform their analysis on dedicated HPC,
others might do so in the cloud. In addition, due to the constitutional structure of the UK as a
union of four different countries, different requirements and rules might apply to clinical data
depending on the place it is generated or used.

• There might be demand peaks, for instance when a pandemic such as COVID-19 happens, or
during an outbreak generated by a specific pathogen. There might also be almost-real-time
constraints, whereby the analysis of a sample needs to be performed within a fixed and short
amount of time in order to comply with the requirements of clinical practice.

The pathogen-specific requirements are very well suited to an approach based on data spaces and
connectors. In addition, one would be interested in a flexible data architecture that is distributed in
nature and can easily be re-optimized on the fly or on demand. Due to an intrinsically federated
system and the presence of privacy and access control issues, the solutions for the proposed use case
should also include built-in data security (such as encryption of personal identifiable information)

Page 41 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

coupled with appropriate access points and procedures ensuring that data and results are distributed
correctly.

3.1.2 Datatypes and datasets

The data used in this case consists of two main categories:

• Patient metadata: Due to privacy and data security issues, patient metadata is usually not up-
loaded to global databases, with the notable exception of a small number of studies which have
received ethical and patient approval and consent. In order to cope with issues related with
personally identifiable information (PII), in this project we will simulate metadata based on
the pathogen-specific statistics of the real data (age, geographical distribution, health provider,
typical movement and patterns through the healthcare system). The use of realistic simulated
metadata allows us to sidestep possible problems related with data protection rules, while at
the same time retaining full scientific meaning and representativeness of the results.

• Genomic data: UKHSA routinely makes the data generated by pathogen sequencing publicly
available on global databases for sequencing data such as the Short Read Archive (SRA) or the
European Nucleotide Archive (ENA). Currently there are roughly 100,000 bacterial sequences
that have been deposited in the SRA at URL https://www.ncbi.nlm.nih.gov/bioproject/248064.
We will use an adequate subset of this data as test set during the set-up and scaling-up phases,
focusing on at least two pathogens of interest to UKHSA.

3.1.3 Data connectors

Figure 27: Overview of data flow in the clinical sequencing of human pathogens. Sensitive data in
red. Note that the sequencing of human material in biological samples can also lead to the patient
being identified even in the absence of patient metadata, due to the presence of recognisable variation
fingerprints that can be searched for in available ancestry databases.

Our use case is depicted in detail in Figure 27. It can be conceptually divided into a number of
data connectors, both for the handling of patient metadata and genomic data:

• Metadata encrypter. It encrypts sensitive data in such a way that operators with a sufficient
access level (which might be different depending on whether the operator belongs to a regional
or national body) can subsequently decrypt it.

Page 42 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Data-metadata unlinker. Sensitive patient information must be separated from pathogen se-
quencing data, which is not personally identifiable, prior to analysis of the latter. However, one
must be able to re-link the two later on.

• Data analyser (sequencing data quality controller). It performs quality control on sequencing
data, and provides a basic description of the contents of the sample by querying a sequence
database. Can be pathogen-dependent.

• Data analyser (sequencing data assembler). It performs de-novo assembly of sequencing data.

• Data analyser (sequencing data aligner). It aligns sequencing data to a known reference
genome for the pathogen.

• Data analyser (pathogen variant caller). It identifies variants (for instance, Single Nucleotide
Polymorphisms) from aligned sequenced data.

• Data analyser (pathogen typer). It uses either a de-novo assembly and/or variants in order to
classify which sub-species, lineage or strain the pathogen belongs to.

• Data accessor (pathogen database). It identifies in a pre-existing database pathogens similar to
the one(s) present in the sample being analysed.

• Data comparator (relations among pathogens). Given a number of pathogens, either present in
a sample or identified in a database, establishes and display relations among them, for instance
by means of a phylogenetic or non-phylogenetic tree.

• Data-metadata linker. Inverts the operation performed by Data-metadata unlinker.

• Data merger and report generator. Given the results of sequencing and analysis and a set of
similar sequences retrieved from a specific pathogen database, it generates a human-readable
report about the sample.

• Metadata decrypter. Inverts the operation performed by Metadata encrypter, taking data ac-
cess levels into account.

• Data slicer and accessor (clinicians, public health bodies, decision makers). It implements
data access levels for the full report (other components of the results/report might need selec-
tive access in addition to personally identifiable metadata).

3.1.4 Experiments

UKHSA has already implemented, and routinely performs, sequencing-based surveillance and test-
ing for a number of pathogens. However, there is no integrated vision of the process, with many of
the connection tasks between different stages (such as the barcode-based reconnection of metadata
and sequencing data) often initiated by hand. Within NEARDATA, we plan to achieve two main
goals:

• Orchestration of the federated environment by stream processing. This task focuses on the
re-definition in terms of data streams of all the overall processing steps identified in Figure 27.
With a technology such as PRAVEGA, data flowing between the different steps will be turned
into streams; suitable events will be emitted whenever data moves from one stage to the other
and transmitted to servers, allowing for a continuous and fine-grained control of the process.
Notably, this architecture will allow a precise understanding of data flows, access permissions
and policies for all the actors involved in the tasks – clinicians, hospitals, analysis laborato-
ries, sequencing centres, public health agencies, epidemiologists and decision makers in the
government and elsewhere.

Page 43 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Porting of existing pathogen-specific pipelines to data connectors and, possibly, confiden-
tial computing. This tasks focuses on the re-definition and re-implementation in terms of the
data spaces and connectors identified above of at least two pathogen-dependent analysis work-
flows currently used at UKHSA and collaborating institutions (typically Salmonella enterica and
Escherichia coli). This will allow the creation of a modular library of components that can be
extended to other pathogens of interest in the future. Also, this redefinition of workflows will
help optimise the computational resources needed to process data. In order to protect patient
confidentiality better, in particular regarding potentially identifiable human genomic data, we
will also explore the possibility of performing part of the workflow on platforms for confiden-
tial computing such as SCONE.

3.1.5 Technical challenges

Technical challenges are mostly given by:

• The complexity of the process, which involves the interaction of a number of diverse actors who
operate from many geographically separated locations. This will require a precise definition of
both use case statistics and the process.

• The inherent large-scale of data analysis, which involves the processing of tens of thousands
of samples per pathogen per year. It is unclear whether technologies such as PRAVEGA or
SCONE will be able to cope with such large amounts of data in their current implementations.

3.2 Variants interaction analyses in massive genomics datasets

3.2.1 Description of the use case

The human genome reference sequence is composed of a sequence of >3 billion base pairs. By com-
paring the genomic sequences between any two individuals from the population, 3.78 million of
differences (Genomic Variants) can be found. In particular, there are more than 400 million known
variants. Among others, the study of genomic variation is crucial to understand disease predis-
position and, therefore, one of the main goals of the Computational Genomics field is to identify
disease-associated variants.

Complex diseases, such as Type 2 Diabetes, asthma, or Alzheimer’s disease, are caused by the
simultaneous effect of multiple genomic variants and other environmental factors. Thus, suggesting
the relevance of the study of variant interactions and its effect on the risk of developing the dis-
ease. The effect of these variant interactions can be additive or synergic (epistatic). Since the study
of disease-variant associations has been broadly approached, in a single independent manner, by
Genome-Wide Association Studies (GWAS), one of the common ways to inspect the additive model
is to directly measure the contribution of the sum of variant effects to disease development. However,
this type of approach, which rely in previous knowledge, does not allow the identification of groups
of variants that simultaneously, both in an additive or epistatic manner, contribute to the develop-
ment of the disease. Additionally, the vast number of combinations (>6x10e13) needed to analyse
pairwise interactions in a regular-size dataset (>10 million variants), converts the study of variant
interactions into a still challenging problem that can only be approached using HPC technologies.

To approach these genomic and computational challenging problems we have designed machine
learning and statistical frameworks. Within the NEARDATA project we aim to standardise these
methodologies and to find computational solutions in collaboration with other groups. Therefore,
this use case will contribute to the creation of new data connectors which can be used by the Com-
putational Genomics community to analyse multiple complex diseases.

In order to approach the analysis of variants interaction in a real dataset, we present two different
approaches: 1) using machine learning to discover of groups of variant interactions associated with
Type 2 Diabetes at a Genome-Wide level (GWD), and 2) develop of a Multifactor Dimensionality
Reduction method to enhance the discovery of pairwise variant interactions associated with Type 2
Diabetes (MDR).

Page 44 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Machine Learning approach, GWD: machine learning classifiers have been proved useful in
the identification of the most relevant variables to classify patients in groups of diseased and
non-diseased individuals. Particularly, at the Barcelona Supercomputing Center, we have been
able to apply these methods to find groups of genomic variants associated with the risk of de-
veloping Type 2 Diabetes. However, these types of approaches only allow the inspection of a
few variables based on the number of observations. More specifically, the number of variables
analysed cannot exceed the 10% the number of observations. For this reason, with extreme
attention, we have only been able to analyse a dataset with 105,896 variants and >22 thousand
individuals (pilot dataset). Within the NEARDATA project, our aim is to improve this method-
ology, to optimise its performance, and to use it in a combinatorial way to allow the inspection
of >15 million variants, which is a still extreme computational challenging problem.

To validate the diverse strategies and connectors developed within the NEARDATA project,
two benchmarking cases will be used: 1) synthetic data and 2) pilot dataset. For the first case,
we will generate the genotype and phenotypes of thousands of individuals from the Euro-
pean population, including some variant interactions. Both datasets, the synthetic and the pilot
dataset, will be analyzed using the newly adapted machine learning algorithms to ensure the
stability of the codes and the improvement of the performance. The results obtained will be
compared with the provided and already working previous methods.

• Multidimensionality Reduction approach: in this approach we want to analyze every possi-
ble pairwise combination, meaning that we are dealing with more than 6x10e13 combinations
per cohort. To do so, we are using Multifactor Dimensionality Reduction (MDR), a statisti-
cal approach for detecting a combination of variants. MDR is based on contingency tables as
well as Chi-Square. It reduces the dimension of the problem. More specifically, it converts the
counts obtained for the cases and controls into a simple binary variable by classifying all the
possible allelic combinations for each pair in high-risk/low-risk, reducing the analysis to only
one dimension. It follows a naive Bayes approach, building a probabilistic classifier from every
variant-variant interaction and summarizing the best combinations for prediction. It can be
implemented in 5 different steps, illustrated in 28.

While MDR has been proven to be a successful method for detecting interaction, due to the
dimension of the problem it must be implemented with some previous data selection step,
reducing the dimension of the input. However, using the right HPC tools it should be possible
to create an environment where processing a whole genomic cohort becomes feasible.

Figure 28: The 5 steps performed in the Multifactor Dimensionality reduction.

Page 45 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

3.2.2 Datatypes and Datasets

The data used in this use case consists of the genotype and the phenotype of the individuals from 1)
a synthetic dataset and 2) the 70KforT2D.

• Synthetic dataset: this dataset has been generated using EpiGEN and contains the synthetic
genotype for 10,760 individuals of European ancestry in 101,327 genomic variants. It includes
a pairwise interaction under a multiplicative model. This data will be used to validate and
evaluate the diverse strategies and connectors developed within the NEARDATA project.

• 70KforT2D: this a Type 2 Diabetes case-control dataset which includes data from 12,926 di-
abetic and 57,191 non-diabetic individuals of European ancestry. The genotype and pheno-
type of the individuals in this dataset is distributed in 5 previously published cohorts: Re-
source for Genetic Epidemiology Research on Aging (GERA), Finland-United States Investi-
gation of NIDDM Genetics (FUSION), Wellcome Trust Case Control Consortium (WTCCC),
Gene Environment Association Studies initiative (GENEVA), Northwestern University NU-
gene project (NUgene). The genetic information can be accessed through the dbGaP plat-
form for FUSION (phs000867.v1.p1), GENEVA (phs000091.v2.p1), NUgene (phs000237.v1.p1),
GERA (phs000788.v2.p3), and the Sanger platform for WTCCC. It includes information of
15,131,345 variants. Part of this dataset (pilot dataset) will be used to evaluate the strategies
and connectors developed within this project.

3.2.3 Data connectors

Our use case can be divided into 4 main data connectors: 1) Data preparation, 2) Data selection, 3)
Test of association, and 4) functional interpretation.

• Data preparation: in this first main connector we group all the connectors related to the initial
load of the data, identifying three connectors: data ingestion, data clean, and data store. The
purpose of this block is to prepare the data into a fast and easy-access database, that can be
distributed.

• Data selection: in this second, we group all the connectors related to the access to the data.
We have identified also three connectors: data extraction, data transform, and data merge. The
purpose of this second block is fast access to the information of the database that every process
may need.

• Test of association: in this third connector we apply the main algorithm to the data.

• Functional interpretation: in the last connector we study the results obtained, looking for a
functional interpretation of the variants obtained from a biological point of view.

3.2.4 Experiments

While both two approaches for variant interaction are already developed, they are both limited by the
extreme data needed to be processed. Therefore, we need to accelerate the processes, implementing
better environments to reduce the computational time or reducing the computational cost making
the connectors more efficient.

• Serverless implementation: servleress aims to reduce the costs for the allocated resources in
the cloud. This is achieved by splitting the workloads into small tasks, called functions. Those
functions get assigned the requested resources only for the period of time during which the
function runs, hence, paying the price for the resource only for the effective usage. We aim
to reimplement our use-case using functions for the different tasks and optimize the use of
resources in terms of operational costs. To achieve this we will use Lithops as our serverless
framework.

Page 46 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Serverless Data Connector: fast access to the data is one of the key points of managing Extreme
Data problems. One of the challenges faced is data partitioning according to the computational
nodes consuming it. While static partitioning allows efficient division of data across nodes,
data needs to be re-partitioned when those nodes change in characteristics. When having large
datasets, such a process is time-consuming. Implementing the Serverless Data Connector to
avoid creating static partitions and using a data virtualization model that enables effective par-
titioning to consume directly from Object Storage can be a great option to reduce the compu-
tational expense of the architecture. Data plug main benefit is that this partitioning process is
made faster than traditional approaches.

3.2.5 Technical challenges

As introduced earlier, analyzing all the possible combinations that happen in a genomic dataset is a
hard task, computationally speaking. The volume of data that we have after making all the pairwise
combinations convert our problem in an Extreme Data situation, and this is the simplest scenario.
While different algorithms are being used for MDR and GWD, they face similar challenges and need
similar solutions.

• Data management plan: we have to read every variant several times in both our use cases. The
amount of data that needs to be processed is too high to pre-load them on memory, so we need
to be able to read every variant fast. Reducing the time needed to access and load them can
lead to a great decrease in our total time needed to use both pipelines.

• Method optimization: even removing from the equation the reading time, the computational
resources that both the MDR and the GWD need to process a whole genomic dataset is, nowa-
days, unfeasible. One of the main needs of both pipelines is to optimize the methods both
reducing the computational time and improving the use of resources.

In summary, using the right technologies is key to get to analyze complete genomic datasets.
Implementing a data management system that can deal with efficient access to the data and an HPC
platform that allows a fast computation of the MDR and the GWD algorithm will increase the volume
of genomic data we can study.

3.3 Transcriptomics Atlas Use Case

3.3.1 Description of the use case

Transcriptomic research, which focuses on studying gene expression patterns on a large scale, is
a challenging field that holds great promise for understanding biological processes and diseases.
However, researchers face several obstacles in conducting such research. One significant challenge
involves acquiring an adequate number of patient samples for comprehensive analysis. Due to lim-
itations in resources and time, researchers often find themselves struggling to gather a sufficient
quantity of samples to draw meaningful conclusions. Additionally, the cost of sequencing has not
yet reached a level where researchers can easily increase the number of collected samples within their
limited budgets. To overcome this limitation, they often augment their dataset by including reference
control group samples obtained from publicly available data repositories. These repositories contain
transcriptomic data collected by previous research efforts, making them a valuable resource for cur-
rent investigations. By incorporating these reference samples, researchers can expand their dataset
without significantly increasing the cost of sequencing.

However, the process of incorporating publicly available data into transcriptomic research can
be tedious and time-consuming. It involves several steps, including finding relevant studies using
platforms such as PubMed [28], isolating information on where the data is stored, and downloading
and processing the data for incorporation into one’s research. The more samples are found, the
more comprehensive and robust the reference values will be, leading to more impactful research.
Unfortunately, the process is currently mostly manual, requiring a considerable amount of time to
find a suitable number of relevant studies.

Page 47 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Even if the process of finding relevant studies were automated, the sheer volume of data encoun-
tered can pose a challenge without access to suitable computational infrastructure. Modern DNA
and RNA sequencing techniques generate massive amounts of data that require large-scale high-
performance computing (HPC) or cloud computing resources. Providing transcriptomic researchers
with access to such computational architecture is crucial in accelerating innovation in this domain.

Another important aspect related to transcriptomics is data privacy. Since the expression data is
always linked to patients, handling such data raises privacy risks. Building confidential and secure
data processing pipelines based on privacy-enhancing strategies is of utmost importance to protect
the individuals the data is derived from and to comply with legal regulations.

3.3.2 Datatypes and Datasets

In our experiments, we will utilize publicly available data for analysis. Specifically, we will evaluate
our transcriptomic data processing pipeline using the Sequence Read Archive (SRA) database [29].
The SRA database serves as a public repository that houses raw DNA sequencing data. It is metic-
ulously managed and maintained by the National Center for Biotechnology Information (NCBI), a
division of the United States National Library of Medicine. Researchers have the ability to upload,
share, and access raw sequencing data generated from diverse high-throughput sequencing tech-
nologies, including next-generation sequencing. Since its inception in 2009, the SRA database has
accumulated an impressive volume of approximately 12 petabytes of data. Researchers can access
this valuable resource through multiple cloud service providers, as well as via the NCBI servers and
command line tools. The archive boasts a comprehensive collection of data samples obtained from
various studies, including:

• Raw sequencing data generated by high-throughput sequencing platforms.

• Quality scores, indicating confidence level associated with each base call.

• Metadata, including information about the experimental design, and attributes, such as organ-
ism, tissue type or disease condition.

• Derived data: associated alignment files, genomic variants, reference genome.

3.3.3 Data connectors

Within our use case, we anticipate several data connectors, that are needed to build a Transcriptomic
Atlas and Federated Learning Pipelines:

• Metadata extraction: to obtain data samples belonging to specific tissue and cell groups, we
will build a metadata processing system, which will allow us to process and classify metadata
contained within SRA archive, to extract identifiers of the relevant samples.

• Data downloader: using the identifiers extracted using metadata information, we will down-
load the relevant samples into a cloud computing environment before performing computa-
tions.

• Expression quantification: for each sample we will quantify expression values, as a first step
of building reference expression atlas.

• Data normalization: the quantified expression values will be normalized, to build a robust
gene expression reference.

Additionally, for the Federated Learning experiment, we will need the following data connectors:

• Feature extraction: the information contained within variant calling data has to be extracted,
to include only features that are relevant for the machine learning model.

• Feature encoding: the selected information will be encoded to create numerical representation
that can be used by the selected classifier.

Page 48 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

3.3.4 Experiments

To streamline the process of obtaining samples for transcriptomic research, we will apply novel com-
puting methods on a large scale to build a Transcriptomic Atlas Pipeline (Fig. 29). It will automate
metadata analysis and offload large-scale data processing to the cloud environment, improving the
researcher experience. The pipeline will find and process raw sequencing data, quantify expression
values, and normalize them to build a robust control group reference for researchers. It will be im-
plemented on a commercial cloud platform. Two operating modes are considered: predefined and
on-demand. In the predefined case, the pipeline clusters raw sequencing data samples for specific
tissues and builds a database of reference, normalized expression values. This data could be avail-
able through a web service for researchers to download and use. In the on-demand case, researchers
trigger the pipeline after selecting constraints for the metadata analysis module to search for relevant
samples. After the workflow finishes, researchers can access tailor-made reference expression values
for their research.

SRA
database

data

STAR
.fastq files

deSEQ2
.bam files .csv files

Type of
alignment

Salmon
.fastq files

deSEQ2
.txt files .csv files

Alignment

Pseudoalignment

Transcriptome
model

Transcriptome
model

Figure 29: Transcriptomic Atlas Pipeline diagram, with file types at each step (.fastq/.bam/.csv).
Depending on the alignment type, different tools can be used for data processing (STAR/de-
SEQ2/Salmon).

In addition to the Atlas Pipeline, our objective is to construct a Federated Learning Pipeline to ex-
plore distributed computing workflows in the transcriptomic domain. This pipeline will utilize data
generated at one of the stages of the Atlas Pipeline to create a dataset containing genomic variant
information. This dataset will then be employed in a federated learning workflow, where a network
of distributed nodes such as organizations or hospitals will collectively train a consensus machine
learning model for a classification task. By adopting this approach, we aim to evaluate the feasibility
of applying federated learning techniques to train models using transcriptomic data. Moreover, this
experiment will serve as a unique opportunity to highlight the advantages of federated learning, par-
ticularly in terms of enhanced data privacy resulting from the inherent no-data-exchange paradigm.

3.3.5 Technical challenges

The experiments contained within the transcriptomic use case combine technical challenges typical
for a number of domains, such as Big Data (data processing, parallelization, scalability), Confidential
Computing (data confidentiality) and Machine Learning (architecture search, data preprocessing,
data representation). Specifically, depending on the experiment, the challenges include:

• Transcriptomic Atlas: efficient usage and processing of over 50TB of transcriptomic data despite
high resource requirements (e.g. over 250GB RAM per instance for STAR aligner).

• Transcriptomic Atlas: parallelization of the alignment step to process subsets of data on different
instances simultaneously, followed by merging outputs into single output file to improve the
execution time of the pipeline for single input (SRA file).

• Federated Learning Pipeline: ensuring confidentiality of the processed data during every step of
the federated workflow.

• Federated Learning Pipeline: scaling the federation to a greater number of organisations.

Page 49 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Federated Learning Pipeline: efficient data preprocessing for large volume variant data.

• Federated Learning Pipeline: running large-scale federated learning experiments in cloud and
HPC environments.

• Federated Learning Pipeline: architecture search for variant-based classification task.

• Federated Learning Pipeline: finding a suitable representation for genomic variants data.

3.4 Metabolomics Use Case

3.4.1 Description of the use case

Spatial metabolomics is a field of omics research focused on the detection and interpretation of
metabolites, lipids, drugs, and other small molecules in the spatial context of cells, tissues, organs,
and organisms. Spatial metabolomics is a rapidly emerging field, fueled by the strong and ever-
growing need in biology and medicine to characterize biological phenomena in situ, as well as by
the recently revealed key roles of metabolism in health and disease. This field is concerned with a
variety of biomedical questions, including the tumor molecular microenvironment, functions of im-
mune cells during homeostasis and immunotherapy, interactions between host and microbiota and
their contribution to inflammation, regulation of early development, metabolic regulation of epige-
netics, and metabolic dysregulations during infection and inflammation. Over the past decade, this
growing interest has stimulated rapid progress in the development of enabling technologies – in par-
ticular, imaging mass spectrometry (MS) – that have achieved unprecedented sensitivity, coverage,
and robustness as they have become accessible to biologists (Figure 30).

Figure 30: An imaging mass spectrometry (MS) dataset represents a collection of spectra acquired
from a raster of pixels representing the surface of a tissue section. An ion image represents relative
intensities of the ion across all pixels. An imaging MS dataset can represent spatial localization of up
to 103 molecules.

We have developed METASPACE, a global community platform for spatial metabolomics pop-
ulated by a large community of users 7; see Figure 31. The cornerstone of METASPACE is a com-
putational engine for metabolite annotation which searches for metabolites, lipids, and other small
molecules in an imaging MS dataset. The engine estimates the False Discovery Rate (FDR) of metabo-
lite annotations that provides quality control and – as demonstrated in other -omics – makes anno-
tated spatial metabolomes comparable between datasets, experiments, and laboratories. We created
a user-friendly web app for data submission and for interactive exploration of annotated metabolite
images. By sharing their results publicly, METASPACE users cooperatively created and continuously
populate a knowledge base of spatial metabolomes.

METASPACE was developed earlier in the European Horizon2020 project METASPACE (2015-
2018). METASPACE integrates a high-performance cloud computing engine, a webapp for data
submission, results search, browsing, analysis, and sharing, as well as a knowledgebase of private

7https://metaspace2020.eu/

Page 50 of 92

https://metaspace2020.eu/

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 31: METASPACE landing page showing live statistics and providing access to webapp for
data browsing, visualization, and metabolite annotation.

and public datasets and results from them. Since 2017, METASPACE became a major tool in spatial
metabolomics with over 1900 registered users from over 100 labs, with many using it every day. We
processed over 30K submissions, with over 1K submissions per month lately. Importantly, 25% of
these submissions were shared publicly. This represents the largest public data collection in spatial
metabolomics (and one of the largest in metabolomics in general) and, with provided metadata, a
continuously-populated knowledgebase of spatial metabolomes.

Importantly, METASPACE requires scalable computing, taking into account the growth of the
field (Figure 32) as well as the diversity of the datasets submitted to METASPACE in its nature and
size.

3.4.2 Datatypes and Datasets

In our experiments, we will utilize data publicly available at METASPACE. Specifically, we will eval-
uate the results of the Experiments 1-2 using over 8000 public datasets 8 as well as EMBL private
datasets. The total size is over 10 TB and the list of public datasets is updated multiple times a day.

METASPACE space is developed, managed, and maintained by the Alexandrov team at EMBL
(the partner in this project). METASPACE users submit the datasets following the METASPACE
Terms and Conditions 9 to use METASPACE services in particular the metabolite annotation. Since
the inception in 2014, METASPACE accumulated over 30 TB of data, with the half of the whole
data volume submitted in the last year. METASPACE users can access this resource through a web
browser as well as programmatically through Python API. METASPACE hosts the largest collection
of spatial metabolomics datasets. METASPACE stores all datasets in the centroided imzML format 10.
The format can be accessed using Python by using our package pyimzML 11. The datasets contain
information about spatial metabolomes from various organisms, organs, and analyzed using various
spatial metabolomics technologies 12.

3.4.3 Data connectors

We anticipate the following data connectors to be necessary:

8https://metaspace2020.eu/datasets
9https://metaspace2020.eu/terms

10http://imzml.org
11https://github.com/alexandrovteam/pyimzML
12https://metaspace2020.eu/datasets/summary

Page 51 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 32: The popularity of different technologies in the life sciences and biomedicine and their
evolution over time. The plot shows the numbers of PubMed-indexed publications in a given year
containing the keywords shown in the figure key. We highlight three time periods, before 2009, from
2009 until 2015, and after 2015, which we discuss in the main text. The inset shows the popularity of
several technologies for metabolomics applications from 1995 until 2018.

• Metadata extraction: to query metadata for datasets stored on METASPACE e.g. the types of
mass spectrometry used, or the organ analyzed.

• Data downloader: using the identifiers obtained either from metadata or supplied externally,
we will download the relevant datasets into a cloud computing environment before performing
computations.

• Feature calculation: for a dataset and ion, we will calculate features quantifying the likelihood
of the ion to be present in the dataset. This will include the features proposed by us earlier (e.g.
rhochaos) as well as novel features quantifying mass accuracy.

• False Discovery Rate calculation: we will implement efficient FDR (False Discovery Rate) cal-
culation based on the target-decoy approach. This will require the generation of the target and
decoy ions, calculation machine-learning-based scores for them, and ranking them based on
the score, and calculating FDR values for each ion.

3.4.4 Experiments

To carry out the metabolomics use case we present two different experiments:

Page 52 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Mining historic METASPACE datasets with the recently developed ML model to address
the “dark matter” problem in spatial metabolomics. Recently, we have developed a novel
method for metabolite annotation in spatial metabolomics, based on using machine learn-
ing (Wadie, Stuart et al, BioRxiv 2023). This method can find more metabolites in the spa-
tial metabolomics data compared to the currently implemented method (Palmer et al, Nature
Methods 2017). The development of this method can help address the so-called “dark matter”
problem, namely finding molecules in the currently un-annotated major part of data. In Ex-
periment 1, first, EMBL will implement the ML-based annotation using the Lithops serverless
computing. Lithops is a powerful framework for scalability and is already used in the pro-
duction version of METASPACE. This will require implementing calculation of new features,
as well as deploying the machine learning model (CatBoost) on AWS. Second, EMBL with the
help of URV will develop a hybrid architecture that will allow off-loading ML-based annota-
tion to the edge, either to the EMBL clusters or to the KIO testbed or on the European Open
Science Cloud. The key aspects of this architecture will the execution of the Lithops workers
on the edge supported by the object storage infrastructure located near the extreme data of the
historic METASPACE datasets (the key details to be formulated in the first year of the project).

• Confidential computing for safe offloading of ML-based annotation of “dark matter” for
private datasets. In Experiment 2, we will use confidential computing for safely performing
ML-based annotation in external edge environment. For this, EMBL together with URV and
Scontain will use the confidential computing framework by Scontain and its parts integrated
into the NEARDATA data processing platform. Specifically, first we will formulate the require-
ments for the NEARDATA data processing platform to support the ML-based annotation in
METASPACE. This will be done following the completion of Experiment 1. We expect this to
require minimal custom modifications of the Scontain / NEARDATA platforms as we will use
Lithops with minimal additional software requirements. Second, we will develop and review
the confidentiality requirements and develop the design for confidential computing. Third, we
will implement and stress-test the confidentially-executed ML-based annotation in the edge
environment (either test-bed by KIO or the environment used in Experiment 1). Finally, we
will process the private datasets from METASPACE and ingest the results into METASPACE
database and ElasticSearch.

3.4.5 Technical challenges

In the Experiment 1 of NEARDATA, we propose to mine tens of thousands of historic METASPACE
datasets by using the novel ML-based annotation. This is impossible because of the cost associated
with the mining the extreme data accumulated in METASPACE by using the commercial clouds
(AWS, IBM Cloud) currently used in the production version of METASPACE. To put into perspective
of the Extreme health data, METASPACE currently harbors over 33.000 datasets, each of the size
of 1-200 GB that sums to over over 30 TB data. The annotation of a dataset using the currently
implemented annotation method costs from 0.1 to 10 euro. Our estimate for the costs of mining all
historic datasets exceeds 30K€ and this is using the minimal parameters only. At the same time,
using it with expanded parameters will likely increase the price by several folds. Importantly, such
mining of historic datasets is foreseeable in the future when we will improve our machine learning
annotation, so it requires a completely novel solution, such as the near-data processing platform to
be developed in NEARDATA.

This experiment will build on Experiment 1, yet it will expand it by addressing the following
problem. Currently, METASPACE harbors both public and private datasets. Under the METASPACE
Terms and Conditions, the public datasets are available to everyone under the CC BY 4.0 license.
However, private datasets are shared under the conditions of privacy. This is important for the
reputation of METASPACE as well as for its uptake among potential industrial users. However, the
annotation of private datasets in Experiment 1 in the edge environment poses a threat of the leakage
of the content of private datasets and their metadata.

Page 53 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

3.5 Surgery Use Case

3.5.1 Description of the use case

Increasingly powerful technological and digital developments in surgery provide a huge amount of
valuable data which can be used to improve patient therapy. Although a lot of data is available, the
numerous data sources are an overwhelming challenge for physicians, especially in the operating
room. The aim of data-driven computer-guided (robotic) surgery (CGS) is to provide the surgeon
with the right type of assistance at the right moment by turning the available data into useful infor-
mation.

While laparoscopic surgeries are largely beneficial for patients compared to conventional surg-
eries, they are challenging for the surgeon due to a loss of depth perception and challenging hand-
eye-coordination. One application of CGS is to work against this imbalance by providing the right
assistance functions, such as providing the position of a tumour, predicting surgical complications,
etc., by analysing the surgical workflow using the video stream from the endoscopic camera.

3.5.2 Datatypes und Datasets

While there are many types of data that can be acquired in the operating room, the most expressive
data type, and the type which we will likely focus on exclusively, is video data. The records will be
stored in large datasets with different video formats, such as:

• MPEG-4.

• MP4.

• AVI.

In the initial phase of the project, we will sporadically draw from the data that we have in-house to
test and configure the systems we develop.

• Dresden Surgical Anatomy Dataset (DSAD) (University Hospital Dresden and NCT/DKFZ) [30].

• HeiChole (University Hospital Heidelberg and NCT/DKFZ) [31].

• Cholec80 (University of Strasbourg) [32].

• Synthetic video data (NCT/DKFZ) [32].

However, owing to our connection with the Surgical Facility on the university hospital campus, we
ultimately hope to curate datasets which will highlight the use case in the context of this project
specifically, by encompassing the variety of surgical workflows and consequently enabling the as-
sessment of our developed infrastructure to handle the corresponding computational demands.

3.5.3 Data Connectors

This use case will develop data connectors designed for surgical tasks like: the detection and seg-
mentation of organs and tools, determining the current surgical workflow phase, and registration of
preoperative and intraoperative information. Broadly speaking, there are two central work themes
which we have identified, and which our upcoming work will centre on:

• Streaming-based distributed computing using GStreamer & Pravega, with a focus on the
implementation of algorithms serving Extreme Health Use Cases. This is principally in con-
junction with Dell.

• Confidential Computing, specifically through Federated Learning approaches which lever-
age Secure Container Environments (SCONE) in the context of Machine Learning using data
sourced from multiple healthcare centres. This is principally in conjunction with TUD.

With regard to the algorithms and systems that we will focus on implementing in the context of the
project, they can be split into more independently-operating algorithms and those contributing to
more complex interacting systems of algorithms (in surgical navigation, for example).

Page 54 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

3.5.4 Experiments

Surgical phase recognition and instrument segmentation, for instance, will be taken as first candi-
dates for implementing within the developed infrastructure as they can serve as stand-alone assistive
tools. In either case, they are machine-learning-based algorithms.

Further down the line, once such independent algorithms have been successfully implemented,
the more complex surgical navigation context will be addressed. This is more sophisticated as it
entails the orchestration of several such independent algorithms:

• Liver Segmentation (Neural Network).

• Simultaneous Localisation and Mapping (SLAM, CPU-based).

• Disparity Estimation (Neural Network).

• 3D-Reconstruction System (CPU-based, leveraging outputs from the above 3 components).

Each of these serve a different role for the ultimate goal of illustrating in Augmented Reality (AR) the
position of target structures (tumours and blood vessels) for the surgical team. The most appropriate
components will be integrated into the NEARDATA framework.

3.5.5 Technical Challenges

One of the biggest opening challenges for the surgery use case is that this (stereo) video data has to
be analysed in real-time with low latency. Depending on the surgery type and the progress of the
surgery, the need for computation power can vary. Since the surgical data is difficult to share and
use for machine-learning (ML) because of technological, ethical and legal concerns regarding patient
and surgical staff privacy, data governance, anonymization, access control and secure data exchange
must be employed in the handling of medical data. A major bottleneck for CGS is the requirement of
multi-centric data with high variance to create generalised ML models that can aid surgeons during
surgery, e.g. to avoid postoperative complications.

Page 55 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

4 Benchmarking framework

In the following section the different requirements to perform the experiments and validations pro-
posed above will be presented. The functional Software and Hardware requirements will be detailed,
together with the environment in which it will be executed (Cloud, HPC) with the necessary services
(Object Storage, Cloud Functions, ...). Finally, the Testbed offered by our partner KIO from all the
requirements exposed during the section will be detailed.

4.1 Clinical sequencing of human pathogens

As mentioned before, we plan to conduct two main experiments Within NEARDATA. Their require-
ments are as follows:

• Porting of existing pathogen-specific pipelines to data connectors and, possibly, confiden-
tial computing. This tasks focuses on the re-definition and re-implementation in terms of the
data spaces and connectors identified above of at least two pathogen-dependent analysis work-
flows currently used at UKHSA and collaborating institutions (typically Salmonella enterica and
Escherichia coli). In detail:

– We will identify a minimal modular subset of bioinformatics components that allow us to
re-implement an arbitrarily large number of pathogen-dependent workflows. The general
architecture in terms of data sources and connectors is the one identified in section 3.1.2;
however, current UKHSA pipelines have been developed in an incremental way, with a
lot of inconsistencies due to historical factors. A detailed description of use cases and
technical requirements will help us reduce the set of needed tools to a strict minimum.

– We will re-implement the subset identified at the previous point in a scalable way. In order
to do that, we will use tools such as Lithops on AWS, which easily lends itself to elasticity,
for instance in a serverless computing environment. We will build upon previous work
already conducted within the previous project EU CloudButton, which led to the estab-
lishment of a highly scalable bioinformatics pipeline to perform variant calling on human
data. Some of the bioinformatics components developed there have been integrated into
Lithops, and we will rely on them and on this previous experience in order to get to the
implementation of our minimum set of needed bioinformatics modules. This step will be
tested both on the HPC and in the cloud.

– We will explore the implementation of parts of the workflows (in particular, the ones
implying the potential accidental manipulation of human genomic data, which can lead
to identification of the patient through fingerprints deduced from genomic variants and
found in existing databases) within a confidential computing framework. As a first step,
we will explore how easily existing bioinformatics tools can be modified to be made them
ready for confidential computing; as a second step, we will test the scalability of such
solutions. We will do that with SCONE.

• Orchestration of the federated environment by stream processing. This task focuses on the
re-definition in terms of data streams of all the overall processing steps identified in Figure 27.
In particular:

– We will identify all the phases of each workflow and associate them with data streams, in
order to be able to make the state of each sample explicit and update it in real time. We
will implement a client/server system, whereby the different data producers (clinicians,
hospitals, analysis laboratories, sequencing centres) can use clients to update the system
about their work on the sample, and workflow controllers (public health agencies, epi-
demiologists and decision makers in the government and elsewhere) can access the server
in order to implement dashboards, management software and other tools.

– We will also attempt to re-implement some of the minimum set of bioinformatics compo-
nents identified above directly in PRAVEGA. That might involve, for instance, the splitting

Page 56 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

of each sequencing dataset into a number of smaller sets of sequencing reads that can then
be considered as a computational unit to be streamed and processed. It is unclear at the
moment if this is possible with the current implementations of PRAVEGA, as the amount
of data to be streamed and processed would be significant.

We will need PRAVEGA in order to achieve this goal.

4.1.1 Involved Tools and Systems

We will use the following Software tools and Systems in our experiments:

• Docker

• AWS

• Lithops (for serverless computing)

• Pravega (for distributed computing on data streams)

• SCONE (for confidential computing)

• Bioinformatics tools (a number of them, as needed after a suitable set of scalable modular com-
ponents has been identified and implemented as described above).

4.2 Variants Interaction Analytics in massive genomics datasets

Figure 33: Variants Interaction Analytics pipeline stages

The Variants Interaction Interaction workload is divided into two different pipelines:

• Genome-wide level Discovery (GWD) of groups of variant interactions associated with Type 2
Diabetes.

• Multi Dimensionality Reduction (MDR) method to enhance the discovery of pairwise variant
interactions associated with Type 2 Diabetes.

Both pipelines are structurally trying to solve the same problem by applying different solutions.
Therefore both cases are an HPC problem to the extremely high volume of data generated: we need
to compute all the variant interactions possible within the human genome, quickly becoming billions
and trillions of combinations (more than 6× 1013) in a regular-sized dataset with more than 10 million
variants. The current implementation attempts to, on the one hand, parallelize the computational
part and on the other hand, limit the number of variations. Figure 33 depicts the main stages.

4.2.1 Cloud and edge computing environments

Within the NEARDATA project, we will explore further parallelization by applying a serverless
methodology to parallelize the different pipeline stages, especially the data ingest which is one of
the main challenges. Despite the problem being initially an HPC problem, each stage can be easily
decoupled and divided into small tasks that will be translated into serverless functions, porting the
use case into a cloud use case. Moreover, in the GWD pipeline, the XGBoost machine learning model
is applied to the data. This data is currently obtained from various datasets (described in the pre-
vious section). However, these data sources were, at a point, hospitals or clinics. This delivers the
opportunity to train the model in situ on several clinics where data can be collected, thus becoming
an edge computing use case and enabling the opportunity to apply federated learning.

Page 57 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

4.2.2 Pipeline evaluation

Summarizing this into experiments, we will evaluate the following elements:

• Data splits: in the data ingestion process, we need to seek how big the chunks partitioning
should be according to the different contexts. This links to the Serverless Data Connector li-
brary, allowing us to adapt to the size of chunks we need.

• Accuracy of learning: when training the data into smaller chunks, we need to see which impact
has on the overall accuracy of the workload with respect to the HPC pipeline, where all data is
available at once.

• Data cleaning: patient data is often incomplete for several reasons, proving a challenge as our
case analyzes variants of interactions among patients. Thus incomplete data may imply the
impossibility of using the subject. A cleaning strategy must be devised to decide which data
can be used in each situation.

• Data storage: depending on how the data is stored, the posterior computation becomes more
manageable or harder. Thus, we analyze how different storage techniques impact use cases’
performance. Moreover, we will study how we can leverage shared object storage enabled in
NEARDATA.

• Data extraction: this stage extracts the relevant data. The challenge is how to extract significant
data quickly. This is directly linked to the data storage stage.

• Data transformation: this stage seeks to filter data if possible. For instance, in the MDR pipeline,
a heuristic is applied to minimize the number of variants that need to be computed. The filtered
amount is later compared with a test dataset to find the accuracy of the pipeline.

• Data merge: finally, the different splits of data processed in parallel need to be merged into a
single dataset. Different merging strategies should be analyzed to find the optimal one.

4.2.3 Involved Tools and Systems

Lithops and Serverless Data Connector will be our serverless frameworks and libraries in both pipelines.

• Software requirements: GWD pipeline only uses Python. While MDR uses Python, the Apache
Spark runtime, PySpark, and Numpy libraries.

• Hardware requirements: in terms of hardware, the use cases do not require any specific hard-
ware. However, in the context of NEARDATA, we will explore optimizations using specialized
resources such as GPU or FPGA.

Given the use-case’s main challenge is to process as many variants as fast as possible, both use
cases are resolving HPC problems. Therefore one of the main benchmarking environments will be
the BSC MareNostrum IV supercomputer.

Our pipelines will explore the efficiency serverless can provide using the Lithops framework.
The first step will be porting the pipelines into the serverless environment. The experiments will be
conducted on an OpenStack-enabled cloud environment.

For the connection with Serverless Data Connector we will need Object Storage. For this, we will
use the shared object services provided on OpenStack and adapt them to behave as expected by the
Serverless Data Connector library. On the other hand, to test the AI-enabled orchestration optimizer,
we will enable Kubernetes in our OpenStack cluster.

Page 58 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

4.3 Transcriptomics Atlas Use Case

4.3.1 Atlas Pipeline

To benchmark the applicability of serveless technology and confidential data exchange and orches-
tration in a transcriptomic setting, we will adapt an batch processing pipeline for the transcriptomic
atlas and a federated workflow build on top of it. The original transcriptomics pipeline for the Tran-
scriptomic Atlas use case consists of 4 phases:

1. Download SRR file using "prefetch" tool.

2. Extract fastq files using "fasterq-dump" tool.

3. Quantify expression using SALMON tool [33] or perform Alignment using STAR tool. [34][35]

4. Normalize counts using DESeq2 library in R.

Both "prefetch" and "fasterq-dump" are provided by "SRAtoolkit" [36].
Files generated on each step of the pipeline vary in size. The first step is to download the SRR

file which are several GB in size, usually less than 10GB for our use case. In the next step, the space
needed during the conversion to fastq is approximately 17 times the size of the accession and the
resulting fastq files generated are about 7 times the size of the SRR file. The outputs of SALMON and
R script are measured in MBs.

The goal is to create the Transcriptomics Atlas which requires processing tens of thousands of
such SRR files. To make it comprehensive we will need to process files associated with about 20
different tissues. For each tissue, pipeline results from hundreds of SRR files are required. As stated
above, the SRR files are usually several GB in size. With this specification we can estimate that the
total size of all SRR files will exceed 50TB. Adding more tissues to the atlas in the future will increase
this value.

The most time and resource consuming step in the pipeline is the quantification/alignment. For
SALMON, the time to complete this step is dependant on an instance size and the SRR file size. For
example an instance with 2 vCPUs, 8GB RAM and 7GB SRR file it can take a few hours to perform
quantification. To perform alignment the STAR tool requires a very high memory instance (over
250GB RAM).

Originally the pipeline was created for HPC usage but we adapted each step for cloud usage.
The current architecture is presented in Fig. 34. All the generated intermediate files (e.g. fastq) are
not needed after the pipeline has finished. Also alternative approaches that would require splitting
the pipeline steps among services incur heavy transfer and communications costs. Therefore each
SRR file is processed on a single EC2 instance from start to finish of the pipeline. We are using Auto-
Scaling Group in order to automatically scale number of instances based on SQS queue size. Final
results are to be uploaded to an S3 bucket.

Figure 34: Transcriptomics atlas current architecture plan.

Page 59 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

In order to integrate Lithops to the current pipeline we consider two architectures. In Fig. 35
we present possible architecture which utilizes Lithops API to AWS Batch. This service can run
containers in serverless model using AWS Fargate launch model. With this integration with replace
SQS service as well as replace boto3 library usage with Lithops in the main pipeline script (e.g. API
calls to S3). With this change we are less vendor dependant and provide a way to execute containers
in serverless manner. However due to Fargate memory limits [37] this pipeline is valid only for
SALMON quantification and not for STAR alignment.

Figure 35: Transcriptomics atlas proposed architecture with Lithops and AWS Batch

Alternative architecture is presented in Fig. 36. Here we use Lithops API to manage EC2 instances.
With this approach we create a solution available both for alignment and quantification using high
memory EC2 instance types required by STAR aligner. In this architecture Lithops also replaces SQS
service and provides auto-scaling of EC2 instances based on number of tasks (here SRR IDs).

Figure 36: Transcriptomics atlas proposed architecture with Lithops and EC2

Integration of Serverless Data Connector in this architecture would allow to process parts of files
and thus may reduce intermediate computational or storage requirements. This approach requires
alignment algorithms that are able to process incomplete files. However, currently there are no such
algorithms available. The final architecture and configuration will be influenced by resource require-
ments, results of the pipeline performance analysis and cost optimization.

4.3.2 Involved Tools and Systems

The tools and systems that will be used to create the Transcriptomics Atlas are listed below:

• Lithops

• SRA-Toolkit

• SALMON

• STAR

• R (with libraries e.g. DESeq2)

Page 60 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• AWS Services (EC2, S3, Batch, Fargate, SQS, CloudWatch)

• Python

• Docker

4.3.3 Federated Learning Pipeline

The transcriptomic data processing pipeline described above can also serve another purpose, apart
from creating a transcriptome reference model. One can use the intermediary files (extracted .fastq
files) from the second step of the pipeline to obtain .vcf files, which can be used for variant analysis. In
the federated learning workflow for this use case, we will use the obtained variant calling format files
as a data source for a federated learning model. In a federated learning workflow developed for HPC
and cloud environment, we will divide the obtained variant calling dataset between participating
nodes, to simulate a number of organisations (e.g. research centres/hospitals) forming a federation
and train a consensus model.

An example federated learning workflow depends on the strategy used. Taking as an example
a default FL strategy (Federated Averaging, [38]), we can distinguish several phases of building a
consensus FL model:

• Model initialization: a model is initialized on a central server as a starting point for the training
process.

• Client selection: a subset of nodes from the federation is selected to participate in a training
round.

• Model distribution: the model is distributed to all selected clients.

• Local model training: using their own, local data, each client performs a number of local training
steps of the model.

• Model aggregation: clients send the updated models to the central server, which aggregates them
using weighted averaging.

• Global model update: the averaged model becomes the new global model. The training round
concludes.

• Convergence check: after finishing the training round, model convergence can be evaluated on a
test dataset to see if its performance matches training termination criteria. If not, the training
round may be repeated starting from the client selection step.

The above federated learning workflow opens many ways to benchmark the data processing and
confidential orchestration platform developed within the NEARDATA project. We intend to evalu-
ate the use of the Lithops framework for parallel and serverless .vcf file processing. Data ingestion
is an important part of the federated learning workflow. The data used to train the consensus model
should be obtained by participating organisations, and for some participants it may be difficult to
process large volume of variant analysis datasets, specifically when transforming raw data to a rep-
resentation suitable for machine learning models. Before the data is ingested by a machine learning
model, preprocessing steps have to be carried out, including feature extraction and feature encoding.
These steps can be executed in a serveless fashion using the Lithops framework.

The serveless computation paradigm can be also used for orchestration purposes, as proposed in
[39]. In this setting, the organizations participating in the federated training do not have to maintain
dedicated servers for local model training at all times. Instead, the execution of this step can be done
in a serverless fashion only when the respective organization is chosen to participate during the client
selection step. Utilizing this computing paradigm can thus reduce operational costs and enhance the
practicality of the solution.

Page 61 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Lastly, although the privacy of patient data exchanged is increased by training the consensus
model in a federated learning workflow, where only model weights are transferred within the feder-
ation, the confidentiality of the computation carried out during local training steps is not enhanced
in any way and remains the responsibility of the participating organizations. This means that an ad-
versary can potentially attack the participants and gain access to sensitive information during local
data processing steps, compromising data confidentiality and integrity. Therefore, running feder-
ated learning in Trusted Execution Environments (TEEs) can complement the data sharing guaran-
tees with data processing security guarantees and improve the overall security of the system. In this
regard, we will adapt the federated learning workflow to work with confidential data exchange and
orchestration tools developed within the NEARDATA project by utilizing the SCONE toolchain for
running local training steps.

4.4 Metabolomics Use Case

4.4.1 METASPACE pipeline

The project aims to improve the METASPACE platform for spatial metabolomics. Initially, METAS-
PACE was implemented using the Apache Spark architecture. However, with the increasing yet
highly variable numbers of datasets submitted per data, we started having increasing pressure in ad-
ministering the queue. This increased demand in scalability was addressed in the European project
CloudButton (2018-2022) where we have implemented the serverless version of METASPACE using
the Lithops framework; see Figure 37. This allowed us to remove the need for administering the
queue and the Apache Spark cluster and achieve the necessary scalability. The Lithops version of
METASPACE was deployed on production in March 2022 and is the main version since then. Later
in 2022, we deprecated the Apache Spark version completely.

Figure 37: The current pipeline of the metabolite annotation on METASPACE using Lithops.

4.4.2 Experiment 1

In the proposed experiment 1 (Figure 38), we will mine the public datasets in METASPACE using a
novel machine-learning version of metabolite annotation. This will be done by offloading the com-
putations to either EMBL cluster, or to the KIO testbed, or on the European Open Science Cloud.
The datasets will be moved there using Lithops and batach-processed using the ML-annotation. The
results will be merged into the METASPACE database and will complement the currently available
results.

Page 62 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 38: The changes in the METASPACE pipeline to be developed and implemented in the first
experiment. The changes compared to the current pipeline are shown in blue.

4.4.3 Experiment 2

In the proposed experiment 2 (Figure 39), we will offload the re-mining of private historic METAS-
PACE datasets (more than 30 thousand) onto an external computing resource similar to the experi-
ment 1, but using the confidential computing. For this, the data will be encrypted and all computa-
tions will be performed in an encrypted enclave.

4.4.4 Involved Tools and Systems

We will use the following software for the Metabolomics use-case:

• Python

• Lithops (for serverless computing)

• AWS

• PostgreSQL

• ElasticSearch

• RabbitMQ

• Node.js

4.4.5 Evaluation and impact

The Experiment 1 is strongly aligned with the concept of NEARDATA as the Extreme near-data
processing platform with offloading the compute-intensive parts to the edge whereas the results will
be ingested into the current production version of METASPACE and provided to the users through
the METASPACE webapp and API as usual.

The Experiment 2 is strongly aligned with the vision and concept of NEARDATA because the pri-
vate datasets represent the largest part of METASPACE datasets (75%) and with over 25.000 datasets
as of June 2023, of the size of over 20 TB. We expect this number to significantly increase during the

Page 63 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 39: The changes in the METASPACE pipeline to be developed and implemented in the second
experiment. The changes compared to the current pipeline are shown in blue and green; the changes
compared to the first experiment are shown in green.

scope of the NEARDATA project as METASPACE is currently undergoing a super linear growth in
the number of datasets and an exponential growth in the total volume of accumulated data. So, this
experiment will address a growing extreme-data problem.

For benchmarking, we will use the following parameters to evaluate and benchmark: compute
time, cost, data transfer time/cost, scalability, ease for developers, and ease of maintenance.

4.5 Surgery Use Case

In the NEARDATA project, two overarching experiments will be carried out in the surgery use case.

4.5.1 Surgical Navigation Pipeline

The project aims to develop a strategy for computer-assisted surgery using distributed computing.
Robot Operating System (ROS) is the existing distributed computing solution within the NCT that
will be used as a benchmark. The developed strategy will be validated using two benchmarking
cases: surgical phase and scene recognition, and surgical navigation. In surgical phase and scene
recognition, surgical videos will be analysed to provide assistance to the surgical staff. In surgical
navigation, the most relevant components, such as liver segmentation and disparity estimation will
be focused on for the downstream task of 3D reconstruction of the surgical scene, and subsequent
visualisation of internal liver structures.

In such surgical interventions, the extreme nature of the data and its’ processing requirements -
high volume video data, requiring real-time analytics at the from Edge computing as well as long-
term storage - gives rise to criteria which we will consider, such as Frames per Second (FPS), the
latency of inferences in ms, or in Floating Point Operation per Second (FLOPS).

This experiment requires access to edge computing resources located in or near operating theatres
and a larger computing infrastructure capable of storing the data generated by the experiment. Such
a system can be built on the Pravega streaming storage system presented earlier. A simple example

Page 64 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

architecture can be found in Figure 40.

Figure 40: The surgical benchmark architecture. GStreamer pipelines (green arrows) are used to
route data to and from Pravega. In a minimal example, the video stream from an endoscope is
routed to Pravega via the local workstation in the operating room (OR). Another script is then run
on the HPC to load the recently received data from the Pravega buffer and provide it as input to the
appropriate neural network. The results of the neural network are then sent back to the buffer and to
the server, or to the workstation in the OR so that the results can be displayed on a screen during the
surgery.

4.5.2 Federated Learning Pipeline for Surgical Data

The second technical bottleneck we want to address in this project is how to train deep learning
models on surgical data when different surgical centres are unable (or unwilling) to share their data,
making this data extremely dispersed. One solution is to use federated learning or swarm learning to
train neural networks. The goal of both approaches is to share only the learned weights of the neural
network across different surgical centers while keeping each centre’s data sets private. This creates a
well generalised (global) model. To make this process even more secure, we want to incorporate the
secure container environment from Scontain. Various validation techniques and metrics are known
to evaluate the generated models. The goal is to compare the global model with different models in
terms of metrics such as the F1 score (Dice Coefficient), the Intersection-Over-Union (IoU or Jaccard

Page 65 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Index), or pixel accuracy:

• Which are trained centralised on only one of the datasets.

• Which are trained centralised on all the datasets combined into one dataset (only possible when
surgical centres are allowed to share data).

• Which are trained on a different dataset at the same domain.

• Which have different neural structure for the same task.

This experiment depends on access to, in some sense, Cloud computation resources, in that computa-
tion must be performed within dispersed computation centers of independent healthcare institutes,
as well as a means to transmit data securely between them.

4.5.3 Involved Tools and Systems

In our experiments, the following Software tools and Systems will be used:

• Docker

• SCONE (for federated learning)

• Python

• Pravega (for distributed computing on data streams)

• GStreamer

• PyTorch (among other deep learning frameworks)

• ROS (Robot Operating System)

4.6 Testbed

We are going to provide a Cloud/Edge Testbed, required for the experiments and prototypes that
will arise from the project. The Cloud testbed will deliver the essential components proposed by the
reference architecture. This Testbed is going to validate and run the selected software platforms that
will feed NEARDATA project.

KIO Networks, as a Service Provider, working on this type of initiative provides the company
with growth both in knowledge and in integration with the rest of Service Providers that adopt
technologies of this type, with the main objective of standardizing and industrializing services, thus
building clouds integrated with load and data movement capacity between them. KIO Networks is
very interested in the exploitation of Cloud technologies involving data management. As a company
offering Cloud infrastructure to public institutions in Spain.

KIO Networks will provide Infrastructure Cloud Computing services on DataCenters like com-
puting, storage and network resources. This service will be in multi-tenant mode, with virtualized
environments with VMWare technology together with Kubernetes cluster services, high-performance
storage (SSD).

The privacy and confidentiality of the data hosted in any cloud service are paramount. At KIO
Networks we work using the strictest procedures to ensure that only the owner of the information
has access to it. We periodically carry out audit processes that certify the validity of our procedures.
Proof of this are our certifications in this area: ENS Categoría Alta (National Security Scheme, Highest
Level). ISO 27001, ISO 27017, ISO 27018, ISO 22301, ISO 9001, PCI DSS.

Page 66 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

4.6.1 KIO Networks Cloud Computing Architecture (VDC)

KIO Networks Spain Virtual Data Center (VDC) service will provide its consortium partners with the
same infrastructure they use in their Data Center on a pay-per-use basis and as a Cloud Computing
service. Virtual Data Center provides dedicated computing resources (vCPU, RAM), storage and
connectivity, providing our partners with complete autonomy to generate the environments they
need, being able to create, destroy or modify virtual servers and provide them with connectivity as
needed at any time.

The platform is managed through a secure web portal that is intuitive to use and with a wide
range of functionalities that allow system administrators to manage resources, servers and security
policies from a single panel.

Kio Networks only work with leading manufacturers and providers in each segment, which is
why we rely on top-level brands to support our platform. The VDC service is based on VCloud
Director technology from VMWare depicted in Figure 41, the undisputed leading provider of vir-
tualization solutions in the market. In addition to working with the most reliable hypervisor, the
platform includes an API for integration with third-party deployment orchestration and automation
systems.

Figure 41: Highlevel Architecture of VCloud Director.

The VDC platform is delivered from Kio Networks TIER IV certified Data Centers in Murcia
(Spain) or Querétaro (Mexico). Depending on the needs of each client, it is possible to hire VDC
resources in Spain and/or Mexico, being able to connect both regions securely to allow communica-
tion between servers deployed in the two geographical areas. The TIER IV certification allows us to
guarantee the highest levels of service availability: 99.95% uptime.

KIO Networks will provide an Integrated Networking and Perimeter Security Management. The
VDC web control enables the administrator to manage virtual networks and perimeter security poli-
cies as shown in Figure 42. The platform delivers a VMWare NSX Edge Virtual Firewall by default,
which includes the following features like NAT/PAT rules, L4 Firewall Rules, IPSec L2L tunnel man-

Page 67 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

agement, DHCP server.

Figure 42: Edge capabilities.

The management of networks and Firewall policies complements the management of compute
and storage resources, giving the VDC administrator the necessary autonomy to publish services,
create DMZs where to isolate environments, etc. It is possible to complement or replace the services
of the Firewall Edge with advanced Firewall/UTM solutions for those projects that require a greater
level of depth in perimeter security. Consult with our Cloud experts the available options.

Support and service levels. The VDC service includes support and monitoring of the infrastruc-
ture 8x5. Kio Networks offers its customers 24-hour telephone support and access to a management
panel for incidents and requests. The support team is made up of experts in the different areas that
make up the VDC service. An escalation of up to 3 levels is offered depending on the complexity and
implications of the incidents.

At Kio Networks, we work with business-critical IT environments, which is why we adapt our
SLAs (Service Level Agreements) to the criticality and urgency of incidents. We offer response times
according to the demands of our customers.

4.6.2 KIO Networks Cloud Computing GPU Architecture (VDC-GPU)

KIO Networks Cloud grows stronger together with NVIDIA, the most important international GPU
provider at the moment. Thanks to this agreement, from KIO Networks we can offer advanced
computing services based on GPU technology with the highest performance on the market. GPU-
based computing technology enables utilization of the GPU’s computing power for the most inten-
sive work, while keeping CPU usage for operating system operations and desktop applications.

To understand the concept, we can say that a CPU has a few cores optimized for sequential serial
processing, while a GPU has a huge parallel architecture consisting of thousands of smaller, more
efficient cores. These cores are designed for parallelization or concurrency of tasks, thus the spectrum
of work is reduced compared to the traditional CPU.

4.6.3 KIO Networks Cloud Computing S3 Architecture (S3)

NetApp ONTAP 9.8 software supports the Amazon Simple Storage Service (S3). ONTAP supports
a subset of AWS S3 API actions and allows data to be represented as objects in ONTAP-based sys-
tems, including AFF, FAS, and ONTAP Select. NetApp StorageGRID® software is, and will remain,
the NetApp flagship solution for object storage. ONTAP complements StorageGRID by providing
an ingest and preprocessing point on the edge, expanding the data fabric powered by NetApp for
object data, and increasing the value of the NetApp product portfolio. Figure 43 depicts the network
architecture of KIO Networks Clients to have access to the S3 Service provided by NetApp ONTAP.

Page 68 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Figure 43: S3 Highlevel Architecture.

The S3 public service in KIO Networks will serve in two flavours:

• Hot Data (SANKLOUDNAS): This type of data will be fast access data on SSD disk for uses such
as Financial Services, Online transactional processing (OLTP),High Performance Computing
(HPC),Data lakes,Cloud native applications,Mobile applications.

• Cold Data (SANKLOUDBCK): This type of data will be backup data on a SATA disk to guar-
antee a coherent backup like Non-critical files or Sporadic files.

4.6.4 KIO Networks Cloud Computing Kubernetes Architecture

As part of the services offered by KIO Networks Spain within its datacenter is the container service
based on Kubernetes technology. This service will be delivered to project partners who request it in
the same way that KIO Networks Spain delivers it to the rest of its clients.

Figure 44: Kubernetes Highlevel Architecture.

The Kubernetes environment proposed for the project will be based on an architecture with the
characteristics that can be seen in the Figure 44. It will be composed of:

Page 69 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• 1 Master server: According to the official Kubernetes documentation, the master server is a set
of three daemons running on a single master node. These daemons are:

– Kube-apiserver.

– Kuber-controller-manager.

– Kube-scheduler.

• 3 Worker-type servers: these are the nodes responsible for executing the applications in pods.
These worker nodes are composed of two services:

– Kubelet.

– Kube-proxy.

• Possibility of connecting storage environments under the S3 protocol.

• Balancing service within the platform.

• Public Internet browsing IP.

• Internet flow according to the needs of the Partner.

• High performance storage based on SSD technology.

4.6.5 Partners requirements

KIO Networks have been held with each of the partners several meetings to determine the infrastruc-
ture requirements that KIO will need to provide to the consortium. The requirements were divided
into Services, Computing, Storage and availability.

• Table 1 shows the technology used by each partner.

Technology
Partner VDC VDC+GPU S3 K8S

PRAVEGA-DELL X X X X
SCONTAIN X X X X

LITHOPS X X X X
EMBL X X X X

Table 1: Technology requested per partner

• Table 2 shows the storage type used by each partner.

Storage Type
Partner SATA SAS SSD

PRAVEGA-DELL X X X
SCONTAIN X X X (1TB)

LITHOPS X X X (1TB)
EMBL X X X (1TB)

Table 2: Storage type requested per partner

Page 70 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

• Table 3 shows the computational resources used by each partner.

Computational Resources
Partner vCPUs RAM (Gb)

PRAVEGA-DELL 8 - 112 64 - 512
SCONTAIN 8 - 112 64 - 512

LITHOPS 300 64 - 512
EMBL 300 64

Table 3: Computational resources requested per partner

Page 71 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

5 Confidential and ethical requirements for AI technologies

When designing AI technologies in healthcare, it is essential to address potential threat models that
might be exploited by a malicious user, to ensure the security and privacy of patient data. Some of
these threat models include:

• Data breaches: Data breaches occur when sensitive patient information is accessed, stolen, or
compromised by an attacker. This can occur due to poor security measures or vulnerabilities in
the system.

• Adversarial attacks: Adversarial attacks can also be used to manipulate the output of AI systems
used in healthcare, potentially leading to incorrect or harmful diagnoses and treatments [40].

• Model poisoning: Model poisoning involves intentionally introducing malicious data into the
training data used to train an AI model, with the goal of causing the model to produce incorrect
or biased results [41].

• Insider threats: This refers to employees or contractors with authorized access to the AI system or
patient data, who intentionally or unintentionally compromise the confidentiality or integrity
of the data.

• Legal and regulatory compliance: AI systems used in healthcare must comply with legal and reg-
ulatory requirements, such as GDPR, to protect patient privacy and security [42].

Federated learning is a distributed machine learning methodology where data is distributed
across data providers, where each participant holds custody of their data and its processing (mod-
elling and prediction uses), avoiding data sharing or offloading [43]. Unlike centralised machine
learning approaches, where all the data is transferred to a centralised system to be modelled, feder-
ated learning avoids data to leave the premises of each participant party. Each data provider models
their data in their premises, and share across participants the modelling results or intermediate re-
sults, to be aggregated locally by each participant into a general model. Often, machine learning
algorithms are coordinated step-by-step across participants, sharing intermediate results (models,
weights, ...) to coordinate local models in the same training direction, but without sharing any train-
ing data. E.g., a consortium of hospitals might want to create a general model on certain data, but
they can’t share their patients data across partners. However, the hospitals can train local models
without offloading any data outside their premises, sharing the resulting models across partners,
who will aggregate their own models with the received ones. Or also, during local training, partners
can coordinate to share intermediate algorithm values (e.g. weights or gradients on a neural net-
work) at every step of the training algorithm, and aggregate them to have a global model at the end.
Such distributed methods enforce model sharing against data sharing, where the only data trans-
mitted across federated partners are the trained models or intermediate results during modelling
algorithms. This implies that each federated partner must have capable computing infrastructures
also enough storage for modelling and storing their data. Also, each partner must have a reliable
connection in order to coordinate with other partners without becoming a bottleneck for the process.

As federated learning avoids the distribution of data, aligned with the principle of data mini-
mization, the risk of a privacy breach is reduced. However, shared models can also be susceptible to
privacy attacks, such as membership inference attacks to retrieve sensitive data. The attacker can dis-
cover or reconstruct the sensitive data used to train the models from the knowledge of the algorithm
and architecture used without the need to know the inner parameters. For such cases, there’s the
option of removing singular cases from the training dataset, avoiding federated partners to discover
such peculiarities by interpreting the model. Another option focuses on introducing white noise or
neutral synthetic data for training, masking the real data. In this way we can achieve the differential
privacy, from these mechanisms we can ensure the privacy of individuals in the datasets. To these
measures we can also implement standard security measures for transmission, such as encryption,
access control and differential privacy methods. It is essential that in order to guarantee the privacy

Page 72 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

and confidentiality of the data, the models do not reach the point of overfitting. Ensuring a fully
generalized model on the training data will largely prevent inference attacks from succeeding.

Previously introduced security attacks such as model poisoning can affect the initial stages of
Federated Learning. One of the most commonly used types of data poisoning attacks is label-flipping
attacks where the adversary simply modifies the training labels. Thus, the model is trained on a
poisoned dataset without knowing which labels have been modified. When we talk about Federated
Learning we must take into account that due to its decentralized and distributed nature it is more
susceptible to any security attack than in centralized architectures. To try to mitigate these attacks
it is necessary that the servers can see or identify the individual updates of each client (even if they
are distorted with noise). For this purpose, there are different methods or mechanisms that allow
filtering or detecting corrupted updates that correspond to security attacks such as trimmed-mean or
Fool’s Gold, which are based on establishing zero trust in updates that servers may believe to be of
value but are actually malicious updates, which are easy to implement and very effective.

Federated learning addresses threat models that can increase ethical concerns on individuals pri-
vacy (e.g., patients, citizens, clients, etc.), while allowing organizations to train a consensus model,
much more proficient at solving a task at hand than isolated models trained within each organiza-
tion. Through a federated architecture, organizations keep control of their data by preventing any
transmission. In the scenario of medical data, data providers (hospitals) retain ownership and con-
trol of their medical data, reducing risks related to third-party data breaches and insider threats.
Furthermore, lack of data transfers also alleviates compliance issues related to regulatory and legal
requirements for patient privacy and security. In addition, federated learning can even provide more
robust and resilient models by minimizing local biases and noise on data, also allowing models to
continue functioning even if one of the partners is disconnected from the system or becomes com-
promised. In the context of the aforementioned threat models, this means that it also reduces the
influence of data manipulation and model poisoning - the larger the federation, the more robust the
consensus model.

As follows in this section, we are detailing the specific ethical requirements for the provided use
cases.

5.1 Clinical Sequencing of Human Pathogens Use Case

In principle, this use case would seem relevant to the confidentiality and ethical issues just high-
lighted — and also prone to a number of additional concerns. For instance, the potential presence in
the sample of sequencing reads originating from the host might lead to the patient being identified;
that’s because, like fingerprints, the pattern of genomic variants can be considered as characteristic
of each individual, and can be easily used to look up the patient’s identity in genealogy or other
databases. Another risk, seen that sample analysis implies a large number of potential actors (GPs,
clinicians, hospitals, analysis labs, epidemiologists, national- and country-level public bodies) in a
federated environment, is that data and metadata might be connected in order to identify the sam-
ple’s owner outside of the approved data management structure. As a matter of fact, separation of
metadata from the sample by barcoding, and anonymisation of sequencing data by discarding reads
that originate from the host, are performed right at the beginning of the process, in order to avoid
concerns when sample-related data circulates through the analysis workflow and gets accessed by
different actors in the federated environment. This design allows UKHSA to make sequencing reads
(the ones originating from the pathogen, from which host reads have been purged) publicly available
on repositories such as NCBI or ENA, while metadata is kept secret due to it being ripe with person-
ally identifiably information which the patient has in most cases not agreed to share for research or
other purposes.

In practice, it would be extremely difficult for UKHSA to make available any of the metadata to
this consortium. In order to solve this problem, it has been decided that all the experiments per-
formed for this project will be conducted on synthetic metadata. The artificial generation of non-
personal metadata (such as population geography, demographics, epidemiology, calendar and an-

Page 73 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

nual periodicity) will be realistic, in the sense that all relevant metadata fields will be generated from
realistic distributions measured from the UKHSA’s internal metadata database. In order for these
data to maintain the privacy preservation, they will be distorted by adding noise before generating
the synthesized data, thus preventing the synthesized generation from generating original data in an
unambiguous way. This should allay fears of inadvertent leaks of personally identifiable information
from the UK to the EU for the duration of this project.

5.2 Variants Interaction Use Case

The high level of sensitivity of biomedical data converts the access, management and use of this
information into one of the main concerns of data providers, thus demanding understanding of the
responsibilities derived from data accession and the enforcement of appropriate security practices.
For this reason, for the variant interactions use case, diverse agreements have been legally signed
between the Barcelona Supercomputing Center (BSC) and the different data providers, including the
National Institute of Health and the Sanger Institute. As a result of these agreements:

• To ensure the confidentiality of the data, only some of the participants from the BSC have
been granted controlled-access to the genotypic and phenotypic information of the individual
cohorts that are going to be analysed, exclusively, to explore the effect of variant interactions
(FUSION, GENEVA, NUgene, GERA and WTCCC). Additionally, these BSC participants have
compromised to avoid any attempt of identification, and even the generation of any type of
information that can facilitate the identification of any of the patients included in these studies.
We also envision the use of confidential compute which provides process isolation and hence
adds another layer of security to ensure confidentiality of data. This will be applied to data at
rest, i.e. stored at stable/persistence storage by using transparent file encryption, for data in
transit, i.e., transferred through network connection as well as date in use, i.e., that is currently
be processed by the machine learning/AI frameworks.

• To ensure the security and privacy of the data the BSC has settled a security plan, which in-
volves the procurement of diverse tools and infrastructure to guarantee the compliance of pri-
vacy legislation, secure transfer, retention and disposal of the data during the project. This
security plan is aligned with the diverse security principles and recommendations for data,
access, and physical security required by the different data providers.

• To ensure data and model integrity against data manipulation and model poisoning, the ma-
chine learning methods implemented in this use case will follow the current standard recom-
mendations and practical suggestions discussed above to prevent security attacks. Thus, not
only guaranteeing the transparency of the models but also avoiding any possible ethical issues
derived from the analyses regarding different socio-technical scenarios.

Therefore, the genomics data from Variant Analysis will be subject to:

• Patient confidentiality through the existing embargo of the complete datasets. The data is re-
trieved from a curated genomics repository, where only personnel screened by an admission
committee backed by an ethics committee has granted access. And for the current use case,
the personal information from the patients is NEVER retrieved, keeping only genomics data
for experimentation in the protected environment from the Barcelona Supercomputing Center.
None of these genomics data will ever leave BSC premises.

• Data protection through the controlled access to the BSC systems and data repositories. No
sensitive data or data derived from sensitive data will ever leave BSC premises.

• Model anonymity by checking that the shared machine learning models are protected against
membership inference attacks with the introduction of synthesized data or white noise. Seeking
fully generalized models to avoid model spicification that would facilitate reconstruction of
sensitive data.

Page 74 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

Finally, the use case will generate derived data of two kinds: potential sensitive and telemetry data.
Potential sensitive data is the intermediate data generated from processing genomics data, and will
never leave the processing premises. Telemetry data is data from the systems processing data, totally
agnostic of the potential sensitive data and genomics data, and will never contain sensitive data. Ex-
amples of such telemetry data there is “Amount of CPU/Memory used to process a patient”, “Time
to process a single patient data”, “Accuracy of a model examining a certain variant”.

5.3 Transcriptomics Atlas Use Case

Next-generation sequencing produces large amounts of data, which increases complexity of data
storage, processing and analysis. To add to this complexity, there are many security risks related
to sequencing datasets, that can influence both research participants and patients. Such data can be
subject to many adversary behaviours with different goals, including [44]:

• Identity tracing: obtaining anonymized sequencing data and re-identifying the person the data
belongs to, based on e.g. demographic data.

• Attribute disclosure attack: the adversary tries to associate sequencing data with sensitive at-
tributes of the victim, such as phenotype, drug abuse or a specific disease.

• Completion attacks: reconstructing complete sequencing data out of partial information available
on different sequencing projects or based on a family member sequencing data.

These goals can be accomplished by analysing metadata associated with genomic samples, the sam-
ples itself, or by combining samples with publicly available information from other repositories.
There are also attacks focused on deriving patient-specific information from aggregate statistics.

Another important factor when handling transcriptomics data, especially in cloud-environment
is legal regulations related to data sharing. The GDPR regulations [42] allow members to impose
additional constraints on data sharing in their states. In practice this means, that in some countries,
the data can be shared quite freely, but in others there are certain restrictions. For example in Nether-
lands, institutions can access the data if they use this data only for statistical or scientific purposes,
whereas in Germany it must remain impossible to reidentify the involved patients [45].

Federated learning workflow is a part of experiments conducted in the Transcriptomics Atlas use
case and can efficiently alleviate problems with both factors. Risks related to the identity tracing,
attribute disclosure and completion attacks can be mitigated by preventing any data samples from
leaving the organisations they were collected in the first place. With no data transfer, there is also no
risk of breaching GDPR constraints on the exchange of medical data, which simplifies the implemen-
tation of transcriptomic data analysis systems in a real-world setting.

In the use case, we plan 2 experiments: (1) building transcriptomics atlas from data publicly
available in NCBI SRA and (2) FL experiment using synthetic data, in both of them no use of sensitive
data is planned. The goals of these experiments will be to evaluate the FL technologies and their
possible extensions with trusted execution environments with respect to performance, ML model
quality and potential risks. The results of these experiments carried out in the project with the use of
non-sensitive data will provide insights into potential threats and ethical issues when putting these
solutions into production in the future.

5.4 Metabolomics Use Case

For the metabolomics use-case we foresee no ethical issues because for the project purposes we will
use only public data from METASPACE which is already shared by the data owner (METASPACE
users) under the CC BY 4.0 license 13.

13https://metaspace2020.eu/terms

Page 75 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

5.5 Confidentiality and ethical considerations in Surgery Use Case

Surgical data-driven machine-learning (ML) methods for computer-guided (robotic) surgery (CGS)
rely on large amounts of multi-centric surgical data with high variance to train the algorithm and
improve its accuracy. In this project, the surgery use case operates mainly on video data, which
raises additional confidentiality and ethical considerations beyond those that apply to CGS in gen-
eral. Some of the key requirements for the ethical use of surgical data-driven deep learning models
in CGS include:

• Patient and surgical staff confidentiality: It is critical to protect patient and surgical staff confi-
dentiality when using surgical data, especially video data, to train ML models. This includes
ensuring that all surgical data used in the training process is de-identified, i.e. removing all
frames from outside the abdominal cavity and all meta-data related to the patient, surgical staff
and time/place of operation, and securely stored to prevent unauthorized access.

• Informed consent: Patients must be fully informed about the use of their data in the development
of ML models for CGS. This includes explaining the purpose of the research, the potential
benefits and risks, and the safeguards that will be put in place to protect their privacy.

• Data protection: All data used to train ML models must be protected and secured to prevent
unauthorized access or use. This includes implementing appropriate access controls, using
encryption, and ensuring that data is stored and used on secure servers.

• Algorithm transparency: The ML algorithm used in CGS must be transparent and explainable to
ensure that surgeons can understand how the technology is making decisions. This is essential
for maintaining trust and ensuring that the technology is used ethically and appropriately.

• Quality assurance: A quality assurance program must be in place to ensure that the ML model is
being used appropriately and that patient outcomes are being monitored. This includes regular
audits of the technology and its use, as well as ongoing training and education for surgeons and
other healthcare professionals.

• Risk management: To mitigate the effect of data leaks in the course of this project, we will focus
on using (a) publicly available datasets, (b) data collected from phantom trials (e.g. silicon
phantoms), (c) synthetically generated datasets and (d) utlize only de-identified videos, were
all frames from outside the abdominal cavity and all meta-data related to the patient, surgical
staff and time/place of operation have been removed.

To ensure the confidentiality and ethics of data-driven ML methods in CGS, the legal, data protec-
tion, and research staff at the NCT/DKFZ work closely with the surgeons at the multisite centers
throughout the project pipeline on the developed communication platform from NCT/DKFZ. The
ethical application and patient information/consent should be reviewed by the ethics committee
prior to surgical data collection. In addition, the Data Transfer Agreement and the Joint Controller
Agreement must be signed by all relevant partners. On the technological side, the surgical use case
clearly requires confidential compute (WP4) for sensitive information, high-performance stream ana-
lytics close to the data. Furthermore, federated learning is required to facilitate surgical data sharing
between different healthcare centers. To mitigate the threats to the learning models that can compro-
mise users, it is crucial for us to implement robust security measurements, including encryption and
authentication protocols, to protect surgical data privacy and ensure secure communication channels.
Regular auditing and validation of the federated learning process should be performed to detect and
mitigate potential attacks or model vulnerabilities.

As previously mentioned, we envision the use confidential compute as a technological asset to
address some of the confidentiality and integrity issues raised for the different use case above. Con-
fidential compute such as carried out through Trusted Execution Environments (TEEs) enables users

Page 76 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

to completely isolate applications on process levels such that even privileged users such as admin-
istrators are neither able nor privileged to access or manipulate the program code and data on the
physical node.

5.6 Summary and Contingency of Ethical Issues

Table 4 summarizes the ethics concerns on data and technologies used to process such. There, the
different use cases define the data risks, retrieval or acquisition conditions related to such data, con-
tingency measures taken towards potential risks, the agreed sharing policy between partners and
third parties, and the involved technologies dealing with the data.

Use Case Data Risks Data Conditions Contingency
Measures

Sharing Policies Involved Technolo-
gies

Clinical
Sequencing
of
Pathogens
(UKHS)

Identifying a patient
from variants finger-
print present in ge-
nomics data

Patients provide
consent permissions
to UKHSA to pro-
cess their samples

Sequencing reads
originated from the
host are removed
and discarded at
the beginning of the
analysis pipeline

No data is shared Custom scripts
(UKHS)

Correlating the re-
sults of the test with
the patient’s per-
sonal information

Patients grant
UKHSA permission
to process their
samples and use
their personal infor-
mation in relation to
their clinical history

Sample metadata
and personal in-
formation are
decoupled at the
beginning of each
analysis pipeline

No data is shared Custom scripts
(UKHS)

Sharing of person-
ally identifiable
information/meta-
data from the UK to
the EU

Patients grant
UKHSA permission
to use their personal
information in rela-
tion to their clinical
history

No actual data will
be used or shared
during the project.
All metadata used
during the project
will be simulated

No actual data will
be used or shared
during the project.
All metadata used
during the project
will be simulated

Custom scripts
(UKHS)

Variant
Interactions
Analysis
(BSC)

Datasets include pa-
tients genotype and
phenotype (identifi-
cation)

Security plan in
place, only specific
people have been
granted access to
full data

Patients identifi-
cation is removed
from the processing
pipeline

Only synthetic gen-
erated data is shared

Apache Spark,
Lithops, PySpark,
HDFS.

Surgery Use
Case
(NCT)

Video frames could
identify patient/-
surgical staff

Critical data will
not leave NCT and
will not be shared
with unauthorized
people

Critical frames will
be removed from
videos

Share public/syn-
thetic/phantom
data only with part-
ners

Pravega, GStreamer,
Python, Pytorch,
and Flower

Metabolomics
(EMBL)

No risks on data Public data from
METASPACE. Pro-
vided under CC BY
4.0

Does Not Apply Data is shared un-
der Creative Com-
mons "BY" 4.0

METASPACE,
Lithops

Transcripto-
mics Atlas
(SANO)

No risks on data Data obtained from
public repositories
or simulated data

Does Not Apply Does Not Apply Python, Pytorch,
Flower, SCONE,
Amazon Web Ser-
vices, SRA-Toolkit,
Salmon, STAR,
Docker, Lithops

Table 4: Summary of Use cases versus Risks, Conditions, Contingencies and Technologies

As indicated on Table 4, the main potential risk of data identification is covered by the policies
of data acquisition, where only authorised personnel with explicitly authorised purposes can ac-
cess this data; sharing and distributing this data outside the technical facilities is totally restricted,
with security plans to prevent intrusions and leakage; any data publication for dissemination and

Page 77 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

demonstration purposes will be done using exclusively synthetic data; and all technologies are self-
contained in the data tenant premises, where no piece of software will connect to third-party systems.
Furthermore, NEARDATA partners have a specialised team on data security and control, committed
to prevent any potential issue beforehand. Any potential risk is covered by the local (partner) and
global (consortium) contingency plans (data management plan and security plan).

Finally, regarding to the use of AI, all methods and algorithms are designed and purposed for
generating data of clinical value for medical professionals in patient evaluation and treatment pre-
scription. No AI or algorithm is designed to target patients nor profile them for purposes other than
the agreed by the patients and ethical committees from the data providers.

Page 78 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

6 Conclusions

The deliverable presents the initial specifications of the global NEARDATA architecture as well as
the different components that form it and all the use cases that are part of this project.

The requirements and specifications described in the document are intended to ensure compli-
ance with all the main objectives presented in the project. In this way, it is intended to ensure that
our novel NEARDATA platform meets the expectations in terms of designing an extreme near-data
processing platform that enables distributed and federated data consumption, mining and process-
ing without the need to master the logistics of accessing data across heterogeneous locations and
datasets.

We clearly specified the following points in this deliverable:

• A new architecture has been presented based on the theoretical proposal with the incorporation
of the components presented in NEARDATA. In addition, different life cycles of the architec-
ture have been shown according to the type of execution (Basic or Confidential & Federated
computing).

• The components that form the global NEARDATA architecture have been detailed as well as the
software frameworks for its implementation. Then, the integration of these with the different
use cases have been described.

• For each use case the requirements, specifications and objectives have been collected and the
characteristics of the datasets, the experiments and their pipelines have been presented in an
extended way.

• For the evaluation of each use case, different test environments and experiments to be per-
formed have been presented respectively. Also, our partner KIO has provided different envi-
ronments according to the requirements of each partner.

• For the sensitive health data, ethical and confidentiality requirements have been exposed to
guarantee the correct use, protection and privacy of the data.

Page 79 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

A Appendix: NEARDATA APIs

A.1 Data Plane APIs

A.1.1 Data Catalog APIs

METASPACE API. METASPACE has an API which provides full access to the data and processing
capabilities. The API is documented at https://metaspace2020.readthedocs.io with the exam-
ples including how to fetch dataset annotations, how to fetch dataset metadata, and how to sub-
mit a dataset. The index provides a comprehensive list and descriptions https://metaspace2020.
readthedocs.io/en/latest/genindex.html. A few illustrative examples are included in the table
below:

API API Call Description

METASPACE
API

submit_dataset Submit a dataset for processing in METAS-
PACE

update_dataset Updates a dataset metadata and/or processing
settings. Only specify the fields that should
change. All arguments should be specified as
keyword arguments, e.g. to update a dataset
adducts

annotations Fetch dataset annotations

isotope_images Retrieve ion images for a specific molecular for-
mula and adduct

GraphQLClient Client for low-level access to the METASPACE
API, for advanced operations such as querying
and search

Table 5: Examples of the calls from the METASPACE API.

A.1.2 Data Connectors APIs

Lithops. The role of Lithops within NEARDATA is defined as a serverless data processing platform.
Lithops allows the user to run local python code massively on different cloud platforms. As men-
tioned in section 2.1, the core object Function Executor is in charge of this task. This object allows to
perform calls to the Lithops API to run parallel tasks.

Lithops is shipped with two different high-level Compute APIs, and two high-level Storage APIs.
Within the context of NEARDATA we will benefit from one of each type.

Compute API. Allows the user to invoke parallel tasks on the selected computational backend.
The following is a description of the Futures API, which is based on the Python concurrent.futures
library:

Page 80 of 92

https://metaspace2020.readthedocs.io
https://metaspace2020.readthedocs.io/en/latest/genindex.html
https://metaspace2020.readthedocs.io/en/latest/genindex.html

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

Futures API

call_async(func, data) Method used to spawn one function activation

map(func, iterdata) Method used to spawn multiple function acti-
vations

map_reduce(map_func,
map_iterdata, red_func)

Method used to spawn multiple function acti-
vations with one (or multiple) reducers

wait() Wait for the functions activations to complete.
It blocks the local execution until all the func-
tion activations finished their execution

get_result() Method used to retrieve the results of all func-
tion activations. The results are returned within
an ordered list, where each element of the list is
the result of one activation

plot() Method used to create execution plots

job_summary() Method used to create a summary file of the ex-
ecuted jobs. It includes times and money

clean() Method used to clean the temporary data gen-
erated by Lithops

Table 6: Lithops: Futures API description.

Storage API. Users can perform calls using this API to operate with the storage backend selected.
A detailed view of the Storage API can be found in the following table:

Page 81 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

Storage API
put_object(bucket, key,
data)

Method used to add an object to a bucket of the
storage backend

get_object(bucket, key) Method used to retrieve objects from the stor-
age backend

delete_object(bucket,
key)

Method used to remove objects from the stor-
age backend

delete_objects(bucket,
key_list)

Method used to delete multiple objects from a
bucket using a single HTTP request

head_object(bucket, key) Method used to retrieve metadata from an ob-
ject without returning the object itself

head_bucket(bucket) Method used to determinate if a bucket exists
and the user has permissions to access it

list_objects(bucket,
prefix)

Method used to obtain a list with the name
(key) and size of all the objects in a bucket

list_keys(bucket, prefix) Method used to obtain a list with the names
(keys) of all the objects in a bucket

Table 7: Lithops: Storage API description.

Serverless Data Connector. The Serverless Data Connector’s role in NEARDATA is defined as
serverless data connector between object storage and the different Data Processing Platforms used
in the use cases. Serverless Data Connector will allow efficient access to unstructured data thanks to
the followings APIs.

API API Call Description

Partitioning
API

create_object(data_format,
file_key)

Method to create a Generic Partitioning Object

extract_metadata(processing
_platform)

Method used to extract the metadata from the
original file

get_metadata(metadata_key) Method used to get the metadata extracted
from the original file

generate_partitions(method,
metadata_key)

Method used to create partitions by byte ranges
from the extracted metadata

Table 8: Serverless Data Connector: Generic Partitioning Object API description.

Page 82 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

In the following table we can find the data connectors’ API suggested for the use cases:

API API Call Description

Storage API
ingest_data() Method use to ingest data in a parallelized

clean_data(strategy,
data)

Method used to remove or modify data com-
ing from incomplete data of a patient. Different
strategies will be implemented and will be of
choice

Data API
extract_data(features,
filters)

Method to extract relevant data based on the fil-
ters and features of interest.

data_transform(dataset,
format)

Method to transform the way data is presented
to the use cases. This method serves to be able
to store data in a single way for each use cases,
and allow each of them to read the data in dif-
ferent formats.

merge_data(dataset,
strategy)

Method to merge the different splits of data
processed in parallel into a single data. Differ-
ent strategies will be devised.

interpret_data(data) Method to interpret the data according to each
use case needs.

Table 9: API description for use-cases data connectors.

A.1.3 Streaming APIs

The streaming storage fabric in NEARDATA is provided with Pravega. At its core, Pravega is a pure
tiered storage system for data streams that seamlessly and transparently moves data to a long-term
storage tier, such object store. As we describe next, on top of the stream abstraction, Pravega provides
a wide variety of APIs that can meet the requirements of multiple streaming applications.

Stream reader and writer APIs. One of the key design features of Pravega is that it unifies data
access to real-time (or “recent”) and batch (or “historical”) data. This has an immediate impact on
the API that clients applications use, as the same read call will enact Pravega fetching data recently
cached or data stored in long-term storage, while the user is oblivious to the location of data. As
visible in Table 10, Pravega provides async APIs for writing and reading data from a stream. Async
APIs provide applications with the possibility of running non-blocking code to perform stream IO,
which is key for high concurrency and parallelism. In addition to writing and reading events directly
to/from a stream, Pravega also provides the concept of “transaction”. The idea is to write a group of
events as a whole on a stream atomically. This is necessary for providing exactly-once semantics on
stream processing pipelines, in which the sink needs to be coordinated with the analytics engine to
avoid missing events or writing them twice downstream.

Page 83 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

EventStreamWriter<T>
CompletableFuture<Void>
writeEvent(String routingKey,
T event)

Write an event to the stream.

CompletableFuture<Void>
writeEvents(String routingKey,
List<T> events)

Write an ordered list of events to the stream
atomically for a given routing key.

EventStreamReader<T>
EventRead<T> readNextEvent(long
timeoutMillis) throws
ReinitializationRequiredException,
TruncatedDataException

Gets the next event in the stream. If there
are no events currently available this will block
up for timeoutMillis waiting for them to ar-
rive. If none do, an EventRead will be re-
turned with null for EventRead.getEvent().
(As well as for most other fields) An EventRead
with null for EventRead.getEvent() is returned
when the Reader has read all events up to
the configured end StreamCut specified using
ReaderGroupConfig. Note: An EventRead with
null for EventRead.getEvent() is returned
when EventRead.isCheckpoint() is true.

T fetchEvent(EventPointer
pointer) throws
NoSuchEventException

Re-read an event that was previously read,
by passing the pointer returned from
EventRead.getEventPointer(). This does
not affect the current position of the reader. This
is a blocking call. Passing invalid offsets has
undefined behavior.

TransactionalEventStreamWriter<T>
Transaction<T> beginTxn() Start a new transaction on this stream.

This allows events written to the transac-
tion be written an committed atomically.
Note that transactions can only be open for
EventWriterConfig.transactionTimeoutTime.

Transaction<Type> getTxn(UUID
transactionId)

Returns a previously created transaction.

Transaction<T>
void commit() throws
TxnFailedException

Causes all messages previously written to the
transaction to go into the stream contiguously.
This operation will either fully succeed making
all events consumable or fully fail such that none
of them are. There may be some time delay be-
fore readers see the events after this call has re-
turned.

void abort() Drops the transaction, causing all events written
to it to be deleted.

Table 10: Pravega main stream reader and writer APIs.

Byte reader and writer APIs. In many use cases, stream events are small pieces of data with
a particular format (e.g., values representing metrics, small text messages or log lines, json objects,
etc.). However, it is also possible that analytics applications need to write some large data object.
To avoid having to use an external file or object storage service, Pravega provides the “byte API”,
which allow applications to write arbitrarily large data objects via Pravega (see Table 11). Behind the
scenes, Pravega writes such data objects on top of stream segments. This is a low level API intended
to be exploited by higher-level writers and readers. For instance, a good example of exploiting the
Pravega byte API is the GStreamer14 connector for Pravega, whch will be used for the computer-
assisted surgery video analytics. This connector provides video frame formatting that writes data
via the byte API.

14https://github.com/pravega/gstreamer-pravega

Page 84 of 92

https://github.com/pravega/gstreamer-pravega

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

ByteStreamWriter
public abstract void write(byte[]
b, int off, int len) throws
IOException

Writes the provided data to the segment. The data is buffered
internally to avoid blocking. As such it cannot be assumed to
be durably stored until a flush completes. It is intended that this
method not block, but it may in the event that the server becomes
disconnected for sufficiently long or is sufficiently slow that that
backlog of data to be written becomes a memory issue.

public abstract void flush()
throws IOException

Blocks until all data written has been durably persisted.

ByteStreamReader
public abstract int read(byte[]
b, int off, int len) throws
IOException

If available() is non-zero, this method will read bytes from an
in-memory buffer into the provided array. If available() is zero
will wait for additional data to arrive and then fill the provided
array. This method will only block if available() is 0. In which
case it will block until some data arrives and return that (which
may or may not fill the provided buffer).

public abstract void
seekToOffset(long offset)

Seeks to the provided offset (It can be anywhere in the segment).
Future read calls will read from this offset.

Table 11: Pravega byte stream reader and writer APIs.

Synchronization APIs. Keeping a consistent shared state across multiple processes is also a com-
mon needs in many analytics workloads, such as serverless functions that do not have native means
to share state consistently. Pravega provides an API superficially for that: the “state synchronizer”.
This API allows a group of processes to share some state and apply updates in a consistent fashion
via optimistic concurrency. The state synchronizer API also builds on top of Pravega streams and
makes uses of conditional appends to linearize writes from multiple processes to the shared state.

Page 85 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

StateSynchronizer<T>
void initialize(InitialUpdate<T>
initial)

This method can be used to provide an initial value for a new
stream if the stream has not been previously initialized. If the
stream was already initialized nothing will be changed, and the
local state will be updated as though fetchUpdates().

void fetchUpdates() Fetch and apply all updates needed to the state object held locally
up to date.

void fetchUpdates() Fetch and apply all updates needed to the state object held locally
up to date.

T getState() Gets the state object currently held in memory. This is a non-
blocking call.

void updateState(StateSynchronizer.
UpdateGenerator<T>
updateGenerator)

Creates a new update for the latest state object and applies it
atomically. The UpdateGenerator provided will be passed the
latest state object and a list which it can populate with any up-
dates that need to be applied. These updates are recorded and
applied conditionally on the state object that was passed to the
function being up to date. If another process was applying an up-
date in parallel, the state is updated and updateGenerator will
be called again with the new state object so that it may generate
new updates (which may be different from the one it previously
generated). By re-creating the updates in this way, consistency
is guaranteed. When this function returns the generated updates
will have been applied to the local state.

void updateStateUnconditionally(
Update<T> update)

Persists the provided update. To ensure consistent ordering
of updates across hosts the update is not applied locally until
fetchUpdates() is called.

Table 12: Pravega StateSyncrhonizer APIs.

Key/Value Table APIs. Another common abstraction required by many types of workloads and
applications is the Key/Value abstraction. Similar to having a durable hash table, Pravega offers
a Key/Value API for storing and retrieving data associated with a key. Keys and values are also
stored in data streams behind the scenes. This Key/Value API may help analytics pipelines to avoid
having to set up an additional K/V store service. The API allows key updates to be conditional or
unconditional.

Page 86 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description

KeyValueTable<T>
CompletableFuture<Version>
update(TableModification update)

Performs a specific TableModification to the KeyVal-
ueTable, as described below: i) If update is a Insert,
this will be interpreted as a Conditional Insert, so the
TableEntryUpdate.getValue() will only be inserted (and
associated with TableModification.getKey() if there
doesn’t already exist a TableKey in the KeyValueTable that
matches TableModification.getKey(). ii) If update is a
Put, this will be an update. If Put.getVersion() is null,
this will be interpreted as an Unconditional Update, and
the TableEntryUpdate.getValue() will be associated with
TableModification.getKey() in the KeyValueTable re-
gardless of whether the Key existed before or not. iii) If
Put.getVersion() is non-null, this will be interpreted as a Con-
ditional Update, and the TableEntryUpdate.getValue() will
only be associated with TableModification.getKey() if there
exists a TableKey in the KeyValueTable whose Version matches
Put.getVersion(). iv) If update is a Remove, this will remove
the TableModification.getKey() from the KeyValueTable.
If Remove.getVersion() is null, this will be interpreted as
an Unconditional Removal, so the Key will be removed re-
gardless of its Version. If Remove.getVersion() is non-null,
this will be interpreted as a Conditional Removal, and the
Key will only be removed if it exists and its Version matches
Remove.getVersion().

CompletableFuture<TableEntry>
get(TableKey key)

Gets the latest value for a TableKey.

Table 13: Pravega main Key/Value Table APIs.

A.2 Control Plane APIs

In the following table we show the APIs to provide the AI-based optimizations for Cloud/Edge
workflows.

API API Call Description

ML API
train_model(dataset,
model, input_parameters)

Outputs the trained model using the model and
dataset provided

infer_model(
input_parameters,
trained_model)

Computes the inference for the input param-
eters provided using the previously trained
model. The trained model should be obtained
with the train_model call.

validate_model(
validation_dataset,
trained_model)

Validates the trained model using the valida-
tion dataset provided

Resource
Management
API

schedule_workload(
workload, waiting_queue,
running_queue, policy))

Schedules the workload based on the given pol-
icy and the current waiting and running queues
of workloads.

allocate_resources(
workload, policy, SLA)

Allocates resources for the provided workload
using a specific policy and the SLA require-
ments.

Table 14: AI-Based optimizations APIs.

Page 87 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

A.2.1 SCONE CAS API

CAS is one of the central components within NEARDATA as it defines the security policies which
ensures that files read and written by the various tools within NEARDATA such as Pravega, Spark
etc. are encrypted properely. It furthermore ensures that processes run in Trusted Execution Envi-
ronments such as Intel SGX and provides access control for network connections. CAS provides two
different interfaces to configure applications. Either via CLI interface and so called Policy session
files written in YAML format or via the REST interface of CAS.

CAS itself is protected by running inside of a production SGX enclave and encrypting its database
which is stored in the filesystem. Encrypting files is transparent to applications running in the context
of a CAS: CAS attests the application and then passes its filesystem keys to the application. Actually,
it passes the keys to the SCONE runtime of the application and the runtime transparently encrypts
files on writes and decrypts files on reads. CAS itself can and should be attested to ensure that it can
be trusted.

API API Call Description

CAS CLI
session create –use-env
session.yaml

Creates and uploads the provided session.yaml
file with environment variables replaced

scone session
update –use-env
session-update.yaml

Updates an existing SCONE session based on
the policy defined in the session-update.yaml.

scone session delete
<SESSIONID>

Removes a previously posted/used session

CAS REST API
POST /session Creates a session based on the provided pay-

load of the POST request

PUT /session Updates an existing SCONE session based on
the policy defined in the payload of the PUT
request

Table 15: CAS APIs.

A.2.2 Keycloak API

Keycloak is an additional mechanism to enforce an authentic identification of people operating the
systems within NEARDATA and their corresponding access level to other systems and resources
protected within the perimeter. Keycloak will issue access tokens with the specific roles that a system
administrator has attributed to the user requesting it. The other system that is receiving this token
will obtain a validation token from Keycloak, that will attest its authenticity and that the roles therein
are correct. This provides protection to an application and to its resources being accessed by only the
authorized people.

Keycloak runs protected by mechanisms of confidential computing, i.e. protected by an enclave in
conjunction with SGX (the TEE hardware enabling confidentiality), and is also additionally protected
by CAS, hence all the configuration, credentials and keys are provisioned via attestation.

Both access token and validation token are issued via REST communication, using secure channel
TLS enabling HTTPS server. Here are the access token API and validation token API. We have plans
to adopt it as an adjunct system for the Confidential Data Orchestration.

Page 88 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

API API Call Description
Access Token Method: POST; URL:

https://KEYCLOAK.SERVER/realms/
neardata/protocol/openid-connect/
token; Header: Content-Type =
application/x-www-form-urlencoded; Data
set: client_id = $APPLICATION PROTECTED$,
username = $USER LOGIN NAME$, password =
$PASSWORD$, grant_type = password

Obtains one access token
with the access level defined
to that user

Validation Token Method: POST; URL:
https://KEYCLOAK.SERVER/realms/
neardata/protocol/openid-connect/
userinfo; Header: Authorization = Bearer
$ACCESS TOKEN$

Obtains one validation token
corresponding to the access
token sent

Table 16: Access Token and Validation Token acquisition APIs

Page 89 of 92

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

References

[1] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: What it is, and
what it is not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 57–64, 2015.

[2] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An exploratory study of attestation
mechanisms for trusted execution environments,” 2022.

[3] “Lithops.” https://lithops-cloud.github.io/, 2021.

[4] “concurrent.futures library.” https://docs.python.org/3/library/concurrent.futures.
html, 2023.

[5] “multiprocessing library.” https://docs.python.org/3/library/multiprocessing.html,
2023.

[6] “boto3 library.” https://boto3.amazonaws.com/v1/documentation/api/latest/index.html,
2023.

[7] “Amazon web services. registry of open data on aws.” https://registry.opendata.aws/, 2022.

[8] “Pravega - pdp 48 (key value tables beta 2).” https://github.com/pravega/pravega/wiki/
PDP-48-(Key-Value-Tables-Beta-2), 2023.

[9] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” ACM SIGOPS operating
systems review, vol. 47, no. 1, pp. 9–15, 2013.

[10] “Apache bookkeeper.” https://bookkeeper.apache.org, 2023.

[11] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free coordination for internet-
scale systems.,” in USENIX ATC’10, vol. 8, 2010.

[12] “Apache zookeeper.” https://zookeeper.apache.org, 2023.

[13] “Pravega - state synchronizer javadoc.” https://cncf.pravega.io/docs/latest/javadoc/
clients/io/pravega/client/state/StateSynchronizer.html, 2023.

[14] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared logs,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 691–707, 2021.

[15] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud with
haven,” in 33rd ACM Transactions on Computer Systems (TOCS), ACM, 2015.

[16] “Intel software guard extensions developer guide.” https://software.intel.com/en-us/
sgx-sdk/documentation, 2014.

[17] s. Jain, “File system in user space example,” Jul 2019.

[18] D. Merkel, “Docker: Lightweight linux containers for consistent development and deployment,”
Linux J., vol. 2014, mar 2014.

[19] L. Calcote and Z. Butcher, Istio: Up and Running: Using a Service Mesh to Connect, Secure,
Control, and Observe. O’Reilly Media, 2019.

[20] F. Gregor, W. Ozga, S. Vaucher, R. Pires, S. Arnautov, A. Martin, V. Schiavoni, P. Felber, C. Fetzer,
et al., “Trust management as a service: Enabling trusted execution in the face of byzantine stake-
holders,” in 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 502–514, IEEE, 2020.

Page 90 of 92

https://lithops-cloud.github.io/
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/multiprocessing.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://registry.opendata.aws/
https://github.com/pravega/pravega/wiki/PDP-48-(Key-Value-Tables-Beta-2)
https://github.com/pravega/pravega/wiki/PDP-48-(Key-Value-Tables-Beta-2)
https://bookkeeper.apache.org
https://zookeeper.apache.org
https://cncf.pravega.io/docs/latest/javadoc/clients/io/pravega/client/state/StateSynchronizer.html
https://cncf.pravega.io/docs/latest/javadoc/clients/io/pravega/client/state/StateSynchronizer.html
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

[21] J. Singh, J. Cobbe, D. L. Quoc, and Z. Tarkhani, “Enclaves in the clouds: Legal considerations
and broader implications,” Communications of the ACM, vol. 64, no. 5, pp. 42–51, 2021.

[22] G. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma, I. Davidyuk, I. Trushkin, M. Ra-
dionov, A. Mokrov, D. Agapov, et al., “Openfl: An open-source framework for federated learn-
ing. arxiv 2021,” Google Scholar.

[23] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),” A Practical
Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[24] A. Call, J. Polo, D. Carrera, F. Guim, and S. Sen, “Disaggregating non-volatile memory for
throughput-oriented genomics workloads,” in Euro-Par 2018: Parallel Processing Workshops,
(Cham), pp. 613–625, Springer International Publishing, 01 2019.

[25] A. Call, J. Polo, and D. Carrera, “Workload-aware placement strategies to leverage disaggre-
gated resources in the datacenter,” IEEE Systems Journal, vol. 16, no. 1, pp. 1697–1708, 2022.

[26] A. Nestorov, J. Berral, C. Misale, C. Wang, D. Carrera, and A. Youssef, “Floki: a proactive
data forwarding system for direct inter-function communication for serverless workflows,” in
ACM/IFIP International Middleware Conference, p. 13, Association for Computing Machinery
(ACM), 11 2022.

[27] J. L. Berral, C. Wang, and A. Youssef, “AI4DL: Mining behaviors of deep learning workloads for
resource management,” in 12th USENIX Workshop HotCloud, 2020.

[28] “Pubmed.” https://www.ncbi.nlm.nih.gov/pubmed/. Accessed: May 30, 2023.

[29] “Sequence read archive (sra).” https://www.ncbi.nlm.nih.gov/sra. Accessed: May 30, 2023.

[30] M. Carstens, F. M. Rinner, S. Bodenstedt, A. C. Jenke, J. Weitz, M. Distler, S. Speidel, and F. R.
Kolbinger, “The dresden surgical anatomy dataset for abdominal organ segmentation in surgical
data science,” Scientific Data, vol. 10, no. 1, pp. 1–8, 2023.

[31] M. Wagner, B.-P. Müller-Stich, A. Kisilenko, D. Tran, P. Heger, L. Mündermann, D. M. Lubotsky,
B. Müller, T. Davitashvili, M. Capek, et al., “Comparative validation of machine learning algo-
rithms for surgical workflow and skill analysis with the heichole benchmark,” Medical Image
Analysis, vol. 86, p. 102770, 2023.

[32] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux, M. De Mathelin, and N. Padoy, “Endonet:
a deep architecture for recognition tasks on laparoscopic videos,” IEEE transactions on medical
imaging, vol. 36, no. 1, pp. 86–97, 2016.

[33] R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon provides fast and
bias-aware quantification of transcript expression,” Nature methods, vol. 14, no. 4, pp. 417–419,
2017.

[34] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and
T. R. Gingeras, “Star: ultrafast universal rna-seq aligner,” Bioinformatics, vol. 29, no. 1, pp. 15–
21, 2013.

[35] A. Dobin, “STAR GitHub repository.” https://github.com/alexdobin/STAR, 2023.

[36] NCBI, “Sratoolkit GitHub repository.” https://github.com/ncbi/sra-tools, 2023.

[37] AWS, “AWS Batch on AWS Fargate documentation.” https://docs.aws.amazon.com/batch/latest/userguide/fargate.html,
2022.

Page 91 of 92

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/sra

HORIZON - 101092644 NEARDATA
30/06/2023 RIA

[38] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient
learning of deep networks from decentralized data,” arXiv preprint arXiv:1602.05629, 2017.

[39] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt, “Fedless: Secure and scalable feder-
ated learning using serverless computing,” in 2021 IEEE International Conference on Big Data
(Big Data), pp. 164–173, IEEE, 2021.

[40] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[41] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,” arXiv
preprint arXiv:1206.6389, 2012.

[42] B. McCall, “What does the gdpr mean for the medical community?,” The Lancet, vol. 391,
no. 10127, pp. 1249–1250, 2018.

[43] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and
future directions,” IEEE signal processing magazine, vol. 37, no. 3, pp. 50–60, 2020.

[44] A. Mohammed Yakubu and Y.-P. P. Chen, “Ensuring privacy and security of genomic data and
functionalities,” Briefings in bioinformatics, vol. 21, no. 2, pp. 511–526, 2020.

[45] F. Molnár-Gábor and J. O. Korbel, “Genomic data sharing in europe is stumbling—could a code
of conduct prevent its fall?,” EMBO molecular medicine, vol. 12, no. 3, p. e11421, 2020.

Page 92 of 92

	Introduction
	Initial architecture specifications
	Proposed theoretical architecture
	Data plane: Data Catalog and Data Connectors
	Control Plane: Data Broker and Confidential Data Orchestration

	Proposed Architecture
	NEARDATA Architecture Life Cycle
	Data Plane components
	Lithops: Serverless data processing platform
	Serverless data connector for dynamic unstructured data partitioning
	Pravega: A Tiered Storage System for Data Streams

	Control Plane components
	Confidential Technologies
	Confidential data exchange
	Confidential orchestration
	AI-based optimization of Cloud/Edge Workflows

	Description of use case scenarios
	Clinical sequencing of human pathogens
	Description of the use case
	Datatypes and datasets
	Data connectors
	Experiments
	Technical challenges

	Variants interaction analyses in massive genomics datasets
	Description of the use case
	Datatypes and Datasets
	Data connectors
	Experiments
	Technical challenges

	Transcriptomics Atlas Use Case
	Description of the use case
	Datatypes and Datasets
	Data connectors
	Experiments
	Technical challenges

	Metabolomics Use Case
	Description of the use case
	Datatypes and Datasets
	Data connectors
	Experiments
	Technical challenges

	Surgery Use Case
	Description of the use case
	Datatypes und Datasets
	Data Connectors
	Experiments
	Technical Challenges

	Benchmarking framework
	Clinical sequencing of human pathogens
	Involved Tools and Systems

	Variants Interaction Analytics in massive genomics datasets
	Cloud and edge computing environments
	Pipeline evaluation
	Involved Tools and Systems

	Transcriptomics Atlas Use Case
	Atlas Pipeline
	Involved Tools and Systems
	Federated Learning Pipeline

	Metabolomics Use Case
	METASPACE pipeline
	Experiment 1
	Experiment 2
	Involved Tools and Systems
	Evaluation and impact

	Surgery Use Case
	Surgical Navigation Pipeline
	Federated Learning Pipeline for Surgical Data
	Involved Tools and Systems

	Testbed
	KIO Networks Cloud Computing Architecture (VDC)
	KIO Networks Cloud Computing GPU Architecture (VDC-GPU)
	KIO Networks Cloud Computing S3 Architecture (S3)
	KIO Networks Cloud Computing Kubernetes Architecture
	Partners requirements

	Confidential and ethical requirements for AI technologies
	Clinical Sequencing of Human Pathogens Use Case
	Variants Interaction Use Case
	Transcriptomics Atlas Use Case
	Metabolomics Use Case
	Confidentiality and ethical considerations in Surgery Use Case
	Summary and Contingency of Ethical Issues

	Conclusions
	Appendix: NEARDATA APIs
	Data Plane APIs
	Data Catalog APIs
	Data Connectors APIs
	Streaming APIs

	Control Plane APIs
	SCONE CAS API
	Keycloak API

