
HORIZON EUROPE FRAMEWORK PROGRAMME

NEARDATA
(grant agreement No 101092644)

Extreme Near-Data Processing Platform

D4.1 Data Broker release and documentation

Due date of deliverable: 30-04-2024
Actual submission date: 30-04-2024

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 49

WP/Task related to this document WP4 / T4.2-T4.4

WP/Task responsible TUD

Leader André Martin (TUD)

Technical Manager Pubudu Jayasena (TUD)

Quality Manager André Martin (TUD)

Author(s) André Martin (TUD), Pubudu Jayasena (TUD), Robert
Krahn (TUD), André Miguel (SCO)

Partner(s) Contributing TUD, NCT, SCO

Document ID NEARDATA_D4.1_Public.pdf

Abstract The deliverable describes the architecture and functionality
of the Data Broker.

Keywords Data Broker, Control Plane, Confidential Compute, TEEs,
Confidential Compute Layer, Confidential Orchestration,
Federated Learning

History of changes

Version Date Author Summary of changes

0.1 15-03-2024 André Martin (TUD), Pub-
udu Jayasena (TUD), Robert
Krahn (TUD)

Initial draft and structure in place.

0.2 25-03-2024 André Martin (TUD), Pub-
udu Jayasena (TUD), André
Miguel (SCO)

First Draft with federated learn-
ing/Flower Integration.

0.3 28-03-2024 Pubudu Jayasena (TUD) Integrated measurements for network
shielding and runtime performance.

0.4 15-04-2024 Pubudu Jayasena (TUD) Rewrote introduction

0.5 20-04-2024 André Miguel (SCO) Incorporated KeyCloak and Lithops inte-
gration.

1.0 30-04-2024 André Martin (TUD), Pub-
udu Jayasena (TUD), André
Miguel (SCO)

Final pass and release.

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Table of Contents

1 Executive summary 2

2 Introduction 3

3 Use Cases Enhanced through Data Broker Integration 5
3.1 Example Application: Federated Learning - NCT Use Case (Surgomics) 5
3.2 Example Application: Data hub - Use Case provided by EMBL(Metabolomics) 9

4 NEARDATA DataBroker Overview 10
4.1 Threat Model . 10
4.2 Attacks in The Context of NEARDATA . 11
4.3 Security Policies . 12
4.4 Policy Definitions . 13
4.5 Fine Grained Policy Definitions . 13
4.6 Data Broker Components and Architecture . 15

4.6.1 Metabolomics Integration using Lithops . 17
4.6.2 Confidential Identity and Access Manager . 18

4.7 Governance and Policy Board . 19
4.7.1 Access Control . 20
4.7.2 Policy Board . 22

5 First Release of the DataBroker 23
5.1 Data Broker and Security Mechanisms . 24

5.1.1 Runtime Security . 24
5.1.2 Hardware Support . 24
5.1.3 Encrypted VMs vs. Enclaves . 24
5.1.4 Isolation and Cooperation . 25

5.2 SCONE Overview . 25
5.2.1 SCONE Runtime . 26
5.2.2 SCONE Cross Compiler . 31
5.2.3 SCONE CAS (Configuration & Attestation Service 34

5.3 Network Security . 35

6 Performance Evaluation 38
6.1 Runtime Security . 38

6.1.1 Experimental Setup . 38
6.1.2 Methodology . 38
6.1.3 Micro-benchmark: Remote Attestation and Keys Management 38
6.1.4 Macro-benchmark: Inference Classification Process 39
6.1.5 Effect of input model sizes. 40
6.1.6 Effect of file system shield. 41
6.1.7 Continuous Runtime Benchmarks . 41

6.2 Network Shield Evaluation . 41
6.2.1 Benchmark Setup . 42
6.2.2 nginx Throughput/Latency Benchmark . 43
6.2.3 Baseline . 43
6.2.4 Network Shield Overhead . 44

7 Summary & Conclusions 45

i

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

List of Abbreviations and Acronyms

AES-GCM Advanced Encryption Standard with Galois Counter Mode

AI Artificial Intelligence

API Application Programming Interface

CAS Configuration and Attestation Service

CRD Custom Resource Definitions

CVE Common Vulnerabilities and Exposures

DAG Directed Acyclic Graph

EPC Enclave Page Cache

FL Federeted Learning

FSPS File System Protection Shield

HPC High-Performance Computing

IAM Identity and Access Manager

IAS Intel Attestation Service

IoT Internet of Things

NPS Network Protection Shield

POC Proof Of Concept

SDK Software Development Kit

SGX Software Guard eXtensions

TCB Trusted Computing Base

TCP Transmission Control Protocol

TLS Transport Layer Security

VM Virtual Machine

Page 1 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

1 Executive summary

This document presents the initial release and documentation of the Data Broker, a key component
of NEARDATA that facilitates the orchestration of trustworthy data flows across the Cloud/Edge
continuum. An important goal of the Data Broker is to provide secure data governance, including
data access and confidential data transfer, for distributed Data Sources in the Data Catalog. The Data
Broker component was designed to enable stakeholders to securely access and share data as well
as to ensure confidentiality and integrity for applications and their components. The Data Broker
provides furthermore mechanisms to manage user access policies and roles, and several mechanisms
for secretly accessing data.

The primary goal of this document is to provide a detailed overview of the components that make
up the Data Broker as a whole, and how security is being enforced using policies. Furthermore, the
document describes how the Data Broker is integrated into existing frameworks and tools used in
NEARDATA. Finally, a preliminary evaluation was conducted to validate various design decisions
and the performance of the system.

In order to showcase how the Data Broker controls data access, we provide a first prototypical
implementation and integration of a federated learning application using FLOWER, an open-source
framework, and SCONE, the framework we developed to run applications in a trustworthy man-
ner using Trusted Execution Environments (TEEs). The example is referenced throughout the whole
document to highlight the various security aspects and mechanisms developed within NEARDATA,
showcasing how they provide confidentiality and integrity for this specific scenario. Although fed-
erated learning provides already some degree of confidentiality through local learning and sharing
only model parameters, additional mechanisms are necessary to establish full trust as required and
set out by the NEARDATA project.

After the description of the federated learning example, we provide a thorough analysis of the
threat model and potential attacks we envision in NEARDATA. Based on these findings, we then
present the so-called policy definitions that allow application developers and users to define their
access policies and how data should be protected. In addition to the established policies, we further-
more outline protection goals derived from prior research on threats and vulnerabilities commonly
encountered in Artificial Intelligence (AI) systems operating in these settings.

Besides the policy definition, we will then present the various security tools we developed in
order to control data access and provide confidentiality and integrity for the applications running
within NEARDATA. The security tools range from SCONE runtime, which enables the application
to run in TEEs, a cross-compiler, and the Sconify tool, both enabling developers to convert native
apps into confidential ones. The deliverable concludes with a summary of achievements.

Page 2 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

2 Introduction

The NEARDATA "Extreme Near-Data Processing Platform" aims to establish a sophisticated infras-
tructure that facilitates data transfer across Object Storage and Data Analytics systems along the
Compute Continuum. In this deliverable, we provide an in-depth overview of Data Broker includ-
ing its primary sub-components that execute the system’s functions and how it integrates with other
components of the NEARDATA architecture.

NEARDATA’s design has been derived from the Reference design of International Data Spaces
1, which has served as a significant source of inspiration. The recommended architecture, which is
based on the actual components given by each of the NEARDATA partners (refer to D2.2 NEAR-
DATA Architecture Specs and Early Prototypes). The advanced near-data processing platform com-
prises four modules, as described in D2.2 NEARDATA Architecture Specs and Early Prototypes.
These modules, namely Data Plane / XtremeHub (refer to D3.1 XtremeHub first release and docu-
mentation), Control Plane, Analytics, and Data Sources, are designed to cater to the specific require-
ments and functions of NEARDATA components. The standard architecture has six fundamental en-
tities that are seamlessly incorporated into a collection of modules: Data Providers, Data Consumers,
Data Connectors, Data Broker, App Store, and Identity Provider.

Data Broker and Data Connectors are integral components of NEARDATA’s architecture, and as
such, their notions are innovatively redefined as pioneering improvements inside our Data Space.
The Data Plane is a sophisticated data service that acts as an intermediary, enhancing and streamlin-
ing data flows by leveraging the S3 API for storing and retrieving objects, as well as streaming APIs
via fast near-data connections in Cloud/Edge environments. An integrated view of Data Broker is
depicted in Figure 1

Figure 1: High-level overview of Data Broker

NEARDATA aims to tackle the conventional issue associated with data analysis by expanding the
notion of DataHub to handle large-scale data. The innovative XtremeHub will have dependable and
high-performing data connections, enabling data analytics systems to access and explore extreme
data stored in Object Storage. The platform will have the capability to effectively coordinate vari-
ous workflows and data analysis platforms using optimised AI algorithms. Additionally, in order to
meet the specific requirements of handling sensitive health data, the Data plane/Xtreame hub con-

1https://internationaldataspaces.org/

Page 3 of 49

https://internationaldataspaces.org/

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

nected with Data Broker will provide secure and privacy-preserving solutions by utilising TEE-based
technology to deploy protected data flows across the entire Compute Continuum. The Data Broker
service restricts access to the data items and streams, providing safe access to data using TEEs. The
NEARDATA platform is a cutting-edge technology specifically developed for extracting valuable in-
sights from large and dispersed unstructured data collections. It may be used in both cloud and edge
computing environments, such as High-Performance Computing (HPC) and Internet of Things (IoT)
devices. It incorporates advanced AI technology and offers a distinct confidential cybersecurity layer
to ensure safe data processing.

This document includes four main parts:

1. First section provides an overview of the use cases that are improved through the integration of
a Data Broker, as well as a detailed explanation of a federated example application. This exam-
ple which will be used throughout the document as a running example in order to demonstrate
the various security-related features we are developing within NEARDATA.

2. The NEARDATA Security Overview provides a summary about potential threats and attacks
in the context of Streaming and AI applications as well as presents a policy definition which
consists of protection goals as well as protection mechanisms in order to address the previously
analyzed threats.

3. The First Release of the Data Broker section provides details about the technological compo-
nents involved and how they have been evolved in order to support the security requirements.
The section is subdivided into runtime security as well as network security addressing different
layers of the NEARDATA architecture.

4. In the Conclusion section, we summarize our contributions and outline the ongoing and future
work.

Page 4 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

3 Use Cases Enhanced through Data Broker Integration

3.1 Example Application: Federated Learning - NCT Use Case (Surgomics)

In this section, we will briefly describe an example application that we will use throughout this doc-
ument to describe the security tools we have implemented within the scope of WP4 for NEARDATA.
As an example, we chose federated learning as it is used by one of the use case providers NCT for
Computer-assisted surgery, and it demonstrates nicely how multiple parties collaboratively work to-
gether without having to trust each other as well as using infrastructures such as cloud environments
and edge devices which are under a third-party administrative domain that cannot be trusted. Fur-
thermore, it utilizes AI techniques and therefore it is well suited as a demonstrator in the context of
NEARDATA.

Federated learning [1] is an emerging machine learning technique which allows participating
clients to collaboratively train a joint global machine learning model without sharing their local train-
ing data. Federated learning reduces privacy risks for the local training data which may be highly
sensitive relating to personal finances, political views, health, etc. Thus, it has been widely used in
the industry since it helps companies to comply with regulations on issues regarding how personal
data is handled and processed such as the EU’s General Data Protection Regulation (GDPR) [2].

The core idea of federated learning is that each client trains a local model, rather than sharing
training data to a centralized training system which is deployed in an untrusted environment, e.g.,
a public cloud. For each iteration, the clients send their local model training parameters (i.e., local
computed gradients) to the central system to train a global model which takes benefits from all local
training data from clients. Typically, the central system aggregates the local training gradients from
the clients and sends the aggregated gradients back to them. This training process is repeated until
it converges or the global model reaches a certain desired accuracy.

An example of federated learning in real-life deployment is that several hospitals collaborate to
develop a shared machine-learning model based on their patient data to detect a disease at an early
stage. Each hospital processes its data locally, shares the local gradients with the central training
system, and receives the global gradients in each iteration.

While promising at first glance, the federated learning paradigm suffers from several vulnerabil-
ities:

1. An attacker with privileged/root accesses can easily obtain the training models. The attacker
can also compromise the privacy of individuals in the training data by inferring it from param-
eters of the global model [3]. Therefore, the training models need to be protected at rest, in
transit, and in use.

2. A large number of malicious clients may collude with each other to reveal local data and local
models of the remaining clients [4].

3. Malicious clients can tamper with their local training data or parameter updates forwarded to
the central training system to corrupt the global model[5, 6].

4. The attacker compromises the sensor on the field and provides tampered data to the client.

To handle issues (1) and (2), state-of-the-art solutions rely on a privacy-preserving mechanism
such as differential privacy or secure multiparty computation. The disadvantage of the differential
privacy mechanism is that it reduces the performance of the global training model regarding utility
or accuracy. Meanwhile, the solutions based on secure multiparty computation incur significant
overhead [7, 8]. To cope with issue (3), several Byzantine-robust federated learning mechanisms
have been proposed [9, 10, 11, 6]. The core idea behind these mechanisms is to reduce the impact of
statistical outliers during model updates in the federated learning system. However, recent works
[9, 11, 6] show that the mitigation of the impact is still not enough to protect the utility of the global
model. The malicious clients can still affect the accuracy of the global model trained by a Byzantine

Page 5 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Clients

Cloud Provider

Data

Training Data
Owner

Inference
Code Owner

Training
Code Owner

Model
Owner

TLS

Attestation &
policy submitting

TLS
TLSTLS

Attestation &
secrets provision

Training
Data

Inference

Training

Model

SGX

SGX

Data Broker

SGX

FLWR

Figure 2: Federated Learning Architecture 1 in NEARDATA.

robust mechanism by carefully tampering with their model parameters sent to the central training
system [12].

In NEARDATA, we overcome these limitations by building a confidential federated learning sys-
tem using TEEs, e.g., Intel SGX. Trusted Execution Environment (TEE) technologies, such as Intel
Software Guard eXtensions (SGX) have gained much attention in the industry [13, 14] as well as in
academia [15, 16, 9, 17, 8, 18, 19, 20, 21, 22, 23]. To ensure the confidentiality and integrity of ap-
plications, TEEs execute their code and data inside an encrypted memory region called an enclave.
Adversaries with privileged access cannot read or interfere with the memory region and only the
processor can decrypt and execute the application inside an enclave. In addition, TEEs such as Intel
SGX also provide a mechanism for users to verify that the TEE is genuine and that an adversary did
not alter their application running inside TEE enclaves. The verification process is called Remote
Attestation [24] and allows users to establish trust in their application running inside an enclave on
a remote host.

We leverage TEEs to handle issue (1), by providing end-to-end encryption. Also, our solution
encrypts input training data and code (e.g., Python code) and performs all training computations
including local training and global training inside TEE enclaves. The secure federated learning en-
ables all gradients updates via Transport Layer Security (TLS) connections between the enclave of
clients and the enclaves of the central training computation. Thus attackers with privileged accesses
cannot violate the integrity and confidentiality of the input training data, code, and models. We also
ensure the freshness of the input training data, models, and, by applying an advanced asynchronous
monotonic counter service [25].

We tackle issues (2) and (3) by developing a Data Broker component integrated with Configu-
ration and Attestation Service(CAS) based on the remote attestation mechanism supported by TEEs
[25, 26]. The component ensures the integrity of input data and training code, i.e., it makes sure that
training computations are running with correct code, correct input data and not modified by anyone,
e.g., an attacker or malicious client. This component also monitors and attests to the compliance of
participated clients with the pre-defined agreement before collaborating to train the global machine
learning model. In addition, it can clone the global training computation and randomly take a sam-
ple of clients for the training computation. This helps to detect outliers regarding the utility which
helps to solve issue (3). Our preliminary evaluation shows that we can ensure the confidentiality
and integrity of federated learning computations while maintaining the same utility/accuracy of the
training computations.

Figure 2 illustrates the architecture of the federated learning application in NEARDATA. The
main goal of our hardened version is not only to ensure the confidentiality, integrity and freshness of
input data, code, and machine learning models but also to enable multiple clients (who do not neces-

Page 6 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

TLS

Enclave

Local Training

Global Training
Model Aggregator

TEE

Data Broker

TEE TEE

Local Training Local Training

TEE

...

TLS TLS Model Updates

Remote Attestation

TEE

Figure 3: Federated Learning Architecture 2 in NEARDATA.

sarily trust each other) to get the benefits of collaborative training without revealing their local train-
ing data. In the confidential setup, each client performs the local training also inside TEE enclaves
to make sure that no one tampers with the input data or training code during the computations. To
govern and coordinate the collaborative machine learning training computation among clients, we
design a Data Broker component which consists of a CAS which maintains security policies based
on the agreement among all clients to define the access control over global training computation, the
global training model, also the code and input data used for local training at each client. The CAS
component transparently performs remote attestation to make sure the local computations are run-
ning the correct code, correct input data, and on the correct platforms as per the agreement. It only
allows clients to participate in the global training after successfully performing the remote attesta-
tion process. It also conducts the remote attestation on the enclaves that execute the global training
in a cloud, to ensure that no one at the cloud provider side modifies the global training aggrega-
tion computation. In addition to remote attestation, it encrypts the training code, and the CAS only
provides the key to decrypt it inside enclaves after the remote attestation. Secrets including keys
for encryption/decryption in each policy are generated by the Configuration and Attestation Service
also running inside Intel SGX enclaves and cannot be seen by any human or client. Examples of the
policies can be found in [26].

After receiving the agreed security policies from clients, the Data Broker CAS component strictly
enforces them. It only passes secrets and configuration to applications (i.e., training computations),
after attesting them. The training computations are executed inside Intel SGX enclaves and associ-
ated with policies provided and pre-agreed by clients. The training computations are identified by a
secure hash and the content of the files (input data) they can access. Secrets can be passed to appli-
cations as command-line arguments, or environment variables, or can be injected into files. The files
can contain environment variables referring to the names of secrets defined in the security policy.
The variables are transparently replaced by the value of the secret when an application permitted to
access the secrets reads the file. We design the CAS in a way that we can delegate its management of
it to an untrusted party, e.g., a cloud provider, while clients can still trust that their security policies
for protecting their properties are safely maintained and well protected. In the confidential version
of the federated learning application, clients can attest to the Configuration and Attestation Service
component, i.e., they can verify that it runs the expected unmodified code, in a correct platform
before uploading security policies.

We have implemented the federated learning prototype jointly with NCT using FLOWER [27] -
a distributed federated machine learning framework. Flower is a novel end-to-end federated learn-
ing framework that enables a more seamless transition from experimental research in simulation to

Page 7 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

system research on a large cohort. In order to showcase the features of our novel Data Broker, we
performed the following steps:

1. The federated learning demo (using Flower) is executed/running inside of Intel SGX enclaves
using SCONE, a framework to enable unmodified applications to run inside SGX enclaves.

2. We complemented the demo using SCONE’s network shield, configured through the Data Bro-
ker’s CAS component which protects network connections between client and server as well as
controls data access.

3. In order to protect data at rest, we furthermore utilized SCONE’s file system shield mechanism
which encrypts the input (training) data using the file system shield of SCONE, and de-crypts
it when processing inside of SGX enclaves.

As for the implementation of the Data Broker’s CAS component, we partially rely on previous
works [13, 28].

This deliverable explains the selected use cases for federated learning, which serves to show
the accomplishments of NEARDATA’s objectives. The Data Broker component addressed objective
O-3, which has been verified through the use of Key Performance Indicators (KPIs) 4.(refer D2.2
NEARDATA Architecture Specs and Early Prototypes)

The objective is to ensure the secure coordination, transmission, manipulation, and retrieval of
data. The third goal is to establish a Data Broker service that facilitates reliable data sharing and
secure coordination of data pipelines throughout the Compute Continuum. The project aims to
enhance the security and reliability of the data by using TEEs within federated learning systems.
Policy-driven mutual authentication techniques also enable advanced data access policies for parties
that do not trust each other. These policies are managed by policy boards, allowing access rules to be
dynamically changed by human decision-makers and other entities.

The accomplishments are assessed based on the Key Performance Indicators (KPIs) provided in
the Description of the Action (DoA).

KPI-4: Data security and confidential computing are ensured at high levels through the use of
Trusted Execution Environments (TEEs) and federated learning in adversarial security studies.

Use-Case KPI Result
Surgery KPI-4 We achieved this Key Performance Indicator (KPI) by following the approach outlined

below. (refer D5.1 First release of KPI benchmarks in all use cases and data connector
libraries)

• Examine how confidential federated learning applications, which utilise
Trusted Execution Environments (TEEs), tackle the inherent difficulties in the
federated learning paradigm.

• Assess the effectiveness of the confidential federated learning application by
analysing the impact of SCONE’s network shield, configured through the Data
Broker’s CAS component, on execution time. Compare this impact to both the
Vanilla (Intel/Non-SGX) environment and the SCONE (Intel SGX/hardware
mode) setup, with a particular focus on the execution time of federated learn-
ing.

• Assess the impact of optimisations on the initial response time of functions in
the FL application framework.

Table 1: Highlights of main KPIs achieved by federated learning use-case

The system employs encryption to secure both the input training data and code, such as Python
code. It carries out all training calculations within TEE enclaves, including local and global train-
ing. This secure federated learning enables transmitting all gradient changes using TLS connections

Page 8 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

between the enclave of clients and the enclaves of the central training computation. Consequently,
individuals who have elevated access cannot compromise the integrity and confidentiality of the in-
put training data, code, and models. The Data Broker component is connected with CAS and utilises
the remote attestation technique enabled by TEEs. This component guarantees the accuracy and re-
liability of the input data and training code. Put simply, it guarantees that training calculations are
executed using accurate code, and accurate input data, and have not been tampered with by any
unauthorised individuals, such as an attacker or malicious client. Based on the initial assessment, we
can guarantee the privacy and security of federated learning calculations without compromising the
effectiveness or accuracy of the training calculations.

The source codes for these use cases are publicly available.

Components Description GitHub URL
Surgery use-case Federated Learning

Source Code
https://github.com/neardata-eu/nct_tud_
fl_demo

Table 2: Use-cases source codes released.

3.2 Example Application: Data hub - Use Case provided by EMBL(Metabolomics)

The NEARDATA Metabolomics Data Space aims to become a worldwide reference in the field of
metabolomics. We acknowledge the significant efforts made by EMBL, a pioneer in this field, to use
the METASPACE platform as the primary means of analysing, disseminating, and visualising spatial
metabolomics data.

Frequently, researchers in the field of omics are interested in handling Confidential data. In order
to adhere to the privacy requirements of customised annotation tasks, our objective is to execute the
METASPACE annotation code within secure enclaves rather than stateless serverless components.
Security will be provided using SCONE containers, which will be scheduled using Lithops on a
Kubernetes (K8S) backend.

The Data Broker will be in charge of orchestrating the TEEs deployed with SCONE to protect the
executions with Lithops on METASPAC. Furthermore, the utilisation of AI-based optimisations will
assist us in establishing an effective workflow on our data processing platform.

Deploying a machine learning pipeline architecture inside a secure and trustworthy environment.
Privacy and security will be ensured by employing SCONE containers on a secret K8S backend, to-
gether with a Lithops orchestrator. The majority of OMICs data is subject to stringent confidentiality
standards that are not compatible with public cloud services. Utilising on-premise cluster resources
to execute the pipeline at the edge will effectively cater to the requirements of private workloads.

The current level of this use case is preliminary, but, we have effectively created an initial pro-
totype that incorporates Lithops, METASPACE, and Data Broker containers. We employed the KIO
testbed to accomplish this goal, taking advantage of its built-in K8S deployment to develop a func-
tional architecture for the final version of the use-case. The final proposal will include the confidential
version of the pipeline to manage the classified datasets from METASPACE and transmit the results
to the METASPACE database and the ElasticSearch engine.

Use-Case KPI Result
Metabolomics KPI-4 We have integrated Data Broker Confidential Compute Layer component(SCONE) into

Lithops and tested its early usage on an on-premise K8s cluster

Table 3: Highlights of main KPIs achieved by Data-hub use-case

Page 9 of 49

https://github.com/neardata-eu/nct_tud_fl_demo
https://github.com/neardata-eu/nct_tud_fl_demo

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4 NEARDATA DataBroker Overview

The Data Broker provides user authentication through mechanisms such as mutual TLS handshakes
as well as an attestation that grants access to confidential data, which can be decrypted and manip-
ulated. Additionally, the Data Broker includes orchestration services and connects different types of
data streams of analytical platforms and services. The Data Broker comprises three primary compo-
nents:

1. Confidential Compute Layer: The main function of this task is to develop mechanisms to pro-
cess high volumes of data within trusted execution environments such that confidentiality, in-
tegrity and freshness of the data can be guaranteed.

2. Confidential Data Exchange: The main function of this task is to develop mechanisms to ex-
change data through the network in a confidential manner.

3. Confidential and Federated Learning orchestration layer: The main function of the Confiden-
tial orchestration layer is to develop mechanisms to orchestrate various diverse applications
securely and confidentially. It will allow the use of state-of-the-art orchestration tools such
as Kubernetes however provide trust such that deployed applications and processes on the
infrastructure cannot be tampered with. The federated learning orchestration layer provides a
structure for coordinating the processing of data in situations including federated learning. The
primary premise is that the data used for machine learning training remains at its source (di-
vided among several clients). The local model is trained independently at each client, and then
the model is transmitted to the central server for aggregation and averaging. This methodology
ensures the secure handling of medical data, preventing it from being transferred across institu-
tional or national boundaries. The framework will utilise the existing infrastructure established
inside the project, encompassing the data storage, processing capabilities, and interfaces.

The following discussion will focus on the threat model we consider for NEARDATA which we
will then use to derive requirements from as well as to define security policies which are applied for
the different stakeholders in NEARDATA. Besides the security policies, which are high-level defini-
tions and requirements originating from the users, we then introduce the session language used to
provide more fine-graned configuration options. After the introduction of the policies, the architec-
ture of the different components working with those policies is being presented.

4.1 Threat Model

In NEARDATA we target to harness cloud resources as well as edge clouds and devices to conduct
data analytic tasks in addition to traditional cloud resources, which shifts a significant part of the
workload from the Cloud/Edge devices. Due to the rapid growth in streaming data volume, many
applications are leveraging edge cloud platforms these days to store and analyze data efficiently.
Such platforms must be trusted to protect data privacy and security from malicious insiders or out-
side attacks when hosting applications in these environments.

For the threat model, we consider classical cloud applications as well as edge platform services
capturing and analyzing, e.g. telemetry data. We also recognize the significance of mission-critical
IoT with tight control loops but do not target them in our threat model. Our target scenario includes
source sensors, edge platforms, and cloud servers. We assume a potentially malicious environment in
which privileged processes such as the operating system have full control over system call arguments
and their results. In such a compromised system, an attacker can not only modify the system data
but can also eavesdrop on system activities. Apart from that, we assume that access to the hardware
is strictly regulated and that an adversary cannot mount physical attacks on the otherwise trusted
CPU.

We consider the scenarios of malicious field nodes trying to access other users’ resources and ma-
licious remote nodes trying to access data from field IoT devices in addition to regular cloud nodes.

Page 10 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

The first scenario includes legitimate, but compromised, nodes trying to access resources and appli-
cations in the edge node or in the cloud for which they are not authorized. In the second scenario,
an external attacker tries to access data generated by devices in the field or even take control of the
devices. Also in this scenario, the attacker can be authorized to access some data but wants to access
data or perform actions for which they have no authorization. We furthermore assume untrusted
edge-cloud links that require encryption of uploaded data. We consider malicious adversaries ca-
pable of identifying IoT data, tampering with edge processing outcomes, or obstructing processing
progress as in-scope threats. Based on the assumption that powerful adversaries exist: they control
all applications on the edge by exploiting weak configurations or bugs in the edge software; they con-
trol the entire OS as well as all applications on the edge. For cloud nodes, we assume an adversary
has full control over all processes and all hardware components except the CPU, based on the Intel’s
SGX threat assumption. The adversary can check the memory trace of all processes except those run-
ning within the enclaves. Also, they can monitor or interfere with the communication between edge
servers and cloud servers.

In addition, the system operates under a specific threat model that assumes specified conditions.
The software is created and disseminated by a trusted developer, and a reliable signer is responsible
for preparing the software for execution within SGX. This process involves utilizing a trustworthy
SGX framework that facilitates the execution of legacy software within SGX, with the signer gen-
erating a valid SigStruct. Users then customize the SGX-enabled software through secure means
provided by the SGX framework, encompassing configuration elements such as files, environment
variables, and program arguments. It is crucial to note that the developer, signer, and user, along
with their respective systems, are assumed to be benign and possess secure channels for exchanging
information regarding the software’s integrity. The customized software is subsequently transmitted
and executed within an SGX-enabled environment, even in the presence of potential adversaries. The
security goals of the SGX environment, including the trustworthiness of the remote attestation mech-
anism and infrastructure, are integral to this model. Additionally, we operate under the assumption
that the SGX processor implementation is not vulnerable to exploitation, and the adversary is knowl-
edgeable about the attestation protocols, eliminating security through obstruction.

4.2 Attacks in The Context of NEARDATA

Considering the above-listed threats, a malicious user can drive the following attacks in the context
of NEARDATA applications. To gain access to sensitive data that is used for training purposes such
as radiomics imaging data, etc., an infrastructure administrator with root privileges can simply copy
the locally stored files out of the running VM image. Although this attack can be prevented by
using end-to-end encryption, i.e., encrypting the files beforehand, the Python processes running the
training software such as Pytorch, TensorFlow, etc., need to access this data, i.e., require access to the
private key used to encrypt the data at rest. An attacker can therefore create a memory dump of these
processes in order to reveal the key and perform the en/decryption him-/herself.

It is also worth noting that training data is a precious resource that can be monetized and con-
veyed to multiple entities also in real-time directly from the edge. As a variation of the above attack,
an external malicious user can attempt to access data from the field devices by exploiting their low
complexity and lack of support for fine-grained access control policies. In NEARDATA, we tackle
this attack by means of our Data Broker component, which intermediates any exchange between the
devices and the users.

Besides gaining access to confidential data, another attack vector is the malicious introduction
of wrong information in order to tamper with training results. This can be achieved by a malicious
user pretending to be a legitimate collaborator if we consider federated learning. Although this
attack seems to be not that easy at first as it requires access to certificates as well as keys to pass the
mutual authentication when establishing Transmission Control Protocol(TCP) connections between
the collaborator as well as the aggregator, such keys, as well as certificates, can be easily retrieved as
described previously.

Another way of tampering with training results is through the modification of the training code

Page 11 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

itself. This type of attack can be prevented through the use of integrity protection mechanisms at the
file system level such that the code is signed beforehand. Another type of attack are so-called rollback
attacks: For these attacks, a malicious user provides the software with an older version of either the
training data or the trained model such that, e.g., classifiers do not correctly detect/recognize certain
items any more. This requires, as before, access to the file system as well as the capability to stop
processes and resume them which is easily achievable by administrators with root privileges and
hypervisor access.

In stream processing systems, network communication patterns directly reflect the structure of
the streaming applications. These applications typically consist of multiple processing stages orga-
nized into a Directed Acyclic Graph (DAG) that runs on a collection of networked machines. In gen-
eral, each stage is partitioned into multiple nodes that are executed in parallel. Each node performs
local computations on the input streams from its in-edges and produces output streams to its out-
edges. By observing network-level communication between the different stages of the DAG, an ad-
versary may be able to extract information about the data being processed by the application. In ad-
dition, stream processing systems are susceptible to side-channel attacks, which compromise users’
data security and privacy using any publicly accessible information that is not privacy-sensitive,
namely side-channel information. Such public information is typically correlated “secretly” with
certain privacy-sensitive data that should be protected. Attackers then explore the hidden correla-
tions to finally infer the protected data from the side channels. Since any public information can have
the potential to link to some sensitive data, side-channel attacks can happen anywhere in the edge
computing architecture. These side-channel attacks happen both at the memory level and network
level.

4.3 Security Policies

Security policies in NEARDATA are used as input for the Data Broker component and define what
level of protection the application user and developer desire for their application in order to mitigate
the previously described attacks. The policies are furthermore used to control access to data items
and restrict them only to trusted parties. To define those policies, we will now list the several attacks
and what mechanism mitigates them:

Attack Mechanism
. Memory dumps, i.e., stealing secrets and data
temporarily stored in RAM (confidentiality
protection for data being processed
. Modifications of data structures stored in RAM
(integrity protection for data being processed
. Integrity protection for application

Data Broker-Confidential Compute Layer
Trusted Execution Environment (TEE)

. Reading & modifying input data for training as
well as training models (confidentiality protection
integrity protection for data at rest)

Data Broker-Confidential Data Exchange Layer
File System Protection Shield (FSPS)

.Reading data exchanged over the network during
training (confidentiality protection &
integrity protection for data in transit)

Data Broker-Confidential Data Exchange Layer
Network Protection Shield (NPS)

. Reading & modifying or forging input data for
training aswell as training models
(confidentiality protection & integrity protection,
lateral movement, tampering with training results
for data at rest)

Mobile device authentication

Table 4: Attacks and security mechanisms

Page 12 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4.4 Policy Definitions

In NEARDATA, application developers and users can describe their constraints with regard to secu-
rity policies in two ways: Either they choose the attacks they want their application to be protected
against as called protection goals, or they choose the concrete mechanisms that should be enabled
while the application is running.

We will now lists the different protections goals that can be chosen by application users or devel-
opers and their mappings to the respective mechanism provided by the security tools of NEARDATA:

Protection Mechanisms
Confidentiality for data being processed
confProc

Trusted Execution Environment (TEE) or, if not available, se-
cure and measured boot

Integrity for data being processed
integrityProc

Trusted Execution Environment (TEE) or, if not available, se-
cure and measured boot

Confidentiality for data at rest
confRest

File system protection shield (encrypted volumes)

Integrity for data at rest
integrityRest

File system protection shield (integrity protected volumes)

Confidentiality for data at transit
confTrans

Network protection shield (NPS)

Integrity for data at transit
integrityTrans

Network protection shield (NPS)

Table 5: Protection Goals / Options

In case the nodes do not provide TEE support such as when using accelerators like GPUs, secure
and measured boot can be used in order to provide a minimum of security. Secure boot ensures that
the BIOS configuration is current with regards to the devices the operating system, etc. is booted from
while measure boot ensures that the operating system is booted correctly by exhibiting signatures for
each step during the booting processes that can be attested afterwards.

In the case the application user or developer is familiar with the mechanism, he or she can also
directly specify which protection mechanisms should be enabled instead. It is also possible to specify
both, i.e., a protection mechanism as well as a protection goal. The system will then create an inter-
section between the chosen protection goals and their mappings as well as the explicitly specified
protection mechanisms. The following definition is an example where an application developer used
protection goals as well as protection mechanisms to specify his needs from the security tools:

confRest: true
integrityTrans: true
tee: true

As shown in the example above, the user chose as a protection goal to provide confidentiality
for the data at rest, integrity protection for data exchanged between processes and services Further-
more, he opted that the processes should run within a trusted execution environment. Based on the
above definitions and protection goals, the application will utilize the file system shield to provide
confidentiality for all files created, read and written by the application as well as network shield to
cover the integrity protection goal for data at transit. Furthermore, the processes will also run a TEE
as explicitly specified in the description providing confidentiality as well as integrity protection for
data being processed although this was not explicitly specified as a protection goal by the user.

4.5 Fine Grained Policy Definitions

The previously defined policy definitions can be considered as high-level definitions which does not
allow the interaction with other processes and components and limit the data access solely to its own

Page 13 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

entities. Hence, they describe the protection goals for an entire application which comprises a set of
processes and services. However, it is often necessary to perform more fine-grained adjustments in
terms of allowing other processes or components to access shared data, or as in the federated learn-
ing use case, where we do not want to have encryption and integrity protection for all directories
for sharing or performance reasons. Another reason is that several protection mechanisms cannot be
automatically inferred. For example, two services of an application should perform mutual authen-
tication using TLS. In order to make this work, it is necessary to define what port a certain service
is listening on and from what other service that service is granting connections/accesses to. Take as
an example the federated learning use case. In federated learning, a single server process performs
communication with a set of clients processes. In order to prevent tampering with the gradients
exchanged during the learning phase, only authenticated client processes are allowed to join the fed-
eration, i.e., only after a successful TLS handshake as well as authentication by presenting the proper
certificates. This requires a fine-grained configuration of the different entities, i.e., client processes
as well as the server processes. We therefore merge in our Data Broker component high-level policy
definitions with fine-grained ones in order to establish the correct properties. We will now present
the policy definition that serves as input of the Data Broker component of NEARDATA. The policy
definition is carried out as a so-called session language used to create session descriptions that entail
all security-relevant details of an application. An application in NEARDATA that wants to exchange
data with other entities can have polices that consist one or several session descriptions. Each session
description defines a set of

• services that are part of the application,

• secrets that are securely stored and passed to the services,

• images that define which regions of a container (image) are encrypted or authenticated,

• volumes which are like Docker volumes but encrypted, and

• access policy that defines who can read or modify the session description.

The session language uses a YAML-like syntax and is similar to the syntax used in docker-compose
files as shown below. In the following, we will use the term session description and session policy
(or just policy) interchangeably.

1

2 name: NEARDATA_DEMO_46-16503
3 version: "0.3.9"
4

5 security:
6 attestation:
7 mode: none
8 tolerate: [debug-mode, hyperthreading, outdated-tcb, software-hardening-needed]
9 ignore_advisories: "*"

10

11 services:
12 - name: python_server
13 mrenclaves: [825b4b54233d060a408edda8ac761f1efa4b504a30b89d02b83ab7fb07baeb88
14

15 volumes:
16 - name: my_database1
17

18 images:
19 - name: prep_image

Page 14 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

20 volumes:
21 - name: my_database1
22 path: /app/input
23

24 secrets:
25 - name: ca_private_key
26 kind: private-key
27 - name: ca_certificate
28 kind: x509-ca
29 private_key: ca_private_key
30 common_name: Flower_CA
31

32 - name: server_private_key
33 kind: private-key
34 - name: server_certificate
35 kind: x509
36 private_key: server_private_key
37 issuer: ca_certificate
38 common_name: flower_demo_server
39 endpoint: server
40 dns: localhost
41

42 - name: client_private_key
43 kind: private-key
44 - name: client_certificate
45 kind: x509
46 private_key: client_private_key
47 issuer: ca_certificate
48 common_name: flower_demo_client
49 endpoint: client
50

The above description shows a policy example to configure the federated learning prototype so
that certificates and keys are generated and injected in order to perform mutual authentication using
TLS. Furthermore, it defines the process that should be executed as well as runtime parameters such
as the working directory. The generated secrets are defined in the secrets section of the policy file
while in the injection_files section of this configuration, the paths to the different files for the injected
secrets are defined. Moreover, the example shows how one creates a certificate for a certificate au-
thority (ca_private_key) and how it is used to sign certificates created for one client (client_private_key)
and one server (server_ private_key). In addition to the certificates, private keys are made accessible
to processes running with the SCONE runtime such that the Flower-based processes can use them to
perform a mutual authentication themselves.

4.6 Data Broker Components and Architecture

Figure 4 illustrates the architecture of NEARDATA’s Data Broker components and tooling we uti-
lize in order to run applications in a trustworthy manner. The Data Broker’s Confidential Compute
Layer incorporates a CAS as a vital element within this framework. Furthermore, the Confidential
Orchestration of the Data Broker is managed via Kubernetes. To enhance data security, we will also
utilize SCONE’s network shield within the Confidential Data Exchange component of the Data Bro-
ker, which is an integral part of the SCONE runtime, enabling precise control over data access.

On the left side of the figure, a list of tools is depicted which are used for transforming native
applications into a confidential ones. The transformation can be either achieved through the SCONE

Page 15 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

cross compiler or the so-called sconify tool.
In the figure, components are depicted that come into play during the runtime of an application,

assuming the hardware supports the execution of applications in TEEs.

Figure 4: Security tools architecture.

The high-level policy definitions stored as Custom Resource Records (CRR) using Custom Re-
source Definitions (CRD) within the Kubernetes cluster which application user typically uses to de-
ploy his or her application. This approach aligns with the cloud-native paradigm and represents the
current standard for deploying modern applications. It’s worth noting that the policy session lan-
guage for the Data Brokers Configuration and Attestion Service (CAS) is stored in a separated CAS
instance rather than in the etcd server of the Kubernetes cluster. In addition to storing records in the
Kubernetes cluster, a Kubernetes operator will be developed to execute the necessary configuration
steps required for deploying application within the context of NEARDATA securely and confiden-
tially. The key tasks the Kubernetes operator will perform as follows:

• Watches for new deployments and monitors the Kubernetes event bus to detect new deploy-
ments.

• Matches Labels and Annotations: Checks for matching labels and annotations to determine if
an application is covered by the specified policy definitions.

• Sconifies Docker Images: Transforms native Docker images into confidential ones using the
Sconify process.

• Extracts and Converts Program Arguments and Environment Variables: Gathers and converts
program arguments and environment variables according to the defined security policies.

• Generates SCONE Sessions: Creates SCONE sessions based on the parsed information and
submits them to the CAS for further processing.

This comprehensive set of steps ensures that the deployment process is not only aligned with the
defined security policies but also takes advantage of confidential computing features provided by
tools like SCONE within a Kubernetes environment. The Kubernetes operator acts as an automated
orchestrator, seamlessly integrating security measures into the deployment workflow.

Page 16 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4.6.1 Metabolomics Integration using Lithops

In the following section, we will briefly describe our technical advancements and activities for the
integration of Lithops used in the Metabolomics use case. The objective is to process the data securely
using Lithops. In order to do so, we need to run Lithops in Trusted Execution Environments such as
Intel SGX.

With two backend execution modes (localhost and serverless), Lithops can run in TEEs through
SCONE, our approach for confidential computate.

We will now describe the efforts undertaken to run such applications in a TEE:
A program that is based on Lithops is typically started up from any client workstation; if its con-

figurations points to localhost backend, it is executed locally, if it is pointed to k8s, i.e. Kubernetes,
is is executed remotely as serverless.

In the Kubernetes-based configuration, Lithops will dispatch a Job with a slice of processing to
be performed on the cluster determined in its configurations. Once reaching there, Kubernetes will
create the jobs and containers with the specifed Docker image, and allocate resources accordingly
to perform the task. At this point, the execution turns to "localhost", hence benefiting from the TEE
available to the cluster. When finished, the result goes back the client.

Two Docker images were prepared to compare the non-confidential execution (Vanilla Lithops)
with the confidential execution (SCONE Lithops) as a Proof Of Concept (POC). The objective was
to analyse the execution time and to spot where bottlenecks arise in confidential execution, adjust
configurations, and to assert whether the execution can be successfully be inspected with privileged
access from within the cluster. SCONE requires a significant larger amount of memory to work.
Confidential computing is characterisitc for its unavoidable tradeoff between performance and con-
fidentiality. A Vanilla Lithops container can work with low setting, such as 20% CPU and 128MB
RAM, and limit itself at this. On the other hand, the SCONE Lithops container had to be modified
to start with 20% CPU and 4GB RAM, up to the limit of 8 CPUs and 8GB RAM. An important envi-
ronment variable that had to be added is SCONE_HEAP=768M, it represents the initial amount of heap
memory to be loaded at the enclave creation time. The system may use more than that during its
execution and all is protected with the help of TEE.

Several other modifications were required to reassure if a dispatched execution would benefit
from SCONE and the TEE properly. SCONE Lithops has to learn it is supposed to use TEE. This is
done by setting the environment variable SCONE_MODE=HW, along with the resource sgx.k8s.io/sgx:
"1", that will tell Kubernetes to provision the device /dev/sgx_enclave to the container. And note
that SCONE_MODE=AUTO is also acceptable.

The POC has three execution configurations, differentiated by backend (localhost and Kubernetes
and synchronization storage (localhost, minIO and Redis): 1) localhost, with localhost and localhost;
2) minIO, with Kubernetes and minIO; and 3) Redis, with Kubernetes and Redis. A benchmark with
28 selected programs from Lithops repository2, consisting of functions and code constructs, such as
map(), reduce(), objects map_reduce(), call_async(), chained map().map().map() etc. was carried
out for the three execution configurations. The client side does not require the usage of TEE; on
the cluster side, the SCONE containers will benefit of the use of TEEs while the Vanilla containers
will not use them at all. The storage system minIO is not covered by SCONE, however, Redis is
covered by SCONE and running with TEE support. For this POC, no TLS network communication
was employed since the objective is to adjust configurations for Lithops containers as mentioned
above. See diagram 5.

The mean execution times are displayed in Table. 6. In localhost backend mode the synchroniza-
tion storage is the local disk itself and it is an onerous activity. Using minIO it can be seen that, for
Vanilla, it stands atop as the longest duration. Redis is the fastest of all, primarily because of its quick
responses due to its in-memory database. Once the execution is started in the cluster, either Vanilla
or SCONE, synchronization storage remains as expected; it is key for good performance.

Confidentiality is maintained in Lithops container, regardless of the backend being localhost or
2https://github.com/lithops-cloud/lithops/tree/master/examples

Page 17 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 5: SCONE Lithops execution.

serverless (please refer to D3.1 XtremeHub first release and documentation, section 6.2 Lithops Experimental
Execution). Attestation in serverless mode is under development. Lithops relies on a dynamically set
environment variable MASTER_POD_IP to be present in container at startup. When attested, any appli-
cation will ignore any environment variable, with the exception of a few SCONE_* that are required
to know where to look for the attestation policies and calculate the enclave measurement. All the
needed environment variables are provisioned by policies upon successfully attested against CAS.
Therefore, to enable attestation, deeper changes are required in Lithops.

Mode Vanilla SCONE
localhost 5.899675 82.570785

minIO 8.205250 44.253588
Redis 4.830252 42.257455

Table 6: Mean execution times (in seconds).

4.6.2 Confidential Identity and Access Manager

A variety of applications in NEARDATA’s stack can be covered by the protection of SCONE-native
mechanisms. Some of them have standalone operations, i.e. attested services processing requests
sent by other attested applications provisioned by the same set of policies configured in CAS. How-
ever, to cover applications with different users with different clearances to access data, which in turn
require different access levels to sources of the information they handle, an auxiliary system can be
employed: Keycloak.

Keycloak is an Identity and Access Manager – IAM that is used by applications to outsource user
management. It provides the setting up of roles a user can have, according to their clearance level
given by their superiors or their role in a particular process. For example, let’s say that user Alice
can submit one Lithops program to process in a confidential Kubernetes cluster; afterwards she will
use Data Broker to forward those results to Bob – and this is exactly what Alice has clearance to do.
An alternate scenario is Alice’s access has been compromised by an adversary impersonating her;
this attacker will do the first step of submitting program to Kubernetes unsuspiciously, but instead
of forwarding results to Bob, the attacker will ship it to another recipient, Charlie instead, in hopes to
corrupt Charlie’s processes somehow or, perhaps worse, propagate spurious data that without other
means of verification will be considered valid [6]. So in this case, despite the communication between
entities are not permitted or even forbidden, without previous verification it goes unchecked to the

Page 18 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

destiny intended by the attacker.

Figure 6: Left: permitted communication. Right: not permitted communication.

The alternate scenario above can be inhibited by the use of a versatile IAM like Keycloak. It is
ported to SCONE, therefore can run in confidential computing mode – CIAM, using the same set of
policies provisioned by CAS to the other applications, hence trustworthy among the entities of the
domain. Alice has only the role "genomics-adenine-analysis", which grants her communication with
Bob. Charlie does not recognize such role as valid, he only accepts to talk to people who have the
role "genomics-thymine-analysis". All the three users are managed by Keycloak and have each of them
the specified roles accordingly to their needs and responsibilities.

The security improved scenario brought by Keycloak can inhibit the last step of the attack. The
Data Broker should be able to filter invalid communication requests, based on the roles the source and
destination matches. Replaying the scenes above, with this new character (Keycloak), in summary,
this is the workflow: 1) Alice will login to Keycloak using her private password and issue an Access
Token – AT containing her roles. 2) Alice will submit the produced payload resulting from Lithops
processing to the Data Broker, with her AT in HTTP header. 3) The Data Broker will check whether
Alice’s roles present in the AT are allowed by the recipient. 4) If so, the Data Broker will request a
Validation Token – VT to Keycloak based on the AT received, if not, the communication is aborted. See
Fig. 7. This setup places another layer of protection on the operations, by establishing a direct who
to whom relation; it is enforced by the parties, especially the submitting one, having to authenticate
themselves with their private user and password in order to consume services. Please refer to the
document "NEARDATA D2.1 Initial Architecture Specifications, A.2.2." concerning Keycloak API.

4.7 Governance and Policy Board

The Data Broker component will ensure secure data access and the orchestration of dispersed data
sources by leveraging TEEs and adopting federated learning architectures, all within a multi-stakeholder
framework. This strategic approach places a strong emphasis on collaboration among multiple stake-
holders, ensuring that each entity retains control over its own data while actively contributing to the
collective improvement of models.

In many applications, multiple stakeholders collectively govern the system. In certain domains,
there is a reluctance to delegate decision-making authority unilaterally to a single entity. For instance,
the power to determine which applications gain access to specific secrets should not rest solely with
a single administrator. Instead, such critical decisions require the involvement of a group composed
of representatives from various stakeholders. This collaborative governance model ensures a bal-

Page 19 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 7: Left: permitted communication. Right: not permitted communication.

anced and inclusive approach, where decisions are made collectively, taking into account the diverse
perspectives and interests of the involved entities. This multistakeholder framework enhances trans-
parency, fairness, and the overall effectiveness of decision-making processes within the application
ecosystem.

The CAS component of the Data Broker facilitates sophisticated governance mechanisms, where
the creation and modification of policies require approval from a designated policy board. This board
may comprise both human members and automated policy checkers, referred to as programs. The
approval process involves the policy board voting through the signing of policy changes. Only when
a sufficient set of signatures is appended to the policy will the creation or modification be accepted,
with the policy explicitly specifying which signatures are deemed sufficient.

Centralization of the declaration of signatories for a policy is possible, allowing governance rules
to be imported from other policies, termed as the import of policy fragments. This functionality
empowers the system to efficiently manage and implement governance rules.

Integrated access control is an inherent feature of each security policy. Within the policy, spec-
ifications are made regarding the individuals or entities authorized to access it. The Data Broker
enhances governance by stipulating the specific stakeholders whose agreement is essential for the
modification of existing policies or the creation of new ones. This ensures a structured and collabo-
rative approach to policy management within NEARDATA.

4.7.1 Access Control

In the context of a Data Broker, any operation on a session description requires explicit permission.
If the entity seeking a specific operation lacks the necessary authorization, the request will be unsuc-
cessful. To manage these permissions, the access_policy keyword is employed, enabling the specifi-
cation of lists of entities permitted to carry out particular operations. The following operations can
be controlled through the access_policy:

Page 20 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

1. Read: Permission to access and read the session description, excluding any confidential infor-
mation generated by the system.

2. Update: Authorization to modify or update the session.

3. Create_sessions: Permission to generate new sessions within the designated namespace of the
current session. If omitted, entities listed under the update operation are automatically granted
the ability to create sessions.

Granting permission to a specific entity for these operations involves the inclusion of their client
certificate public key in the list of authorized entities. The client certificate, containing this key, is
then utilized to establish a secure connection, with TLS ensuring the possession of the corresponding
private key. The system employs key-based authentication, enhancing security and allowing for
certificate renewal without the risk of users being locked out of sessions upon certificate expiration.

The system supports various values for specifying access permissions in addition to public cer-
tificates. These values include:

• Public Key Hash of a Certificate: Calculated using the SCONE CLI, where scone self show dis-
plays the hash of the CLI client identity, and scone cert show-key-hash "path_to_certificate_file_in
_pem _format" shows the key hash for any certificate file.

• CREATOR Keyword: Grants access to the creator of the policy, identified by the public key of
the TLS client certificate used during the session’s creation.

• ANY Keyword: Allows access to any entity. If ANY is specified, no other entries in the list for
that operation are permitted.

• NONE Keyword: Denies all requests for a specific operation. If NONE is specified, no other
entries in the list for that operation are allowed.

• SCONE::secretname Placeholder: Dynamically uses the value of a secret with the given name
(secret-name) during permission evaluation. The replaced value must be either CREATOR (ASCII),
a certificate key hash (ASCII), or a certificate (X.509) as defined above. Explicit secrets, gener-
ated secrets, and imported secrets are supported. When referencing X.509 certificates, specify-
ing a format suffix is not necessary. It will be ignored if the mentioned secret does not exist,
cannot be read, or has an incompatible value. An error message will be shown on unsuccessful
authentication attempts.

• Signer: <public key>: Represents the public key of a session signer. Signing sessions serve as
an alternative to TLS client certificates during session upload. scone self show-session-signing-key
displays the CLI signer identity. The public key is Base58check-encoded (BITCOIN alphabet),
with a version of 10, and the encoded key must be an Ed25519 key.

• Require-all or Require-at-least-X: rules are specifically designed for use with signers in the
context of session creation. These rules acknowledge that a session can be established using
either one TLS client certificate or one or more signatures. Consequently, specifying multiple
certificates simultaneously is not meaningful.

By default, the access policy is defined as follows:

1

2 access_policy:
3 read:
4 - CREATOR
5 update:

Page 21 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

6 - CREATOR
7 create_sessions:
8 <same as update>
9

These versatile options for specifying access permissions provide a comprehensive and flexible ap-
proach to managing and controlling operations on session descriptions within the Data Broker sys-
tem.

4.7.2 Policy Board

In a multi-stakeholder environment, where collaboration involves multiple entities with distinct cre-
dentials, relying on a single credential for controlling access to a session is deemed insufficient. To
address this, the governance system introduces a robust mechanism that enables multi-credential
access control. This is achieved through the use of require-all and require-at-least-X rules.

The governance rules, specifically require-all and require-at-least-X, play a crucial role in the update
and create_sessions access policies within the governance framework. However, it’s important to note
that these rules do not apply to the read access policy. The rules, when used, are designed to be
employed with signers. Even though it is technically possible to specify certificates or certificate key
hashes, it is emphasized that a session can be created using precisely one TLS client certificate or one
or more signatures. Therefore, requiring more than one certificate simultaneously doesn’t align with
the typical session creation process.

1

2 access_policy:
3 read: NONE
4 update:
5 require-at-least-1:
6 - signer: $owner
7 - require-all:
8 - require-at-least-2:
9 - signer: $voter1

10 - signer: $voter2
11 - signer: $voter3
12 - require-all:
13 - signer: $veto_member1
14 - signer: $veto_member2

This configuration enforces governance rules within the updated access policy. Specifically, it re-
quires at least one approval from the $owner. Additionally, it introduces nested require-all rules. The
first nested requirement specifies that at least two out of three voters ($voter1, $voter2, $voter3)
must approve. The second nested require-all ensures that both veto members ($veto_member1,
$veto_member2) must provide their approval.

This example demonstrates a sophisticated governance structure where multiple stakeholders
with different roles must provide their approval for certain operations. It also showcases the flexibil-
ity of the rules, allowing for nested configurations to accommodate complex governance scenarios.

It’s worth noting that this example provides a way for the $owner to overrule all other members,
adding a layer of authority to the governance structure.

Page 22 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5 First Release of the DataBroker

This section describes the components of Data Broker. For the components description, we will use
the Software Design Specification (SDS) standard (IEEE Standard 1016) in order to better describe its
purpose, function and where it sits in the highlever architecture. In particular, this section focuses
exclusively on the components which are control data access and provide security measures within
NEARDATA.

The section commences with an overview of the runtime, progressing to the integration of the
Data Broker with the CAS service. Subsequently, essential CLI tools are introduced for the transfor-
mation of a native application into a confidential ones. A detailed discussion is dedicated to each of
these components. To structure information for every component within the runtime environment,
the document employs the following template. This inclusion ensures the self-containment of the
document.

Identification The unique name for the component and its location in the system
Type A module, a subprogram, a data file, a control procedure, a class, etc.

Purpose
Function and performance requirements implemented by the design component,
including derived requirements. Derived requirements are not explicitly stated
in the SRS, but are implied or adjunct to formally stated SDS requirements.

Function
What the component does, the transformation process, the specific inputs
that are processed, the algorithms that are used, the outputs that are produced,
where the data items are stored, and which data items are modified.

High level
Architecture

The internal structure of the component, its constituents, and the functional
requirements satisfied by each part.

Dependencies

How the component’s function and performance relate to other components.
How this component is used by other components.
The other components that use this component.
Interaction details such as timing, interaction conditions
(such as order of execution and data sharing), and responsibility for creation,
duplication, use, storage,and elimination of components.

Interfaces

Detailed descriptions of all external and internal interfaces as well as of any
mechanisms for communicating through messages, parameters, or common data
areas. All error messages and error codes should be identified. All screen formats,
interactive messages, and other user interface components (originally defined
in the SRS) should be given here.

Data
For the data internal to the component, describe the representation method,
initial values, use, semantics, and format. This information will probably be
recorded in the data dictionary.

Needed
improvement

Description of the needed improvements of this tool with regards the NEARDATA
project, in order to fulfil the user requirements and to build the
runtime environment

Implemented
Improvements
for the First
Release

A description of the implemented improvements in the service to achieve the first
release of the runtime environment.

Release Version
& Repository

The software version released and the repository from where it can be down-
loaded.

Table 7: First Release of the Data Broker

Page 23 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5.1 Data Broker and Security Mechanisms

The security mechanisms and tools presented here offer a range of protective measures to ensure
confidentiality, integrity, and freshness when applied within the context of NEARDATA.

5.1.1 Runtime Security

In this section, we will present the different security measures we implemented in order to run appli-
cations in a secure fashion. In order to achieve this, we follow the confidential computing paradigm
which focuses on the protection of applications. Hence, we require that the mechanisms we imple-
ment protect the application’s:

1. Confidentiality, i.e., no other entity, like a root user, can read the data, the code, or the secrets
of the application in memory, on disk or on the network,

2. Integrity, i.e., no other entity, like the hypervisor, can modify the data, or at least any modifica-
tions are detected in the memory, on disk or on the network, and

3. Consistency, i.e., the application always reads the value that was written last - both in memory
as well as on disk and on the network.

5.1.2 Hardware Support

Currently, there are two classes of hardware support for confidential computing available. The cur-
rent mechanisms can be classified as follows:

• one can encrypt a Virtual Machine (VM) in which the application is executing, and

• one can encrypt each individual service, i.e., process inside of an enclave

One has to be careful regarding the security guarantees because the use of an encrypted VM does
not necessarily mean that a root user of the host does not have access to the VM. For example, in
current AMD CPUs without Secure Nested Pages (SNP), the hypervisor could break the confiden-
tiality and integrity of an application3. Also, the consistency of memory pages is not protected by
AMD CPUs, i.e., one could replace a memory page by an older version: This would properly encrypt
data but would break consistency. However, in Intel SGX enclaves, it is guaranteed that applications
always read the most recent data that was written. Hence, it is important to review the different
guarantees each CPU vendor provides with regards to the desired properties when applying the
confidential compute paradigm.

In the following, we will put a focus on enclaves such as those provided through Intel SGX.
However, we will also discuss our future extension to support vendors other than Intel CPUs such
as AMD, ARM etc.

5.1.3 Encrypted VMs vs. Enclaves

When running applications in untrusted environments such as public clouds, there are usually mul-
tiple stakeholders involved. This includes:

• a host admin that maintains the host Operating System (OS)

• a container/service admin that takes care of the services and the containers.

In the context of an AI application in NEARDATA, an encrypted VM would be used to represent,
e.g., a worker node performing training or inference. The trusted computing base would not only
include the AI application itself but we would also need to trust:

• the operating system and the OS admin and
3https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-

and- more.pdf

Page 24 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

• the container/service admin.

One approach is to execute each container/process in a separate encrypted VM. This would reduce
the size of the trusted computing base (TCB) since the host admin would not be part of the trusted
computing base anymore. However, the container/service admin and the operating system within
the VM and its OS admin would still be part of the TCB.

In contrast to VMs, enclaves permit us to reduce the size of the trusted computing base to the
application/process itself: we can remove all admins and all code outside of the application from the
trusted computing base. Note that our approach will help to protect the files of an AI application and
also the network if needed, i.e., a service admin will only see encrypted files and will not know any
application secrets.

5.1.4 Isolation and Cooperation

The advantage of the enclave-based approach is that one can protect services from each other. A
service has only access to its own enclave and to its files but not to the data/files of other enclaves.

Using encrypted VMs, one would need to run each service in a separate VM with its own op-
erating system which increases the TCB as explained above. This would also increase the resource
usage since each container would come with its own operating system which is also impractical in
the context of edge devices and their limiting processing capacity.

With the help of our CAS as part of the Data Broker, which we will explain more in detail later
in this document, services of an application can cooperate and implicitly attest each other via TLS:
a service can only establish a TLS connection with another service of the application if that service
executes inside of an enclave, its code was not modified and the filesystem is in the correct state. This
is an important property as it ensures that only trusted collaborator nodes in federated learning can
establish connections to the aggregator node and vice versa.

One of the arguments of using encrypted VMs (instead of enclaves) is that it simplifies the pro-
tection of existing applications. In reality, this is of course not that simple since a user

• has to encrypt files of the VM,

• one has to ensure that the VM learns the filesystem encryption key but only if neither the oper-
ating system nor the application was not modified and it is executed in an encrypted VM

• one has to ensure that the service in the different VMs do attest each other, and

• one has to provision secrets etc

Using the enclave-based approach, it is possible to transform existing container images into confi-
dential container images in a single step (as we will explain in the Sconify section below). The SCONE
framework we will use as a foundation in NEARDATA provides furthermore a policy language that
permits to define on how to provision secrets and how to attest applications, i.e., addresses all these
issues using a simple, YAML-based policy shown previously.

5.2 SCONE Overview

In order to use Intel SGX, programmers need to download and install the Intel SGX SDK and extend
their application to use the new instructions. In its original design, the framework creators only
envisioned the use of Intel SGX for secret generation, i.e., that only a single function runs within an
enclave without any further communication to the untrusted outside world. However, running an
entire process in an enclave imposes the following challenges:

1. An application running in an enclave cannot perform any system calls such as writing/read-
ing to/from files or a network socket, etc. If a system call needs to be executed, the enclave
execution must be first paused, the system call is then executed and the application resumed
afterwards inside the enclave. This imposes a huge overhead as applications performing hun-
dreds of system calls per second are constantly.

Page 25 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

2. Applications must be instrumented in order to run in an enclave which comprises allocation of
enclave memory, loading program as well as data code into the enclave memory and launching.
This is a cumbersome task as it requires modifications of all existing applications.

To avoid these cumbersome tasks, we will base our work on SCONE, a framework that transforms
applications in confidential applications without any developer’s effort.

In a nutshell, SCONE consists of a cross-compiler which adds all the necessary instrumentation
as well as starter code etc. to let the process run in an Intel SGX enclave. The following tables list the
advantages of SCONE compared to the use of the Intel SGX SDK.

Features Intel SGX SDK SCONE Platform
SLA: Startup times Slow Efficient startup/attestation
SLA: Scheduling - SLA-based scheduling
SLA: Efficiency Many enclave exits Reduced enclave exits
Security: CVEs CVE handling by application CVEs addressed by platform
Security: policy No policy support Advanced-policy support
Security: platform - Integrated OS and Application Sec.
Security: Side-channel No protection Side-channel protection
Monitoring: SLA - SLA-based monitoring
Monitoring: SGX - SGX-resources & scheduling
Encryption at rest / in transit Source code changes required No source code changes
Encryption at use Source code changes required No source code changes
Attestation Explicit code required Automatic by SCONE
Key Provisioning Explicit code required Automatic by SCONE
CI/CD Integration - Modern IDE
Languages - Modern IDE
Portability Intel SGX-specific (eventually other CPUs)
TCO Higher Lower

Table 8: Intel SGX SDK vs. SCONE

In the following, we will present the different SCONE subcomponents, starting with the runtime
which will be added to the binaries through the cross compiler. We then also present the Sconify tool
which automates many steps such as the cross compilation in order to convert a native application
into a confidential one. The section concludes with the CAS, the Configuration and Attestation ser-
vice which is a service that is used in order to attest services running in enclaves as well as to perform
secret provisioning.

5.2.1 SCONE Runtime

The objective of SCONE is to build and run applications in a confidential environment with the help
of Intel SGX (Software Guard eXtensions). In a nutshell, our objective is to run applications such that
data is always encrypted, i.e., all data at rest, all data on the wire as well as all data in main memory
is encrypted. Even the program code can be encrypted such as the Python code files typically used
for AI-based applications. SCONE helps to protect data, computations and code against attackers
with root access.

The aim of SCONE is to make it as easy as possible to secure existing applications such as Ten-
sorFlow, Pytorch, etc. typically used in the machine learning domain. Hence, switching to SCONE
is simple as applications do not need to be modified. SCONE supports the most popular program-
ming languages like JavaScript, Python - including PyPy, Java, Rust, Go, C, and C++ but also ancient
languages such as Fortran. Avoiding source code changes helps to ensure that applications can later
run on different trusted execution environments. Moreover, there is no risk for hardware lock-in nor
software lock-in - even into SCONE itself. SCONE provides applications with secrets in a secure

Page 26 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Identification SCONE Runtime (SCONE)
Type A service that runs alongside the application.

Purpose
The SCONE runtime ensures that an application runs in a trusted execution
environment. It performs preparation as well as attestation of code and data to
run in an enclave.

Function

The runtime manages the complete deployment of an executable/process in a
so-called enclave and performs the following tasks:
1. creation/allocation of enclave memory
2. loading program code and data into enclave memory
3. performing attestation, i.e., creating measurement over code and data and
4. verifying if this is correct
5. performing configuration of the application
6. provisioning secrets
7. providing network as well as file system encryption/shielding

High level
Architecture

The following image describes the high-level architecture of the SCONE
Runtime, including external dependencies.

The SCONE runtime runs alongside with the actual process, hence it has some start
code to first allocate enclave memory, load the application code and data into the
enclave and then connects to CAS in order to verify if the hash consisting of
application code and data matches the expected measurement (MREnclave). It
furthermore provisions the application with configuration files as well as secrets
such as certificates and keys.

Dependencies
The SCONE runtime requires access to CAS in order to perform attestation as well as
secret provisioning.

Interfaces

The SCONE runtime provides three modes of execution. HW, where the process runs
in a TEE and will abort if the hardware support is not given, SW mode which can be
used for simulation purposes or if only features like network and file system
encryption are needed. The AUTO mode refers to the mode where the executable will
leverage TEE support if available but will run in simulation mode rather than aborting
the process execution. The mode is controlled through environment parameters
when theapplication/process is being launched.

Data
The SCONE runtime uses SCONE policies as well as Environment variables to
configure the application correctly.

Needed
improvement

Support for CPU vendors other than Intel such that the component can run also on
edge devices such as ARM. This will be achieved through compilation using the
SCONE Cross compiler which will be also implicitly used by the SCONE Sconify
CLI Tool.

Implemented
Improvements
for the First
Release

The first release of the SCONE runtime regarding NEARDATA includes the
following improvements:
1. Created first draft/implementation of the network shielding layer
2. Integration with latest version of Data Broker CAS component

Release Version
& Repository

The first release version of the SCONE runtime for NEARDATA can be
downloaded from the Docker registry: https://sconedocs.github.io/registry/

Table 9: SCONE Runtime
Page 27 of 49

https://sconedocs.github.io/registry/

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

fashion. This is typically a problem if one wants to run TensorFlow and configures an AI application
to encrypt its resulting model stored locally. To do so, the Python code requires a key to decrypt and
encrypt its files. This key can be stored in the Python file itself or some configuration file but this
configuration file cannot be encrypted since Python would need a key to decrypt the file. SCONE
helps developers to solve such configuration issues in the following ways:

• secure configuration files - SCONE can transparently decrypt encrypted configuration files,
i.e., without the need to modify the application. It will give access to the plain text only to a
given program, like Python. No source code changes are needed for this to work.

• secure environment variables - SCONE gives applications access to environment variables that
are not visible to anybody else - even users with root access or the operating system. This is
an important feature when considering the Python example from above. The user can pass
passwords via environment variables like MODEL_PASSWORD to the Python process. We
need to protect these environment variables to prevent unauthorized access to the secret and
the model encrypted by this secret.

• secure command line arguments - Some applications might not use environment variables but
command line arguments to pass secrets to the application. SCONE provides a secure way to
pass arguments to an application without other privileged parties, like the operating system,
being able to see the arguments as shown in Figure 8

Figure 8: Program arguments as well as environment variables are provided through CAS.

SCONE verifies that the correct code is running before passing any configuration info to the ap-
plication. To ensure this, SCONE provides a local attestation and configuration service: this service
provides only the code with the correct signature (MrEnclave) with its secrets: certificates, argu-
ments, environment variables and keys. It also provides the application with a certificate that shows
that the application runs inside an enclave as depicted in Figure 9. Note that, this can be done com-
pletely transparently to the application, i.e., no application source code changes are required: the
encrypted certificate can be stored in the file system where the application expects its certificates.
Note that, for debugging and development purposes, an end user can run code inside of enclaves
without attestation.

Page 28 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 9: Example who one entity is being authenticated using TLS.

Two applications can ensure that they run inside enclaves via TLS authentication. In this way,
we can ensure that the client certificate and the server certificate was issued by the SCONE CAS,
i.e., both communication partners run inside of enclaves and have the expected MrEnclave as shown
in Figure 10. We leverage this feature in federated learning to attest if collaborators are legitimate
to communicate with aggregators and vice versa. Hence, our Data Broker component can precisely
control which parties are allowed to establish communication in order to exchange either streaming
data such as Pravega or data stored at rest, e.g. in S3 compatible stores.

Figure 10: Example about how two entities authenticate each other using TLS - mutual authentication

An adversary with root access can read the memory content of any process. In this way, an
adversary can gain access to keys that an application is using, for example, the keys to protect its
data at rest such as the patient data used in the federated learning example. SCONE helps to protect
the main memory:

• no access by adversaries - even those who have root access,

• no access by the operating system - even if compromised,

• no access by the hypervisor - even if compromised,

• no access by the cloud provider, and

• no access by evil maids - despite having physical access to the host.

To provide full protection, encryption keys must be protected as well. However, in many instal-
lations, one does not want humans to be able to see these encryption keys. Hence, one can generate
keys and stores in SCONE CAS. SCONE also supports the integration with keystores like Vault.
SCONE can run Vault inside of an enclave to protect Vaults secrets in main memory.

Page 29 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

For those applications, e.g., memcached or Zookeeper that do not support TLS out of the box,
SCONE can transparently add TLS encryption to TCP connections, i.e., the connections are termi-
nated inside of the enclave. In this way, the plain text is never seen by the operating system or any
adversary as shown in Figure 11. Note that one should not use an external process for TLS termina-
tion such as stunnel.

Figure 11: Example of transparent network encryption. Connections are terminated inside the en-
claves.

SCONE furthermore protects the integrity and confidentiality of files via transparent file pro-
tection. This protection does not require any source code changes. A file can either be integrity-
protected only (i.e., the file is stored in plain text but modifications are detected) or confidentiality-
and integrity-protected (i.e., the file is encrypted and modifications are detected) as shown in Figure
12.

Figure 12: SCONE file system shield - left volume that is encrypted, an integrity protected but not
encrypted volume (middle), right no protection at all.

Page 30 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5.2.2 SCONE Cross Compiler

Identification SCONE Cross Compiler
Type A CLI tool that compiles source code into a confidential application

Purpose

The SCONE cross compiler allows application developers to compile application
source code such that the resulting binary contains additional instructions
to leverage TEEs such as Intel SGX. Besides the additional instructions, it also
adds the starter code needed to copy the application code and data into the
enclave memory as well as launching the enclave.

Function

The cross compiler performs compilation of source code - several
languages are supported as to date:
C
C++
Fortran
Go
Rust
Python*
*The python interpreter is written in C hence, it is compiled with SCONE’s
C cross compiler. Then we use the file system protection shield to protect
the python code itself with regards to confidentiality as well as integrity.
Hence, there is no cross compiler for Python. However, the sconify tool
performs those two steps, i.e., performing the cross compilation as well as
creating the volumes including the encryption of the python source files
such that everything is protected.

High level
Architecture

The cross compiler is a CLI tool, hence it does not interact with other services.

Dependencies

The cross compiler is packaged as a Docker image, hence all dependencies are
included in the Docker image. However, currently the cross compiler supports
only compilation of applications that depend on musl or glibc as libc
implementation.

Interfaces The cross compiler is launched like a regular compiler on the command line.
Data No date required.

Needed
improvement

As a next step, we plan to integrate support for other CPU vendors such as ARM.
The analysis of our current code base reveals that several functions were written
in Assembly which must be ported to ARM. An alternative is to replace those
code parts with less performant implementation based on C where applicable.
Furthermore, the build pipeline must be adjusted.

Table 10: SCONE Cross Compiler

SCONE supports running applications written in common programming languages inside of Intel
SGX enclaves without source code changes. These languages include compiled languages like C,
Rust, C++, GO, and Fortran and interpreted / just-in-time languages like Python and Java. For
compiled languages, our recommend approach to run an application with SCONE is as follows:

• Use of precompiled binary: For many common applications like nginx and memcached, we
already support a curated image image on registry.scontain.com.

• Cross-compile: developers can cross-compile applications with the help of the SCONE cross-
compilers

• No Cross-Compilation: users can run native Alpine-Linux applications inside of enclaves with-
out recompilation.

Page 31 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

While SCONE supports the execution of programs without recompilations for Alpine Linux, the
recommended approach is to always cross-compile: To benefit from SCONE’s functionality, the inter-
face to the operating system needs to be replaced, i.e., libc. Hence, this requires not only to provide
the same version of libc but also to ensure that all bits are represented in the same way as in the
native libc. This is difficult to achieve and better left to the compiler. For stability, the recommended
approach is to cross-compile as the compiler checks that all the dependencies have the matching ver-
sions, all data types are bit compatible and includes the correct libraries statically in the binary. In
this way, an application will have a unique and known MrEnclave.

Page 32 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Identification SCONE Sconify Tool

Type
A CLI tool that turns a native Docker image into a confidential image
that uses the SCONE runtime

Purpose

The SCONE sconify tool modifies existing Docker
images in such a way that the applications processes launched
inside the container/image will utilize the SCONE runtime,
i.e., can run in enclaves and hence benefit from TEE support.

Function

The sconify tool re-links the SCONE libc.
However, several constraints must be first
met which the tool tries to do automatically:
. all executables must be compiled with the PIE option
(position independent code)
. original images must be either musl or glibc-based
. language support is enforced by the tool: C, C++, Python, Java, Go and Node.js
. Go support is currently limited to binaries compiled with gcc-go (this
must be detected as well)
. for Node.js, the tool replaces the Node.js interpreter with the one of the
SCONE curated Node.js (for other interpreter, such as Python
we sconify the original interpreter)
Additional steps the tool performs:
. It determines which libs the application relies on. Since the tool is built with
dlopen=1, sconify has a few default places it includes automatically, such as
usrlib, lib, etc.
. Encryption of the file system, i.e. for every file needed by the application
automatic detection of shared dependencies in order to copy them over
Last step - Manifest generation:
. generation of Dockerfiles for the target image
. generation of SCONE policies and submitting them to an attested CAS
. generation of helm charts for the application

High level
Architecture

The sconify tool is a CLI tool, hence it does not interact with other services.

Dependencies
The sconify tool is packaged as a Docker image,
hence all dependencies are included in the Docker image.

Interfaces
The sconify tool is launched like a regular
CLI tool on the command line.

Data No data required.

Needed im-
provement

Extend support for Go-compiled programs and
libc implementations other than GLibc and musl.

Table 11: SCONE Sconify Tool

Page 33 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5.2.3 SCONE CAS (Configuration & Attestation Service

Identification SCONE CAS (CAS)

Type
A service that provides remote attestation as well as configuration and
secret provisioning for confidential applications.

Purpose
The SCONE CAS can be envisioned as a database and REST-based service
that contains secrets as well as provides several services such as code attestation
and secret provisioning.

Function

The CAS performs the following tasks:
. code attestation - local or remote
. configuration provisioning
. management of SCONE policies
. perform configuration of the target application

High level
Architecture

CAS (the Configuration and Attestation Service) will be contacted by an
application during the launch procedure in order to verify if the hash consisting of

application

code and data matches the expected measurement (MREnclave). It furthermore
provisions the application with configuration files as well as secrets such as
certificates and keys.

Dependencies
CAS (the Configuration and Attestation Service) needs to be able to establish a
connection to the Intel Attestation Service (IAS)
in order to verify its own legitimacy.

Interfaces
CAS provides a restful interface (REST) for the management of SCONE sessions,
i.e., the configuration of applications.

Data CAS uses SCONE policies/sessions provided in YAML syntax.

Needed im-
provement

Recompilation/redistribution with ARM, etc. support once the SCONE
cross compiler supports it.

Table 12: SCONE CAS (Configuration Attestation Service)

In the following, we will provide more details about Data Broker functionality as well as its guaran-
tees it provides with regards to security. First we quickly present the purpose of CAS followed by
the different functionalities such as key generation and management, and access control.

Data Broker integrates with SCONE CAS manages the secrets - in particular, the keys - of an ap-
plication. The application is in complete control of the secrets: only services given explicit permission
by the application’s policy get access to keys, encrypted data, encrypted code and policies.

Key generation. SCONE CAS can generate keys on behalf of an application. The generation
is performed inside of a trusted execution environment. Access to keys is controlled by a security
policy controlled by the application. Neither root users nor SCONE CAS admins can access the keys
nor the security policies. So far, SCONE CAS runs inside of SGX enclaves.

Isolation. Users can run their own instances of SCONE CAS, i.e., one can isolate the secrets of
different users and the secrets of different applications.

Page 34 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Secure key and configuration provisioning without the need to change the source code of ap-
plications: secrets, keys, and configuration parameters are securely provisioned via command line
arguments, environment variables and via transparently encrypted files.

Access control. To modify or read a policy, a client needs to prove, via TLS, that it knows the
private key belonging to a public key specified in the policy. SCONE CAS grants - without any
exception - only such clients access to this policy. The client’s access to a private key is typically also
controlled by a policy - possibly, even the same policy. Note that, only after a successful attestation,
a client can get access to its private keys.

Management. The management of SCONE CAS can be delegated to a third party. The confi-
dentiality and integrity of the policies and their secrets are ensured by CAS itself. Since the entity
creating a policy has complete control over who can read or modify this policy, no admin managing
the CAS can overwrite the application’s access control to a policy.

Encrypted Code. One can create images with encrypted Python code or Java or JavaScript or C#
or any other JIT or interpreted code on a trusted host. Alternatively, this code could als be generated
inside of an enclave. One can transparently attest and decrypt the code inside of an enclave. This can
be done without the need to change the Python engine or the Java etc. virtual machine. Note that,
SCONE CAS attests both the Python engine as well as the Python code.

5.3 Network Security

In this section, we will briefly present the network shield, a software layer integrated into the SCONE
runtime and used by our Data Broker, to (a) transparently apply end-to-end encryption to connec-
tions established by protected services, preserving confidentiality and integrity of data on the net-
work, (b) mutually authenticate endpoints while taking remote attestation into account to ensure
that they run an unmodified software in a secure environment, and (c) filter connections according to
user-supplied communication authorization rules to prevent leaking data to unauthorized entities.

Our design and implementation is based on standard protocols such as TLS, which we integrate
by intercepting and reprocessing I/O system calls issued by the service application. We furthermore
provide a X.509 v3 public key infrastructure to couple authentication with the software attestation
and secret provisioning capabilities of the Configuration and Attestation Service (CAS) and we plan
to extend the CAS’ configuration interface to allow granting network access permissions on the basis
of individual ports, including the ability to authorize communication with external services or legacy
clients. For applications such as nginx or Apache httpd, our implementation based on mbedtls 4

achieves 76% to 100% of the throughput of application-provided TLS for persistent connections at a
very small latency increase.

Most protected application services running inside an enclave will need to securely exchange
data with other services in order to operate. We propose a system revolving around transparent
encryption to ensure the confidentiality and integrity of a service’s network communication, while
simultaneously enforcing controlled access by mutually authenticating authorized remote services.
The transparent encryption system will be implemented as part of the SCONE runtime. An overview
of the system’s control flow is shown in Figure 13 .

4https://github.com/ARMmbed/mbedtls

Page 35 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 13: Control flow of transparent encryption system operations.

1. The runtime’s configuration is provisioned by CAS - currently through environment variables.
This includes an initial configuration phase and subsequent, periodic updates. The configu-
ration contains information that allows the service to identify itself to remote services, that
determine the mode of operation (protected, unprotected, opportunistic or refuse based on
network addresses of either local or remote peer and information to authenticate authorized
remote services).

2. System calls related to network communication issued by the runtime-enabled application run-
ning inside the enclave (subsequently referred to as “protected application” or just “applica-
tion”) will be intercepted using the SCONE runtime’s capabilities before they are handled by
the kernel.

3. The arguments of intercepted system calls will be preprocessed, without imposing additional
requirements on the protected application. The Network Shield is API-preserving and thread-
safe, as the system call interface must always be thread-safe. Preprocessing may involve access
control mechanisms or payload encryption. It may use previously received configuration en-
tries.

4. 4a) If preprocessing succeeds, the system call will be forwarded with modified arguments to
the untrusted OS kernel.

(4b) If preprocessing fails, the system call will be rejected instead. System calls whose argu-
ments pose a risk of leaking confidential information or are incompatible with the system’s
implementation are subject to rejection.

5. The OS kernel will (potentially asynchronously) exchange data with the network based on the
previously issued system calls.

6. The kernel propagates the system call result back to the SCONE runtime.

7. The received result will be post-processed. This may involve validation or payload decryption.
Post- processing may also use the runtime’s configuration.

8. The postprocessed system call result or rejection error code from (4b) is propagated back to the
protected application.

Now that we have established how the network shield’s transparent encryption system is able to
process system calls, we can use this as a building block to define how socket-based communication

Page 36 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

can be protected. To achieve our data confidentiality and integrity goals, we require an authenticated
encryption scheme. Additionally, service enclaves must authenticate each other to prevent any unau-
thorized accesses. For this purpose, we use TLS, which offers a standardized and well-researched
protocol solution for both problems.

We utilize its X.509v3 certificate support for mutual authentication. Once a protected server ap-
plication opens a listening socket, the network shield will transparently start a TLS server in its place.
When a client connects, a TLS handshake will be performed to authenticate the client and setup an
encrypted session. Connections from unauthorized clients will be terminated immediately, prior to
being able to interface with the protected application. Data sent by the server to authorized clients
will be encrypted as part of the preprocessing before being forwarded to the untrusted OS kernel,
and data received will be decrypted before being provided to the application. A client socket will
behave similarly, starting a TLS client which connects to the remote TLS server instead.

This approach works well for sockets of stream- and connection-oriented network protocols such
as TCP, but it is not applicable to sockets of message-oriented connectionless protocols like UDP.
While our primary focus lies on TCP as the network protocol most commonly used in service inter-
actions, we propose a modified version of the shield for the second use case, using DTLS in place of
TLS and grouping sent and received messages into virtual connections protected by a single DTLS
session based on network address and timing information.

TLS session configuration shall follow cryptography best practices, such as using strong, non-
deprecated cipher suites with a security level of at least 128 bit, providing forward secrecy by the use
of Elliptic—curve Diffie-Hellman Ephemeral (ECDHE) key exchanges and disabling features known
to cause adverse effects on security (such as TLS compression or insecure renegotiation).

Page 37 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

6 Performance Evaluation

In this chapter, we will present various performance evaluations we executed in order to assess the
overhead introduced through our approach.

The federated learning example is executed within SGX enclaves using SCONE’s network shield,
which is set using the Data Broker’s CAS component.

We assess the performance of the confidential federated learning application by analysing the
impact of SCONE’s network shield, configured through the Data Broker’s CAS component, on exe-
cution time. We compare this with both the Vanilla (Intel/Non-SGX) environment and the SCONE
(Intel SGX/hardware mode) setup, with a particular focus on the execution time of federated learn-
ing. Furthermore, we evaluate the effects of optimizations on the startup latency of functions within
the FL application architecture (refer D5.1 First release of KPI benchmarks in all use cases and data
connector libraries).

Furthermore, we will present the runtime-related performance results followed by an evaluation
of the network shield we introduced in NEARDATA.

6.1 Runtime Security

In this section, we present the evaluation results of SCONE applied to TensorFlow based on both
micro-benchmarks and macro benchmarks with a real-world deployment.

6.1.1 Experimental Setup

Cluster setup. We used three servers with SGXv1 support running Ubuntu Linux with a 4.4.0 Linux
kernel,equipped with an Intel© Xeon© CPU E3-1280 v6 at 3.90GHz with 32 KB L1, 256 KB L2, and
8 MB L3 caches, and 64 GB main memory. These machines are connected using a 1 Gb/s switched
network. The CPUs update the latest microcode patch level.

In addition, we used a Fujitsu ESPRIMO P957/E90+ desktop machine with an Intel© core i7-6700
CPU with 4 cores at 3.40GHz and 8 hyper-threads (2 per core). Each core has a private 32KB L1 cache
and a 256KB L2 cache while all cores share an 8MB L3 cache. Datasets. We used two real world
datasets: (i) Cifar-10 image dataset [29] and (ii) MNIST handwritten digit dataset [30]:

• Cifar-10: This dataset contains a labeled subset of a much larger set of small pictures of size
32x32 pixels collected from the Internet. It contains a total of 60,000 pictures. Each picture be-
longs to one of ten classes, which are evenly distributed, making a total of 6,000 images per
class. All labels were manually set by human labelers. Cifar-10 has the distinct advantage
that a reasonably good model can be trained in a relatively short time. The set is freely avail-
able for research purposes and has been extensively used for benchmarking machine learning
techniques [31, 32].

• MNIST: The MNIST handwritten digit dataset[31] consists of 60000 28 pixel images for training,
and 10000 examples for testing.

6.1.2 Methodology

Before the actual measurements, we warmed up the machine by running at full load with IO-heavy
operations that require swapping of EPC pages. We performed measurements for classification and
training both with and without the file system shield. For full end-to-end protection, the file system
shield was required. We evaluate TensorFlow with two modes: (i) hardware mode (HW) which runs
with activated TEE hardware and (ii) simulation mode (SIM) which runs with simulation without
Intel SGX hardware activated. We make use of this SIM mode during the evaluation to evaluate the
performance overhead of the Intel SGX and to evaluate TensorFlow when the EPC size is getting
large enough in the future CPU hardware devices.

6.1.3 Micro-benchmark: Remote Attestation and Keys Management

In TensorFlow, we need to securely transfer certificates and keys to encrypt/decrypt the input data,
models and communication among worker nodes (in a distributed training process). To achieve this

Page 38 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 14: The attestation and keys transferring latency comparison between TensorFlow with the
traditional way using IAS.

security goal, we make use of the SCONE CAS component which attests TensorFlow processes run-
ning inside enclaves, before it transparently provides the keys and certificates to encrypt/decrypt
input data, models, and TLS communications. Note that the advantage of using CAS over the tradi-
tional way using IAS (Intel Attestation Service) to perform attestation is that the CAS component is
deployed on the local cluster where we deploy TensorFlow.

Figure 14 shows the break-down latency in attestation and keys transferring of our component
CAS and the method using IAS. The quote verification process in our CAS takes less than 1ms,
whereas in the IAS-based method is 280ms. In total, our attestation using CAS (17ms) is roughly
19× faster than the traditional attestation using IAS (325ms). This is because the attestation using
IAS requires providing and verifying the measured information contained in the quotes [30] which
needs several WAN communications to the IAS service.

6.1.4 Macro-benchmark: Inference Classification Process

We evaluate the performance of TensorFlow in SCONE in real-world deployments. We present the
evaluation results of TensorFlow in detecting objects in images and classifying images using pre-
trained deep learning models. Thereafter, in the next section, we report the performance results of
TensorFlow in training deep learning models. In the first experiment, we analyze the latency of
TensorFlow in Sim mode and HW mode, and make a comparison with native versions using glibc
and musl libc (i.e., running TensorFlow Lite with Ubuntu and Alpine linux) and a system provided by
Intel using Graphene [23]. Graphene is an open-source SGX implementation of the original Graphene
library OS. It follows a similar principle to Haven [33], by running a complete library OS inside of
SGX enclaves. Similar to SCONE, Graphene offers developers the option to run their applications
with Intel SGX without requiring code modifications. All evaluated systems except the Graphene-
based system run inside a Docker container.

To have a fair comparison, the evaluated systems run with single thread because of the current
version of the Graphene-based system does not support multiple threads, i.e., to run the classification
process, we use the same input arguments for the classification command line:

Models. For classifying images, we use several pre-trained deep learning models with different
sizes including Inception v3 [34] with the size of 91MB, Inception-v4 [35] with the size of 163MB and
Densenet [36] with the size of 42MB. We manually checked the correctness of a single classification
by classifying the image with the TensorFlow label_image application involving no self-written code
and running directly on the host without containerization. We later compared the results to the
ones provided by TensorFlow and other evaluated systems, we could confirm that indeed the same
classifying result was produced by the evaluated systems.

Page 39 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 15: Comparison between TensorFlow, native versions and the state-of-the-art Graphene sys-
tem in terms of latency with different model sizes.

6.1.5 Effect of input model sizes.

Figure 15 shows the latency comparison between TensorFlow with Sim andHW mode, native Tensor-
Flow Lite with glibc, native TensorFlow Lite with musl libc, and Graphene-based system. TensorFlow
with Sim mode incurs only 5% overhead compared to the native versions with different model sizes
which is below the promised overhead concerning the KPIs (<30%). In addition, TensorFlow with
Sim mode achieves a latency 1.39×, 1.14×, and 1.12× lower than TensorFlow with HW mode with
the model size of 42MB, 91MB, and 162MB, respectively. This means that operations in the libc of
TensorFlow introduce a lightweight overhead.

This is because TensorFlow handles certain system calls inside the enclave and does not need to
exit to the kernel. In the Sim mode, the execution is not performed inside hardware SGX enclaves,
but TensorFlow still handles some system calls in userspace, which can positively affect performance.
We perform an analysis using strace tool to confirm that some of the most costly system calls of
TensorFlow are indeed system calls that are handled internally by the SCONE runtime.

Interestingly, the native TensorFlow Lite running with glibc is the same or slightly faster com-
pared to the version with musl libc. The reason for this is that both C libraries excel in different areas,
but glibc has the edge over musl in most areas, according to microbenchmarks, because glibc is tai-
lored for performance, whereas musl is geared towards small size. Because of this difference in goals,
an application may be faster with musl or glibc, depending on the performance bottlenecks that limit
the application. Differences in the performance of both C libraries must therefore be expected.

In comparison to Graphene-based-system, TensorFlow with HW mode is faster in general, and
also faster than the Graphene-based-system when we increase the size of input models, especially
when it exceeds the limit of the Intel SGX EPC size (94MB). In particular, with the model size of
42MB, TensorFlow with HW mode is only 1.03× faster compared to Graphene-based system, how-
ever, with the model size of 163MB, TensorFlow with HW mode is 1.4× compared to Graphene-based
system.

The reason for this is that when the application allocates memory size larger than the EPC size
limit, the performance of reads and writes is severely degraded because it performs encrypting data
and paging operations which are very costly. To reduce this overhead, we reduce the size of our li-
braries loaded into SGX enclaves. Instead of adding the whole OS libc into SGX enclaves as Graphene
did, we make use of SCONE libc variant which is a modification of musl libc having much smaller
size. In SCONE, system calls are not executed directly but instead are forwarded to the outside of an
enclave via the asynchronous system call interface.

This interface together with the user level scheduling allows TensorFlow to mask system call
latency by switching to other application threads. Thus, we expect this speedup factor of TensorFlow
compared to Graphene-based-system will increase more when the size of the input model size is
increased and when the application runs with multiple threads.

Page 40 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 16: The effect of file system shield on the classification latency with different model sizes.

6.1.6 Effect of file system shield.

One of the real world use cases of TensorFlow is that a user not only wants to acquire classifying
results but also wants to ensure the confidentiality of the input images since they may contain sensi-
tive information, e.g., handwritten document images or concerning the federated learning use case,
sensitive patient data. At the same time, the user wants to protect her/his machine learning models
since he/she had to spend a lot of time and cost to train the models. To achieve this level of secu-
rity, the user activates the file system shield of TensorFlow which allows he/she to encrypt the input
including images and models and decrypt and process them within an SGX enclave.

In this experiment, we evaluate the effect of this file system shield on the overall performance of
TensorFlow. As previous experiments, we use the same input Cifar-10 images. Figure 16 shows the
latency of TensorFlow when running with/without activating the file system shield with different
models.

The file system shield incurs significantly small overhead on the performance of the classifica-
tion process. TensorFlow with Sim mode running with the file system shield is 0.12% slower than
TensorFlow with Sim mode running without the file system shield. Whereas in the TensorFlow with
HW mode, the overhead is 0.9%. The lightweight overhead comes from the fact that our file system
shield uses Intel-CPU-specific hardware instructions to perform cryptographic operations and these
instructions can reach a throughput of up to 4 GB/s, while the model is about 163 MB in size. This
leads to a negligible overhead on the startup of the application only.

6.1.7 Continuous Runtime Benchmarks

The runtime security of SCONE is furthermore continuously evaluated using several standard bench-
marks such as TPC-C benchmark and MariaDB) where its native performance is compared with
when running in Intel SGX enclaves using SCONE. The average performance over the last three
month revealed that we can achieve 4500 Tpmc vs. 6618.000 TpmC when running without SCONE.

6.2 Network Shield Evaluation

In this section, we present the results of both performance and functionality evaluation for our net-
work shielding implementation. Real-world software service deployments often involve multiple
stages of interconnected servers (e.g., application and database servers), whose data transfers must
be protected.

We first present the results of latency and throughput performance benchmarks, using the well-
known web servers nginx and Apache httpd as example applications. This analysis is relevant for
AI applications whenever inference or federated learning are performed through TCP connections
in distribution. After establishing a baseline by executing the servers both natively and using un-
shielded SCONE, we observe the impact of enabling the Network Shield for connections between
them. For the experiments, we solely run in simulation mode as we only want to measure the impact
of the shield itself. We show that using the AES-GCM implementation built into mbedtls incurs a
heavy performance penalty, which can be largely mitigated by the help of the optimized replace-
ment implementation. In particular, we compare the overhead of the network shield to the one of

Page 41 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 17: General evaluation benchmark setup.

application-provided OpenSSL-based TLS encryption, revealing that the Network Shield can achieve
up to 76% of the latter’s throughput in the case of nginx and 93% in the case of Apache httpd which
is representative considering that collaborative learning application described in Section 2 involved
data exchange through https channels.

Most of the time it is possible to use persistent connections between servers, which has been
reflected by the prior setup. However, when interacting with external servers, this may not be feasible
or desirable (in the case of infrequent use). Therefore, we also analyze the performance impact of
handling non-persistent connections. The results show a decreased throughput when compared to
persistent connections, which we can trace to the overhead introduced by repeated TLS handshakes.
In this case, the network shield achieves only 17% to 24% of OpenSSL’s throughput. We determine
an inefficient implementation of asymmetric cryptography in mbedtls as the root cause and propose
several options to reduce its performance impact. Additionally, we explore the influence of the I/O
pattern changes caused by transparent TLS handshakes on resource usage. It is observed that, by
default, they can cause a severe increase in CPU usage for applications employing asynchronous I/O
event loops, such as nginx. We demonstrate that this can be averted by applying the asynchronous
I/O event remapping mechanism which we are currently implementing.

6.2.1 Benchmark Setup

The setup of the benchmark is composed of a backend web server, a load generator acting as a client
and a proxy web server located in between, as shown in Figure 5.4. This setup mimics real-world
multi-stage deployments while simplifying the architecture to ease the experimentation. All compo-
nents are started within Docker containers, which use the host network. The client always connects to
the proxy server using HTTP. The connection between proxy and backend server uses HTTP, HTTPS
with TLS being performed by the OpenSSL library configured through the web servers themselves
or HTTP/HTTPS on top of the network shield using the mbedtls library, depending on the test case.
We make use of wrk25 as a high-performance load generator and measurement tool. wrk2 produces
a constant-throughput stream of requests and avoids coordinated omission effects through the use
of HdrHistograms. As a result, we expect a spike in latency once the servers’ saturation points are
reached.

Comparisons to multi-host setups have shown that the network becomes the primary bottleneck.
Consequently, we chose to conduct the experiments on a single host running all three components.
We used a machine with a 6-core Intel Xeon E-2186G CPU @3.80 GHz and 32 GB of DRAM. The
host runs Ubuntu 20.04 with 64-bit Linux kernel 5.4.0. We use Docker version 20.10.1 and containers
based on Alpine Linux 3.7 and 3.8. To increase benchmark consistency, we disabled Hyperthreading,
enabled the Linux performance CPU governor, pinned both server and client processes to individ-
ual CPU cores using CPU affinity masks and favoured their execution by using a nice value of 10
to increase the processes’ scheduling priority. The web servers are operated with a minimal con-

Page 42 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

figuration. When using built-in HTTPS, the usage of the same cipher suites and elliptic curves as
designated by the Network Shield (ECDHE-ECDSA-AES256-GCM-SHA384 and secp384r1) has been
enforced and a similar certificate hierarchy has been deployed that contains 5 certificates, deviating
only in key pairs and certificate common names. These certificate differences are unavoidable since
SCONE benchmarks use regular CAS operations to provision freshly generated keys and certificates.
Note, however, that no client authentication was performed when utilizing built-in HTTPS, as the
web server implementations were unable to authenticate clients sending a multi-level client certifi-
cate hierarchy successfully. The network shield, on the other hand, performs client authentication.

SCONE will be enabled for the backend and proxy servers, wrk2 on the other hand will always be
executed natively. SCONE will be executed in simulation mode (sim) which does not use Intel SGX
enclaves, it rather performs all of SCONE’s operations in a normal process environment. SCONE
configuration is provisioned by a CAS instance allocated for each benchmark run, backend and proxy
server configuration reside within the same CAS session. Different session configurations will be
used, depending on the type of benchmark.

6.2.2 nginx Throughput/Latency Benchmark

We use Docker containers based on a single-threaded nginx 1.14.2 as instances of the backend and
proxy server introduced in the general setup. poll is used as the asynchronous event loop method;
other methods have shown to yield similar results.

wrk2 is configured to use 1 thread and 10 connections, which are sufficient to fully saturate the
servers. All connections are marked as keep-alive connections, i.e., the following measurements do
not show any connection establishment overhead, as the same connections will be re-used for the
entirety of the experiments. We perform benchmarks by continuously issuing requests to retrieve a
static payload, hosted at the backend server, over the proxy server to the wrk2 client, increasing the
constant-throughput rate every 60 seconds. We record the system’s behavior for two different pay-
loads. We observed an inconsistent achievable maximum throughput between backend and proxy
server restarts for all configurations (including native execution). In order to present consistent re-
sults, we repeatedly probed different server instances and subsequently chose one which yielded
results in the top 20automated fashion.

6.2.3 Baseline

The first benchmark uses a 64 KiB randomly generated binary file as its static payload. We mea-
sure the latency/throughput while increasing the induced request rate for each recorded data point.
Figure 5.5 shows the experiment’s baseline, using either HTTP or HTTPS (with TLS performed by
OpenSSL) connections between the backend and proxy servers, when executing the servers natively
(i.e., without SCONE) and with SCONE (unshielded, i.e., without activating the Network Shield).
For native HTTP and HTTPS we observe a mostly stable latency, averaging 1.25ms and 1.24ms per
request respectively, until the servers’ saturation points are reached, which happens at 33,400req/s
for HTTP and 17,500req/s for HTTPS, at which point the latency spikes. We defined the cutoff to
be one second. Enabling SCONE naturally entails an overhead as system calls will be filtered, pro-
cessed and exchanged between enclave and kernel using dedicated system call threads (s-threads).
This overhead is more severe in hardware mode, where Intel SGX enclave memory limitations ap-
ply. Having SCONE enabled in hardware mode worsens the achievable maximum throughput rate
to 20,900req/s for HTTP and 12,300req/s for HTTPS. The latency is slightly higher, at an average
of 1.75ms (HTTP) and 1.88ms (HTTPS) considering throughput rates between 2500req/s and their
respective saturation points. At lower rates, notably 500req/s, 1000req/s and 2000 req/s, the latency
experienced with SCONE servers is higher than the average – up to 4.1ms. This is most likely caused
by the behavior of s- threads, which tend to enter longer sleep periods upon low rates, although the
exception of the regular low latency at a rate of 1500req/s remains unclear. As the throughput rate
increases towards its maximum, the latency of SCONE configurations gradually decreases, getting
closer to native latency.

Page 43 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 18: Network Shield latency/throughput development for native and unshielded SCONE
HTTP(S) configurations.

6.2.4 Network Shield Overhead

The network shield features different modes of operation – we evaluate both unprotected mode
(which does not feature any filtering or encryption, i.e., should be equal to unshielded execution)
and protected mode (which enables mbedtls-based TLS encryption, i.e., should show some over-
head). Figure 19 shows the benchmark results for both modes. We also observe the limitations of the
AES-GCM implementation built into mbedtls and compare its performance to the optimized alter-
native we investigated.

As expected, unprotected mode yields the same performance, both latency- and throughput-wise,
as the unshielded configuration seen in the previous graph. Enabling the shield’s protected mode
using the AES- GCM implementation built into mbedtls shows a substantial performance loss: Only
1500req/s remain of the previously unshielded 20,900req/s, reducing throughput by almost 93%
. Using the optimized Intel AES-GCM implementation, on the other hand, the network shield’s
protected mode is able to achieve up to 9350req/s. While this still exhibits a higher overhead than
unshielded HTTPS (using OpenSSL) at 76% of the latter’s maximum rate, it shows a considerable
improvement over the implementation provided by mbedtls by default. At an average of 2.15ms, the
shield’s latency is also higher than the 1.88ms exhibited by the OpenSSL-using variant.

To show that the throughput discrepancy is still largely dominated by the implementation of
mbedtls(including the replacement AES-GCM implementation), we repeat the experiment with a
modified version of the network shield, which features exactly the same code paths as the prior pro-
tected mode, but replaces the calls to the mbedtls library (mbedtls_ssl_read and mbedtls_ssl_write)
with their underlying Basic Input/Output (BIO) callbacks (network_shield_mbedtls_unshielded_recv
and network_shield_mbedtls_unshielded_send), skipping the encryption and decryption provided
by mbedtls.

This is shown as the "protected/no TLS" curve in the same graph. Doing so yields a maxi-
mum throughput rate of 20,200req/s, which is 96.7% of the same value for unshielded HTTP, at
similar latencies. The remaining overhead, imposed by the network shield’s system call filtering
and re-writing, is therefore much lower than the discrepancy between unshielded HTTPS (utilizing
OpenSSL integrated into nginx) and protected HTTP (utilizing mbedtls).

Page 44 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 19: Network Shield latency/throughput development for unprotected and protected environ-
ment.

7 Summary & Conclusions

This document presents the first iteration and release of the Data Broker we developed within the
NEARDATA platform. It covers the effort of the initial twelve months which involves the formula-
tion of policies to address various security threats and attacks targeting Extreme Data applications.
The document outlines the mechanisms and security tools we have created to improve the security
of applications running within NEARDATA. In order to run NEARDATA applications in Trusted Ex-
ecution Environments, we utilized and extended the following technologies: The SCONE runtime,
cross compiler, sconify image tool, and the Configuration and Attestation Service (CAS). Each of
these components are described in detail, including its specific functionality and its location within
the provided use cases such as the federated learning and the Data Hub Metabolomics application.
Additionally, the document highlights the efforts made to ensure secure network communications,
covering edge communication and communication within cloud environments through transparent
encryption provided by the SCONE network shield.

With the release of this deliverable, we have achieved the third objective of NEARDATA, which
is to establish a Data Broker service that enables secure and reliable exchange of data and coordi-
nation of data pipelines across the Compute Continuum. To ensure the security and reliability of
the data, we have furthermore extended applications such as federated learning to run in Trusted
Execution Environments (TEEs). We have also implemented methods for transparent encryption to
ensure the security of data during transmission and storage. These mechanisms are designed to en-
sure high throughput and do not require any modifications to the existing code. We also integrated
Keycloak (an open-source identity and access manager) into Lithops to manage user authentication
and policies. This serves as Identity Provider within the Data Broker’s architecture.

A summary of the KPIs for Data Broker components is illustrated in Table 13
We are currently working on integrating SCONE and Lithops to showcase the Data Broker (CAS)

functionality for future development. In the future, we plan to expand on SCONTAIN’s efforts in
developing a fault-tolerant TPM-based CAS. During the architectural design phase, we will incorpo-
rate Intel TDX, AMD SEV, and ARM CCA at the virtual machine (VM) level instead of the process

Page 45 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Use-case KPI Results
Surgery KPI-4 We achieved the Key Performance Indicator (KPI) by the following measures we have taken:

• Examine how security such as confidentiality and integrity can be provided for applications such
as federated learning by harnessing technologies such as Trusted Execution Environments (TEEs).

• Assessing the performance degradation of the confidential federated learning application by
analysing the impact of the network shield, configured through the Data Broker’s CAS compo-
nent, on execution time. Comparing the impact to both, the Vanilla (Intel/Non-SGX) environment
and the SCONE (Intel SGX/hardware mode) setup, with a particular focuses on the execution time
of the federated learning use case.

• Assessing the impact on the initial start up and response time of functions in the federated learn-
ing application frameworks such as Flower.

Metabolomics KPI-4 We have integrated Confidential Compute Layer component of the Data Broker into Lithops and tested
its early usage on an on-premise K8s cluster

Table 13: Highlights of main KPIs achieved by the Data Broker.

level. Additionally, we will enhance the network shield to attest also the communication partners.

Page 46 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

References

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated learn-
ing: Strategies for improving communication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[2] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),” A Practical
Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 308–318, 2016.

[4] V. Mugunthan, A. Peraire-Bueno, and L. Kagal, “Privacyfl: A simulator for privacy-preserving
and secure federated learning,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pp. 3085–3092, 2020.

[5] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks to {Byzantine-Robust}
federated learning,” in 29th USENIX security symposium (USENIX Security 20), pp. 1605–1622,
2020.

[6] C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-tolerant sgd by inner
product manipulation,” in Uncertainty in Artificial Intelligence, pp. 261–270, PMLR, 2020.

[7] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer, “Tensorscone: A secure
tensorflow framework using intel sgx,” arXiv preprint arXiv:1902.04413, 2019.

[8] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bhatotia, and C. Fetzer, “Securetf: A secure ten-
sorflow framework,” in Proceedings of the 21st International Middleware Conference, pp. 44–
59, 2020.

[9] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing federated learning through an
adversarial lens,” in International Conference on Machine Learning, pp. 634–643, PMLR, 2019.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with ad-
versaries: Byzantine tolerant gradient descent,” Advances in neural information processing
systems, vol. 30, 2017.

[11] V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptol. ePrint Arch., vol. 2016, p. 86,
2016.

[12] X. Cao, J. Jia, and N. Z. Gong, “Provably secure federated learning against malicious clients,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp. 6885–6893, 2021.

[13] F. Gregor, W. Ozga, S. Vaucher, R. Pires, S. Arnautov, A. Martin, V. Schiavoni, P. Felber, C. Fetzer,
et al., “Trust management as a service: Enabling trusted execution in the face of byzantine stake-
holders,” in 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 502–514, IEEE, 2020.

[14] P. Karnati, “Data-in-use protection on ibm cloud using intel sgx,” IBM, May, 2018.

[15] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’keeffe, M. L. Stillwell, et al., “{SCONE}: Secure linux containers with intel {SGX},” in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 689–703,
2016.

[16] M. Bailleu, D. Giantsidi, V. Gavrielatos, V. Nagarajan, P. Bhatotia, et al., “Avocado: A secure {In-
Memory} distributed storage system,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pp. 65–79, 2021.

Page 47 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

[17] R. Krahn, D. Dragoti, F. Gregor, D. L. Quoc, V. Schiavoni, P. Felber, C. Souza, A. Brito, and
C. Fetzer, “Teemon: A continuous performance monitoring framework for tees,” in Proceedings
of the 21st International Middleware Conference, pp. 178–192, 2020.

[18] D. Le Quoc, F. Gregor, J. Singh, and C. Fetzer, “Sgx-pyspark: Secure distributed data analytics,”
in The World Wide Web Conference, pp. 3564–3563, 2019.

[19] W. Ozga, D. L. Quoc, and C. Fetzer, “Perun: Confidential multi-stakeholder machine learn-
ing framework with hardware acceleration support,” in IFIP Annual Conference on Data and
Applications Security and Privacy, pp. 189–208, Springer, 2021.

[20] W. Ozga, D. L. Quoc, and C. Fetzer, “A practical approach for updating an integrity-enforced
operating system,” in Proceedings of the 21st International Middleware Conference, pp. 311–
325, 2020.

[21] W. Ozga, D. L. Quoc, and C. Fetzer, “Weles: Policy-driven runtime integrity enforcement of
virtual machines,” arXiv preprint arXiv:2104.14862, 2021.

[22] J. Singh, J. Cobbe, D. L. Quoc, and Z. Tarkhani, “Enclaves in the clouds: Legal considerations
and broader implications,” Communications of the ACM, vol. 64, no. 5, pp. 42–51, 2021.

[23] C.-C. Tsai, D. E. Porter, and M. Vij, “{Graphene-SGX}: A practical library {OS} for unmodi-
fied applications on {SGX},” in 2017 USENIX Annual Technical Conference (USENIX ATC 17),
pp. 645–658, 2017.

[24] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for strong soft-
ware isolation,” in 25th USENIX Security Symposium (USENIX Security 16), pp. 857–874, 2016.

[25] A. Martin, C. Lian, F. Gregor, R. Krahn, V. Schiavoni, P. Felber, and C. Fetzer, “Adam-cs: Ad-
vanced asynchronous monotonic counter service,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 426–437, IEEE, 2021.

[26] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting third party attestation for intel®
sgx with intel® data center attestation primitives,” White paper, p. 12, 2018.

[27] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, T. Par-
collet, P. P. B. de Gusmão, et al., “Flower: A friendly federated learning research framework,”
arXiv preprint arXiv:2007.14390, 2020.

[28] G. D. P. Regulation, “General data protection regulation (gdpr),” Intersoft Consulting, Accessed
in October, vol. 24, no. 1, 2018.

[29] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[30] Y. LeCun, C. Cortes, C. Burges, et al., “Mnist handwritten digit database,” 2010.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[32] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolu-
tional network,” arXiv preprint arXiv:1505.00853, 2015.

[33] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud with
haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3, pp. 1–26, 2015.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architec-
ture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826, 2016.

Page 48 of 49

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

[35] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the im-
pact of residual connections on learning,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 31, 2017.

[36] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4700–4708, 2017.

Page 49 of 49

	Executive summary
	Introduction
	Use Cases Enhanced through Data Broker Integration
	Example Application: Federated Learning - NCT Use Case (Surgomics)
	Example Application: Data hub - Use Case provided by EMBL(Metabolomics)

	NEARDATA DataBroker Overview
	Threat Model
	Attacks in The Context of NEARDATA
	Security Policies
	Policy Definitions
	Fine Grained Policy Definitions
	Data Broker Components and Architecture
	Metabolomics Integration using Lithops
	Confidential Identity and Access Manager

	Governance and Policy Board
	Access Control
	Policy Board

	First Release of the DataBroker
	Data Broker and Security Mechanisms
	Runtime Security
	Hardware Support
	Encrypted VMs vs. Enclaves
	Isolation and Cooperation

	SCONE Overview
	SCONE Runtime
	SCONE Cross Compiler
	SCONE CAS (Configuration & Attestation Service

	Network Security

	Performance Evaluation
	Runtime Security
	Experimental Setup
	Methodology
	Micro-benchmark: Remote Attestation and Keys Management
	Macro-benchmark: Inference Classification Process
	Effect of input model sizes.
	Effect of file system shield.
	Continuous Runtime Benchmarks

	Network Shield Evaluation
	Benchmark Setup
	nginx Throughput/Latency Benchmark
	Baseline
	Network Shield Overhead

	Summary & Conclusions

