
HORIZON EUROPE FRAMEWORK PROGRAMME

NEARDATA
(grant agreement No 101092644)

Extreme Near-Data Processing Platform

D3.1 XtremeHub first release and documentation

Due date of deliverable: 30-04-2024
Actual submission date: 30-04-2024

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 46

WP/Task related to this document WP3 / T3.1, T3.2, T3.3, T3.4, T3.5

WP/Task responsible DELL

Leader Raúl Gracia (DELL)

Technical Manager Xavier Roca (URV)

Quality Manager Aaron Call (BSC)

Author(s) Raúl Gracia (DELL), Sean Ahearne (DELL), Ger Hallissey
(DELL), Xavier Roca (URV), André Miguel (SCO), Aaron
Call (BSC)

Partner(s) Contributing DELL, URV, SCO, BSC

Document ID NEARDATA_D3.1_Public.pdf

Abstract The deliverable describes the design of XtremeHub: the
data plane component of the NEARDATA platform.

Keywords Serverless analytics, data partitioning, data streams, data
connectors, confidential computing, TEEs.

History of changes

Version Date Author Summary of changes

0.1 30-03-2024 Raúl Gracia (DELL), Sean Ahearne
(DELL), Ger Hallissey (DELL),
Xavier Roca (URV), André Miguel
(SCO), Aaron Call (BSC)

Internal version to review.

1.0 30-04-2024 Raúl Gracia (DELL), Sean Ahearne
(DELL), Ger Hallissey (DELL),
Xavier Roca (URV), André Miguel
(SCO), Aaron Call (BSC)

Final version.

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Table of Contents

1 Executive summary 2

2 Introduction 3

3 XtremeHub Overview 4

4 XtremeHub Compute: Lithops 6
4.1 Lithops Summary . 6
4.2 Experimental evaluation . 6

5 XtremeHub Streams: Pravega 9
5.1 Pravega Design Recap . 9

5.1.1 Experimental Evaluation . 10
5.2 Streaming Storage-Compute Auto-Scaling . 20

5.2.1 Connecting Flink with Pravega . 20
5.2.2 Auto-scaling Orchestrator . 21
5.2.3 Experimental Evaluation . 22

5.3 Byte Streaming for Video Analytics . 24
5.3.1 Event vs Byte Semantics . 25
5.3.2 Pravega Byte Streams . 25
5.3.3 Experimental Evaluation . 27

5.4 Streaming for Data-intensive Serverless Functions . 29
5.4.1 Storage in Serverless Analytics Pipelines . 30
5.4.2 Lithops and Pravega Integration . 31
5.4.3 Experimental Evaluation . 32

6 XtremeHub Security: Scone 35
6.1 Strengthening the Security . 35

6.1.1 Enforcing the Security . 35
6.2 Lithops Experimental Execution . 35

7 XtremeHub Connectors 38
7.1 Lithops as a compute engine for Dataplug . 38

7.1.1 Experimental evaluation . 38
7.2 HPC Data Connectors . 39

7.2.1 HPC Data Connector for the MDR use-case . 40

8 Conclusions and Next Steps 42

i

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

List of Abbreviations and Acronyms

API Application Programming Interface

AWS Amazon Web Services

CAS Configuration and Attestation Service

CC Creative Commons

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CSV Comma-separated values

DAG Directed Acyclic Graph

DOI Digital Object Identifier

FASTQ Text-based format for storing both a biological sequence (usually nucleotide sequence)
and its corresponding quality scores

FLOPS Floating Point Operations Per Second

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

LTS Long-Term Storage

MDR Multifactor Dimensionality Reduction

MPI Message Passing Interface

S3 Simple Storage Service

SDP Streaming Data Platform

TEE Trusted Execution Environment

VAF Variant Call Format

VM Virtual Machine

WAL Write-Ahead Log

Page 1 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

1 Executive summary

This deliverable presents the initial design and implementation of XtremeHub: the data plane com-
ponent of NEARDATA. First, we provide a general overview of XtremeHub as well as the interactions
of its main sub-components: Lithops, Pravega, and Scone. Second, we provide an in-depth overview
of each of the XtremeHub sub-components and Data Connectors, with special emphasis on perfor-
mance results and KPIs related to the research work carried out through the project so far. Finally,
we provide some guidance on next steps in the development of XtremeHub for the second half of the
project.

Page 2 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

2 Introduction

The NEARDATA project is rooted in the near-data processing paradigm, which can be defined as the
strategy of moving computational resources close to the data, instead of transferring the data to the
processor. NEARDATA aims to establish a robust near-data infrastructure that acts as a mediator for
data flows between object storage and data analytics platforms throughout the compute continuum.

A key element for realizing this vision is the innovative data plane component of NEARDATA,
namely XtremeHub (a complete architecture overview of NEARDATA is available in D2.2 NEAR-
DATA Architecture Specs and Early Prototypes). XtremeHub serves as an intermediate data service that
captures and enhances data flows (S3 API, stream APIs) using high-performance near-data connec-
tors (Cloud/Edge). Moreover, it allows to perform secure and private computations close to the
data via containerized technologies exploiting specialized hardware (e.g., Trusted Execution Envi-
ronments).

In this deliverable, we provide an in-depth overview of XtremeHub as well as the main sub-
components that implement the system functionality: Lithops (multi-cloud serverless function exe-
cution engine), Pravega (tiered streaming storage engine), and Scone (confidential computing layer).
We also overview key Data Connectors developed in XtremeHub for the project use cases. The com-
bination of all these sub-components allows XtremeHub to offer efficient access, partitioning, and
discovery of data objects in an object storage service, as well as streaming analytics with seamless
tiering and management of data streams to object stores. Moreover, computations can be secured
and isolated from external adversaries with advanced attestation capabilities. We will not only de-
scribe these sub-components (further details can be also found in deliverables D2.2 NEARDATA Ar-
chitecture Specs and Early Prototypes, D4.1 Data Broker release and documentation, and D5.1 First release
of KPI benchmarks in all use cases and data connector libraries), but also provide a detailed analysis on
key aspects of their performance based on the research work of the consortium. We conclude this
deliverable by outlining potential research avenues to be addressed in the second half of the project,
specially related to work-package tasks to be completed in the next months of project execution.

Page 3 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

3 XtremeHub Overview

XtremeHub is the vision for the integrated data plane components in NEARDATA. XtremeHub
stands at the forefront of near-data analytics, offering a cutting-edge toolkit that seamlessly inte-
grates powerful processing and storage components to build advanced data analytics capabilities.
At its core, XtremeHub is a fusion of advanced technologies, namely Lithops for serverless compute,
Pravega for streaming storage, and Scone for containerized and trusted execution environment (TEE)
capabilities. Let’s delve into each component and explore how they interact to deliver efficiency and
security in near-data analytics. An integrated view of XtremeHub components is depicted in Fig. 1.

Lithops represents the computational core of XtremeHub, providing serverless computing capa-
bilities that scale seamlessly to handle massive workloads across the cloud continuum (see Section 4).
By leveraging Lithops, users can execute complex analytics tasks without the burden of managing
infrastructure, as it dynamically provisions resources based on demand. One of Lithops’ key interac-
tions lies in its integration with object storage, where it efficiently retrieves and stores data from and
to various storage back-ends, ensuring smooth data processing workflows.

Complementing Lithops’ compute capabilities, Pravega serves as the backbone for storing and
managing streaming data in XtremeHub (see Section 5). Its unique design enables seamless ingestion,
storage, and retrieval of high-volume streaming data with strong consistency guarantees. Pravega
seamlessly interfaces with object storage, efficiently storing and retrieving data streams while ensur-
ing fault tolerance and scalability. This integration ensures that data is readily available for analysis,
facilitating real-time insights generation and decision-making.

Security and privacy are paramount in near-data analytics, and Scone addresses these concerns
by providing a trusted execution environment (TEE) within XtremeHub (see Section 6). With Scone,
users can execute sensitive computations in a secure enclave, safeguarding data confidentiality and
integrity. Leveraging Scone’s private computation capabilities, users can perform critical analytics
tasks on sensitive data without compromising privacy, ensuring compliance with stringent regula-
tory requirements.

Figure 1: High-level overview of XtremeHub.

Finally, the NEARDATA project coins its own novel notion of Data Connector (see D2.2 NEAR-
DATA Architecture Specs and Early Prototypes): it establishes communication between the Data Provider
and the Data Consumer to deal with extreme data efficiently using new ETL techniques (see Sec-
tion 7). In this deliverable, we overview some of these Data Connectors and their potential for opti-
mizing workloads related to the project use cases.

In the following, we will describe and evaluate the components that build XtremeHub, as well

Page 4 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

as the new progress related to them based on our research work so far. While in some cases we
also align the evaluation with the project’s use cases, for full details on how XtremeHub addresses
the challenges of our use cases we refer to D5.1 First release of KPI benchmarks in all use cases and data
connector libraries.

Page 5 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4 XtremeHub Compute: Lithops

In this section, we will show a brief overview of the Lithops serverless computing framework and
evaluate its performance according to the different cloud services. Note that in deliverable D2.1 Initial
Architecture Specifications Lithops is described more extensively specifying in detail its components.

4.1 Lithops Summary

Lithops is a Python multi-cloud serverless computing framework that allows unmodified local Python
code to run at massive scale on all major serverless computing platforms. Moreover, its multicloud-
agnostic architecture ensures portability across cloud providers.

Lithops brings great value to data-intensive applications such as Big Data analytics and embar-
rassingly parallel jobs. It is especially suited for highly parallel programs with little or no need for
inter-process communication.

One of the main features of Lithops is programming simplicity. This way, programmers who are
experts or not in the cloud can benefit from the use of this tool. Lithops is shipped with two types
of APIs in its architecture. The Compute API, which allows the user to make calls to execute parallel
tasks in the selected compute backend and the Storage API, to operate with the storage backend.

Thanks to a built-in on-the-fly data partitioning, data consumption from object storage is facil-
itated. The user would only have to provide the list of object keys comprising the dataset to be
processed. In this way, lithops ensures automatic data partitioning and data discovery for common
data formats such as CSV, thus facilitating parallel processing of this data.

Finally, three types of execution mode for Lithops computing backends are presented. Localhost,
allows users to execute functions on their local machine. Serverless Mode, allows users to run func-
tions on serverless computing services (Amazon Lambda, IBM Cloud functions). Standalone Mode,
allows users to run functions on one or multiple Virtual Machines locally or in the cloud.

Figure 2: IBM Cloud Functions - Flops Benchmark.

4.2 Experimental evaluation

Whenever considering the use of cloud computing and/or storage, users should explore which cloud
provider provides the best services and which ones best suit their needs. Because Lithops offers
support for multiple clouds, it allows users to perform performance tests on different backends to
observe their features and performance in detail.

In the following, we will describe two benchmarks performed on the different APIs presented in
Lithops. These benchmarks were performed on two of the most used cloud service providers, such
as Amazon Web Services and IBM Cloud.

Page 6 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 3: AWS Lambda - Flops Benchmark.

Figure 4: IBM Cloud Functions & COS - Bandwidth Benchmark.

Serverless Functions Performance The first benchmark is based on evaluating the performance
of the serverless compute backends, AWS Lambda and IBM Cloud Functions, offered by the afore-
mentioned cloud providers from the use of the Compute API offered by Lithops.

To measure the computational performance of these backends, a flop benchmark was performed.
A total of 1000 functions were invoked with a memory size of 1024MB where each function multiplies
two matrices a given number of times. The parameters set for this benchmark were a matrix size of
4096 ∗ 4096 with a total of 5 repetitions for matrix multiplications.

Figures 2 and 3 show the results of the serverless functions benchmark. First of all, the execution
histogram is shown. This is key to understand the parallelism and performance obtained in each
of the different cloud providers. It should be noted that the closer the executions are together, the
higher the parallelism, and the shorter the execution time, the higher the performance. The second
plot shows the GFLOPS rates achieved distributed by the number of functions. It allows us to identify
the stable performance of the functions and their variability.

If we focus on the results obtained, figure 2 shows how IBM Cloud offers an irregular parallelism
and performance since a variability of execution time in the different functions can be observed. This

Page 7 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 5: AWS Lambda & S3 - Bandwidth Benchmark.

case can also be observed in the GFLOP rates plot, where we find values between 5 and 45 GFLOPS.
In the case of AWS, figure 3, high parallelism is observed and more stable with low execution times.
It can also be visualized in the GFLOP Rates plot where we find all the results close to 20 GFLOPS.

Cloud Object Storage Performance This second benchmark is based on evaluating the band-
width provided by the object storage backends, Amazon S3 and IBM Cloud Object Storage, of the
two different cloud providers from the use of the Storage API offered by Lithops.

To perform this benchmark, I/O bound operations were evaluated in two different phases. Both
phases used the same number of functions to perform their tasks. In the first phase, each function was
in charge of generating a total of NMB that were uploaded to the cloud object storage backend. In the
second phase, each function received by parameter a key referring to the object to be downloaded.

Figures 4 and 5 show the results of the cloud object storage benchmark. In the same way as in the
previous test, the histogram of the execution is shown in a first instance to observe the parallelism of
the cloud backend. Next, a plot is shown in relation to the bandwidth obtained in the write and read
operations performed.

Looking deeper at the results, the Figure 4 shows the irregularity in the parallelization and per-
formance of the IBM Cloud Functions. In relation to bandwidth, read operations show a bandwidth
50% higher than write operations. Ensuring a maximum of 40GB/s for reading and 25GB/s for writ-
ing. For the AWS case, shown in the Figure 5, the high parallelization is maintained with a very
similar bandwidth for both read and write operations, reaching a maximum of 90 − 100GB/s.

KPI-3 (Resource Auto-scaling). The serverless data processing platform offers the ability to develop
cloud architecture solutions that are fully scalable and flexible to the resources needed to run work-
loads. The parallelization of serverless functions from two different cloud providers is analyzed to
provide the user with a transparent evaluation of resource deployment.

Page 8 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5 XtremeHub Streams: Pravega

This section describes the progress done in Pravega as the streaming layer for XtremeHub. In de-
liverable D2.1 Initial Architecture Specifications we provided an extensive description of Pravega and
its internal components, as well as the client interactions with the system. For this reason, in the be-
ginning of this section we provide a brief overview of Pravega to help the reader understanding the
evaluation of the system, but we defer to D2.1 Initial Architecture Specifications for full details. More-
over, in addition to the evaluation of Pravega against other event streaming systems, we overview ad-
vanced features related to the project use-cases: i) we explore the coordinated auto-scaling of Pravega
streams with Flink task managers, ii) we provide an in-depth evaluation of the Byte API in Pravega
and its advantages in some scenarios compared to event interfaces, and iii) we evaluate Pravega as a
storage substrate for serverless analytics pipelines.

5.1 Pravega Design Recap

Pravega is a distributed, tiered storage system for data streams that provides the streaming layer in
NEARDATA. Pravega stores data events in streams (like a “topic” in messaging systems). A stream
is a durable, elastic, append-only, unbounded sequence of bytes achieving good performance and
consistency. Internally, streams are divided into segments. A stream segment is a partition of the data
within a stream. The allowed operations on segments include append, truncate, seal, merge, and
delete (but not update). It is worth mentioning that a stream may have multiple segments open for
appending events at a given time, which enables higher throughput. When working with streams
having parallel segments, users requiring event order guarantees are expected to use routing keys for
writing data. To wit, parallel segments in a stream are assigned to partitions of the key space as a
result of a hash function (e.g., h(k) ∈ [0, 1)). The writer API accepts as input a user-provided routing
key to consistently select the segment for appending events to and order writes with the same key.

The architecture of Pravega is shown in Fig. 6. First, Pravega offers client libraries implementing
the server APIs, such as writers and readers, which interact with Pravega server instances either within
the same cluster or externally. These client libraries allow stream processing engines to manage data
events from Pravega.

Controller Instances

Segment Store Instances

Client App Client App

Writer Reader

Apache
Bookkeeper

HDFS,
NFS, S3,...

Pravega Stream

Start of the
stream (head)

End of the
stream (tail)

Historical data (LTS, historical reads) Recent data (WAL + cache, tail reads)

Long-term storage (LTS) Write-ahead Log (WAL)Consensus
Service

Metadata
Data flows

Data plane

Control plane

Apache
Zookeeper

s1

K
e
y
 S

p
a
c
e

0.0

1.0

s2

s3

0.0

1.0

Monitoring

0.5

s4
1.0

0.75
s5

s6
0.5

0.25

s7
0.0

Data Plane and Control Plane
interactions during a scale-up event

0.25

0.75

s8

Figure 6: Architecture of Pravega consisting of clients, controllers, and segment store instances. Seg-
ment stores temporarily write data to WAL and then move the data to LTS. The figure also shows an
example of stream auto-scaling.

On the server side, we find the Pravega control plane formed by controller instances. The control
plane is primarily responsible for orchestrating all stream lifecycle operations, like creating, updat-
ing, scaling, and deleting streams. Pravega streams are policy-driven. Currently, the system offers
two types of stream policies: retention policies, which automatically truncate a stream based on size or
time bounds; and auto-scaling policies, which allow the system to automatically change the segment

Page 9 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

parallelism of a stream based on the ingestion workload (events/bytes per second). The control
plane takes care of enforcing such stream policies. As we describe later on (see Fig. 6), for stream
auto-scaling policies, Pravega builds a feedback loop between the control and data planes, so the
control plane can react to the load monitored by the data plane.

The data plane in Pravega handles data requests from clients and is formed by segment store in-
stances. Segment stores play a critical role in making segment data durable and serving it efficiently.
Note that segment stores only work with segments and are agnostic to the concept of stream, which
is an abstraction of the control plane. The data plane distributes the segment-related load based on
segment containers. Segment containers perofrm the heavy lifting on segments and the main role of
segment store instances is to host segment containers. A segment is mapped during its entire life to a
segment container using a stateless, uniform hash function that is known by the control plane. Thus,
segment ids belong to a key-space that is partitioned across the available segment containers.

The segment store has two storage tiers: Write-Ahead Log (WAL) and Long-Term Storage (LTS). The
main goal of WAL (implemented via Apache Bookkeeper [1, 2]) is to guarantee durability and low
latency of incoming writes and keep that data temporarily for recovery purposes. Segment stores
asynchronously move data to LTS. Once some data is stored in LTS, the corresponding log file from
WAL is truncated. Pravega has an LTS tier for a couple of key assumptions that determined its
design: data streams are potentially unbounded and the system should be able to store a large number
of segments in a cost-effective manner. Pravega achieves both goals by storing historical stream data
in a scalable storage service.

Finally, Pravega uses a consensus service (Apache Zookeeper [3, 4]) for leader election and gen-
eral cluster management purposes.

5.1.1 Experimental Evaluation

After having described the design and architecture of Pravega, we present an extensive evacuation
of its event API. We summarize here the configuration used in our experiments on AWS (see Table 2).
We compare the performance of Pravega against the most popular counterpart systems: Apache
Kafka [5] and Apache Pulsar [6]. The workloads in all cases are executed with OpenMessaging
Benchmark [7].

Implementation. Pravega is an open-source CNCF project in sandbox state [8]. The project was
open-sourced in 2016 and it provides to the public not only the core storage engine but also deploy-
ment tools (e.g., Kubernetes operators) and a connector ecosystem to integrate Pravega with a variety
of analytics engines.

Deployment. We employ the same type of EC2 instances for deploying the analogous components
of each system. It is especially relevant to mention that for the components in charge of writing data
(i.e., brokers, Apache Bookkeeper), we use an instance type with access to local NVMe drives. To
evaluate the efficiency of the write path across these systems, we use one drive for the Bookkeeper
journal (Pulsar/Pravega) and the Kafka broker log.

Replication. The data replication schemes differ between Kafka (leader-follower model) and Prave-
ga/Pulsar (Bookkeeper replicates across bookies [1]). Still, we can achieve a similar data redundancy
layout across them. We configured all the systems to create 3 replicas of every message, requiring at
least 2 of such replicas to be confirmed by the servers before considering a write as successful.

Durability. There is an important difference between the default behavior of Kafka versus Prave-
ga/Pulsar on data durability. Kafka by default does not flush data (i.e., fsync system call), thus
trading-off durability in favor of performance. We also evaluate Kafka with similar durability guar-
antees that both Pravega and Pulsar satisfy by default (i.e., by setting flush.messages=1, flush.ms=0).

Storage tiering. Pravega inherently moves ingested data to LTS. In our experiments, we used an
NFS volume backed up by an AWS Elastic File Service (EFS) instance. For fairness, we also have
enabled the storage tiering plug-in in Pulsar to compare against Pravega unless otherwise stated. We
have configured for Pulsar an AWS S3 bucket and defined the ledger rollover to happen within 1
and 5 minutes, so tiering activity occurs while the benchmark takes place. We also set Pulsar topics
to start the offloading process immediately (setOffloadThreshold=0), as well as to remove the data

Page 10 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Pravega Kafka Pulsar

Version Pravega 0.9.0, Bookkeeper 4.11.1 Kafka 2.6.0 Pulsar 2.6.0, Bookkeeper 4.11.1

Replication ensemble=3, writeQuorum=3,
ackQuorum=2

replication=3, acks=all,
min.insync.replicas=2

ensemble=3, writeQuorum=3,
ackQuorum=2

Durability Yes (default) No (default) Yes (default)
Tiering Yes (AWS EFS) No Yes (AWS S3)

Instances

Controller (m5.large)=1, Segment
Store + Bookie (i3.4xlarge)=3,
Zookeeper (t3.small)=3, Bench-
mark (c5.4xlarge)=2

Broker (i3.4xlarge)=3,
Zookeeper (t3.small)=3,
Benchmark (c5.4xlarge)=2

Broker + Bookie
(i3.4xlarge)=3, Zookeeper
(t3.small)=3, Benchmark
(c5.4xlarge)=2

Journal Drives 1 NVMe 1 NVMe 1 NVMe
Client Batching Yes (dynamic) Yes (time/size based) Yes (time/size based)

Table 1: Experiments configuration unless otherwise stated.

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 1 Segment/Partition - 100B events

Pravega (flush)

Pravega (no flush)

Kafka (no flush)

Kafka (flush)

Figure 7: Impact of data durability on write performance (1 segment/partition, 1 writer/producer).

from Bookkeeper as soon as it is migrated to long-term storage (setOffloadDeleteLag=0). At the
time of this writing, Kafka did not provide storage tiering in its open-source edition.

Routing keys. By default, our workloads use (random) routing keys on writes. We use routing keys
in our workloads to ensure per-key event order, frequently a requirement of streaming applications
for correctness. We also execute workloads without routing keys to understand the potential impact
of routing keys on performance.

Client configuration. Pulsar and Kafka clients implement a batching mechanism that can be pa-
rameterized via “knobs” that enable the producer to buffer a certain number of messages or wait
until some timeout before performing the actual write against the broker. The goal of this feature is
to improve a producer’s throughput for small messages, despite inducing extra latency in scenarios
where the workload is not throughput-oriented. By default, we use in both systems a similar con-
figuration: 128KB as batch size and 1ms as batch time. We also compare the behavior of the Pulsar
producer with and without this feature, as well as the impact of larger batches in Kafka. We did not
enable compression in the Pulsar/Kafka clients as such techniques may have an important role in
performance depending on the data at hand [9].

Workloads. We are interested in understanding the behavior of these systems based on two pa-
rameters: event size and number of partitions/segments. We use event sizes from 100B to 10KB, as they
can be considered typical in many streaming applications (e.g., IoT, logs, social media posts). We
configure our experiments to run OpenMessaging Benchmark [7] producer and consumer threads
distributed across the benchmark VMs. Each of the producer and consumer threads uses a dedicated
Kafka, Pulsar, or Pravega client instance. Benchmark producer threads use producers (Kafka and
Pulsar) or writers (Pravega), while benchmark consumer threads use consumers (Kafka and Pulsar)
or readers (Pravega).

Page 11 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 100B events

Pravega (flush)

Pravega (no flush)

Kafka (flush)

Kafka (no flush)

Figure 8: Impact of data durability on write performance (16 segments/partitions, 1 writer/pro-
ducer).

Writer Performance and Data Durability. It is natural for an application to expect that data is avail-
able for reading once writing the data is acknowledged, despite failures. Durability is critical for
applications to reason about correctness. While Pravega provides durability by default (i.e., flushing
data upon acknowledgement), this is not the case for Kafka. Not enabling data durability may be
undesirable for enterprise applications as correlated failures do happen and servers do not always
stop gracefully [10].

In Fig. 7 and Fig. 8, we show latency and throughput to compare the performance implications
of non-default durability options. Specifically, we run a set of experiments comparing enabling and
disabling durability in Pravega (disabling journal flushes in Bookkeeper, namely “no flush”) and
Kafka (by setting flush.messages=1, flush.ms=0 to enable durability, namely “flush”). For simplic-
ity, these experiments are executed with a single producer/writer.

Visibly, Fig. 7 shows that for a stream/topic with one segment/partition, the Pravega writer
(flush) reaches a maximum throughput 73% higher than Kafka (no flush). Note that this perfor-
mance improvement in Pravega is achieved while guaranteeing data durability. Following this com-
parison, for 16 segments/partitions (see Fig. 8) the maximum throughput of both Pravega and Kafka
is similar (over 1 million events/second for a single writer/producer).

Note that enforcing data durability for Kafka (flush) has a major performance impact on write
latency. This is especially visible for moderate/high throughput rates. Kafka flushes messages ac-
cording to a time (log.flush.interval.ms) or a message (log.flush.interval.messages) interval.
When the message interval is set to 1, all messages are flushed individually before being acknowl-
edged, inducing a significant performance penalty. With Bookkeeper, data is persisted before being
acknowledged, but they are opportunistically grouped upon flushes [1].

Regarding write latency, Kafka (no flush) only gets consistently lower (≈ 1ms at p95) values
than Pravega (flush) for 1 segment/partition up to 500k e/s. In the rest of the cases, the Pravega
writer shows lower latency than Kafka. The performance gain for Pravega of not flushing data to the
drive in Bookkeeper writes is modest, which justifies providing durability by default.

KPI-2 (Data Speed Improvements): The Pravega writer achieves good write performance compared
to the Kafka producer while guaranteeing data durability.

Evaluating Batching Strategies. Batching enables a trade-off between throughput and latency. Ide-
ally, applications should not need to reason about convoluted parameters to benefit from batching.
Instead, it should be the work of the client along with the server to perform this task. The dynamic
batching heuristic the Pravega writer implements has the goal of calibrating the batch sizes over time.

In Fig. 9 and Fig. 10, we plot latency and throughput to understand the impact of Pravega writer
batching on performance. We compare Pravega against Pulsar and Kafka (no flush by default),
which are systems that require an application to choose whether to use batching or not, and configure
it accordingly.

Page 12 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 100B events

Pravega

Pulsar (batch)

Pulsar (no batch)

Figure 9: Evaluation of client batching strategies (1 segment/partition, 1 writer/producer).

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 100B events

Pravega

Kafka (lingerTime=10ms, batchSize=1MB)

Kafka (lingerTime=1ms, batchSize=128KB)

Figure 10: Evaluation of client batching strategies (16 segments/partitions, 1 writer/producer).

Fig 9 shows that the Pulsar producer is able to target either low latency or high throughput,
but not both. This forces the user to choose between a latency-oriented (namely no batch) or a
throughput-oriented configuration (namely batch). In contrast, the Pravega writer achieves both
lower write latency than Pulsar (batch) for the lower-end throughput rates (e.g., < 10k e/s) and
higher maximum throughput than Pulsar (no batch).

Interestingly, increasing the batch size and the wait time for Kafka (10ms linger time, 1MB batch
size) to enable more batching has the opposite expected effect (see Fig. 10). The throughput drops
compared to the default configuration with 1ms linger time and 128KB batch size. To understand this
result, we inspected the maximum throughput of a Kafka producer writing to a 16-partition topic and
using the same batch configuration, but not using routing keys when writing data. In this case, the
client achieved a throughput 6x higher (120MBps). We consequently attribute the lower batching
performance observed to the use of (random) routing keys. We focus on this aspect specifically in
subsequent sections.

KPI-2 (Data Speed Improvements), KPI-3 (Simplicity and Productivity): Dynamic batching in Pravega
allows writers to achieve an excellent balance between latency and throughput. Furthermore, Pravega
does not require the user to decide the performance configuration of the writer ahead of time.

Writer Performance for Large Events. Events are often small in real applications (e.g., < 1KB), but
there are also use cases using larger events. For such scenarios, batching is less effective, and the key
metric is the byte throughput. In Fig. 11 and Fig. 12, we use 10KB events and we compare latency
and byte throughout of the Pravega writer against both Pulsar and Kafka producers.

For a single-segment/partition stream/topic (see Fig. 11), Pravega (160MBps) and Pulsar (300MBps)
writers achieve a much higher write throughput compared to Kafka (70MBps). In the case of 16 seg-
ments/partitions (see Fig. 12), Pravega shows the highest throughput (350MBps) compared to Kafka

Page 13 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

10 50 100 150 200 250 300 350 400

MBps

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 1 Segment/Partition - 10KB events

Pravega

Pravega (NoOp LTS)

Kafka (no flush)

Pulsar (batch)

Pravega back-pressures writers if long-term storage

cannot cope with the IO workload. This is key to

prevent ever-growing backlogs of data waiting to be

moved to long-term storage.

Figure 11: Write performance for larger events (1 segment/partition, 1 writer/producer).

10 50 100 150 200 250 300 350 400

MBps

1

10

100

p
9
5
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 10KB events

Pravega

Kafka (no flush)

Pulsar (batch)

Figure 12: Write performance for larger events (16 segments/partitions, 1 writer/producer).

(330MBps) and Pulsar (250MBps).
However, the Pravega writer cannot get more than 160MBps for the single-segment case. The

reason is that it is bottlenecked by the movement of data to LTS (AWS EFS). To validate this statement,
we have conducted an experiment using a test feature that allows Pravega to write only metadata
to LTS and no data (namely, NoOp LTS). From the results in Fig. 11, skipping the data writes to LTS
enables much higher throughput for Pravega. Pulsar performs better with storage tiering enabled for
the single-segment case because it does not throttle producers when LTS is saturated. That is, storage
tiering is not an integral part of Pulsar’s ingestion pipeline as it is in Pravega. While this might be seen
as an advantage now, not throttling writers if LTS is saturated can lead to an ever-growing backlog
of data waiting to be moved to LTS. The problem becomes evident when we present historical read
results in further sections.

KPI-1 (Throughput Improvements): The Pravega writer achieves high write throughput when using
multiple segments. The throughput of Pravega depends on the throughput capacity of LTS, and in
the case LTS saturates, Pravega applies backpressure to avoid building a backlog of data.

Tail Reads and Routing Keys. For many applications, the time must be short between the event
being generated and the time that it is available for reading and processing. We refer to such a time
interval as end-to-end latency. In Fig. 13 and Fig. 14, we plot the end-to-end latency and throughput
for 100B events of Pravega, Pulsar, and Kafka readers/consumers.

In Fig. 13, Pravega and Kafka exhibit lower end-to-end latency compared to Pulsar up to the
saturation point. In fact, Pulsar does not achieve end-to-end latency values under 12ms (95th per-
centile), even with batching. On the other hand, read throughput for a stream/topic with a single
segment/partition is much higher for Pravega (72%) and Pulsar (56%) than for Kafka.

Interestingly, in the case of 16 segments/partitions (see Fig. 14), Pulsar shows a 76% drop in read

Page 14 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 E

n
d
-t

o
-e

n
d
 L

a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 1 Segment/Partition - 100B events

Pravega

Pulsar (batch)

Kafka (no flush)

Figure 13: Performance of a tail readers/consumers (1 segment/partition, 1 writer/producer).

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 E

n
d
-t

o
-e

n
d
 L

a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 100B events

Pravega

Kafka (no flush)

Pulsar (batch)

Figure 14: Performance of a tail readers/consumers (16 segments/partitions, 1 writer/producer).

throughput than the single partition case, despite configuring one consumer thread per segment/-
partition in all systems (higher read parallelism). This may be a limiting factor in highly-parallel
scenarios. In the case of Kafka and Pravega, managing more segments increases end-to-end latency
for medium to high throughput rates.

We also want to understand the impact of using routing keys when writing and reading data from
these systems. This is important as per-key event ordering is desirable for a number of applications
to enable the correct processing of the events while providing parallelism. All of Pravega, Pulsar
and Kafka use routing keys and guarantee total order per key. In Fig. 15 we depict the difference in
performance of the readers based on whether no routing keys or random routing keys are used in
the workload.

Fig. 15 shows that using random routing keys across several topic partitions induces a significant
read latency overhead in Pulsar compared to not using routing keys (e.g., 3.25x higher p95 end-to-
end latency at 10k e/s). Still, Pulsar’s read throughput remains the same even without using routing
keys, which indicates that the performance limitation has another root cause. Similarly, when Kafka
does not guarantee order or durability, read (and write) throughput is 59.6% higher. In contrast,
Pravega performance is consistent irrespective of the use of routing keys. As many applications use
routing keys for ordering purposes, it is crucial to highlight the performance differences induced by
routing key access distributions.

KPI-2 (Data Speed Improvements): The Pravega reader achieves both low end-to-end latency and
high throughput compared to Kafka and Pulsar for the cases tested. Pravega is virtually insensitive
to the distribution of routing keys, as opposed to the other systems.

Handling High Parallelism. Next, we focus on the performance evaluation of Pravega in the pres-
ence of multiple writers appending to streams with many segments. We are interested in the append

Page 15 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

100 1000 10000 100000 1000000

Events/second

1

10

100

p
9
5
 E

n
d
-t

o
-e

n
d
 L

a
te

n
c
y
 (

m
s
)

1 Stream/Topic - 16 Segments/Partitions - 100B events

Pravega (random key)

Pravega (no keys)

Pulsar (random keys)

Pulsar (no keys)

Kafka (random keys)

Kafka (no keys)

Figure 15: Impact of routing keys on read performance.

10 100 500 1000 5000

Segments/Partitions

0

50

100

150

200

250

300

W
ri
te

 T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

Fixed TP=250MBps - 1KB events - Random Keys

Pravega (prod.=10)

Pravega (prod.=50)

Pravega (prod.=100)

Kafka (prod.=10)

Kafka (prod.=50)

Kafka (prod.=100)

Kafka (flush, prod.=10)

Kafka (flush, prod.=100)

Figure 16: Impact of parallelism on write performance (Pravega vs Kafka).

path, which is critical for ingesting streaming data effectively. We chose to fix an ingest workload rate
of 250MBps (1KB events) and show how the different systems behave when varying the number of
writers/producers and segments/partitions. Also, this set of experiments slightly differs in deploy-
ment compared to the previous ones: i) the number of benchmark instances is 10 to support multiple
clients (instead of 2); ii) to prevent CPU bottlenecks we use i3.16xlarge instances in segment stores,
brokers, and bookies (instead of i3.4xlarge). In this experiment, Pulsar does not perform storage
tiering.

Fig. 16 and Fig. 17 show throughput for Pravega, Kafka, and Pulsar with a varying number of
stream segments and producers. Each line corresponds to a workload with a different number of
producers appending to a single stream/topic. For Kafka and Pulsar, we also plot lines for alternative
configurations that give more favorable results to those systems, at the cost of functionality.

Visibly, Fig. 16 and Fig. 17 show that Pravega is the only system able to sustain the target through-
put rate of 250MBps for streams with up to 5k segments in a stream and 100 writers. It suggests that
the design of the append path of Pravega, and specifically, the batching and multiplexing of small
appends from many writers and segments at segment containers, is efficiently handling workload
parallelism.

The Kafka throughput drops as we increase the number of topic partitions (see Fig. 16). Adding
producers for Kafka yields higher throughput up to a limit. There is a significant difference between
10 and 50 producers, while between 50 and 100 producers, the throughput difference for Kafka is
marginal. This result is likely because the lack of partition multiplexing in Kafka. To wit, high levels
of write parallelism directly translate into an equivalent number of log files writing to the drive
that can lead to degraded performance. Furthermore, when we enforce durability in Kafka (flush),

Page 16 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

10 100 500 1000 5000

Segments/Partitions

0

50

100

150

200

250

300

W
ri
te

 T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

Fixed TP=250MBps - 1KB events - Random Keys

Pravega (prod.=10)

Pravega (prod.=50)

Pravega (prod.=100)

Pulsar (prod.=10)

Pulsar (no keys, ackQ=3, prod.=10)

Pulsar (no keys, ackQ=3, prod.=50)

Pulsar (no keys, ackQ=3, prod.=100)

Figure 17: Impact of parallelism on write performance (Pravega vs Pulsar).

1KB events - 10 producers - Random Keys

10 500

Segments/partitions

0

200

400

600

800

1000

W
ri
te

 T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

Pravega

Kafka

Kafka (flush)

Pulsar

Pulsar (batch.=10ms)

Figure 18: Max throughput achieved by systems under test.

throughput is much lower (e.g., −80% for 100 producers and 500 partitions). While some penalty is
expected from flushing messages to the drive, this experiment shows that enforcing durability for
more than ten topic partitions penalizes throughput significantly.

Unfortunately, Pulsar crashed in most configurations we have experimented with (see Fig. 17).
To understand the root cause of Pulsar’s stability problems, we tried a more favorable configuration
that: i) waits for all acknowledgments (ackQ=3) from bookies to prevent out-of-memory errors; ii) do
not use routing keys to write events (i.e., sacrifices event ordering and reduces the actual parallelism
on writes). With this new configuration, Pulsar can get better results compared to the base scenario.
However, it is still showing degraded performance and eventual instability when the experiment
reaches high parallelism, especially when increasing the number of producers. Note that not using
routing keys on writes seems to be the main contributor to Pulsar’s improvement with the favorable
configuration.

While we have used a fixed target rate in our previous experiments, we also want to understand
the maximum throughput that these systems can achieve in our scenario. To narrow down the anal-
ysis, in Fig. 18 we pick 10 and 500 segments/partitions as a baseline, along with 10 producers and
1KB events.

Pravega can get a maximum throughput of 720MBps from the benchmark perspective for both
10 and 500 segments, translating into roughly 780MBps at the drive level. The difference is due to
the metadata overhead added by Pravega (e.g., segment attributes) and Bookkeeper. Note that this is
very close to the maximum throughput we can get with synchronous writes on the drives used (we

Page 17 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (minutes)

0

200

400

600

800

M
B

p
s

1 Stream/Topic - 16 Segments/Partitions - 10KB events

Pulsar Readers (S3, random keys, 64 storage threads)

Pulsar Readers (S3, no keys, 64 storage threads)

Pulsar Writer

Pulsar Readers (S3, random keys, 2 storage threads)

Pravega Writer

Pravega Readers (EFS, random keys)

Release readers after
accumulating 100GB of
backlog data.

Figure 19: Historical read performance.

measured it via dd tool to approximately 800MBps). This confirms that Pravega (and Bookkeeper)
can efficiently use the drives.

For Pulsar, with the defined configuration, we can reliably get almost 400MBps of throughput
at the benchmark level. We have also explored increasing the client batching time to 10ms, which
translates into a moderate improvement in throughput (20%). Still, we observe that this is far from
the maximum capacity of drives, and we suspect that it is due to the use of routing keys, as it reduces
the batching opportunities for Pulsar clients. Even worse, we also see that the Pulsar throughput is
significantly limited as we increase the number of partitions. This result suggests that relying mainly
on the client for aggregating data has important limitations.

For the 10-partition case, we observe that Kafka can achieve up to 700MBps and 900MBps, when
it guarantees durability and when it does not, respectively. In the latter case, writing to "page cache"
and letting the OS write data in larger blocks to the drive helps to get a higher maximum through-
put. But note that this only happens for low parallelism, as for 500 segments, the throughput drops
dramatically to 22MBps and 140MBps, respectively.

KPI-1 (Throughput Improvements): Pravega is the only system that achieves consistent through-
put for the number of producers and segments tested, while guaranteeing event ordering and data
durability. Also, it efficiently exploits drive throughput irrespective of the degree of parallelism.

Historical Read Performance. In this set of experiments, we analyze the performance of readers
when requesting historical data from LTS in Pravega and Pulsar (at the time of this writing, Kafka
did not provide this functionality in open source). We designed the experiment as follows. Open-
Messaging Benchmark has an option that holds readers until writers have written the amount of
events specified. Readers are subsequently released, and the experiment is complete when the back-
log of events is consumed. We exercised this option by configuring writers to write 100MBps (10KB
events) to a 16-partition/segment topic/stream at a constant rate until achieving a backlog of 100GB.
Note that writers continue to write data when readers are released, so readers should read faster to
eventually catch up.

In Fig. 19, we observe that Pravega achieves much higher historical read throughput than Pulsar
by exploiting parallel chunk reads (peaking at 731MBps). For Pulsar, none of the configurations
tested resulted in a historical read throughput higher than the write throughput. While parameters
like the number of offloading threads or the routing keys used in Pulsar influence the performance
of historical reads, we did not find clear guidelines for users to configure tiered storage. We also
have discarded that the reason for the read performance difference is due to the LTS system used,
as we tested both EFS and S3 to achieve very similar throughput rates for file/object transfers (i.e.,
160MBps approx.).

Page 18 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Time (minutes)

0

20

40

60

80

100

W
ri
te

 T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

Segment Store 0

Segment Store 1

Segment Store 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Time (minutes)

0

2

4

6

8

S
tr

e
a
m

 S
e
g
m

e
n
ts

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Time (minutes)

2.5

3

3.5

4

4.5

p
5
0
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

Figure 20: View of stream auto-scaling role on performance.

Another interesting observation from Fig. 19 is the following: Pulsar does not throttle writers in
case LTS cannot absorb the ingestion throughput, which may lead to situations of imbalance across
storage tiers. To wit, if writers write to Bookkeeper faster than the brokers offload data to LTS, the
backlog of events waiting to be moved to LTS would grow without bounds. In the long run, this may
have negative consequences for users who rely on timely data offloading to LTS.

KPI-1 (Throughput Improvements): Both Pravega and Pulsar provide means to move historical data
to long-term storage. However, Pravega achieves much higher historical read throughput compared
to Pulsar without user intervention or complicated configuration settings.

Stream Auto-scaling. Accommodating workload fluctuations over time through stream auto-scaling
is a unique feature of Pravega. The absence of this feature in systems like Pulsar and Kafka, which
are primarily on the front line of big data ingestion, may induce considerable operational pain to
users, particularly at scale.

We focus in this section on the performance implications of stream auto-scaling. We configured
auto-scaling in the test stream and we set a target rate of events per second on segments to 2k (or
20MBps, given that we used 10KB events). The benchmark tool wrote at a speed of 100MBps and the
stream initially had one segment. Note that to generate some of the plots below we used the Pravega
metrics exports. The three plots in Fig. 20 show different aspects of stream auto-scaling in Pravega:
i) the write workload per segment store, ii) the number of segments in the stream, and iii) the write
latency (p50) perceived by the benchmark instance.

Fig. 20 reveals that as the stream splits and adds more segments, the load is distributed across the
available segment stores, thus causing latency to drop. As in this experiment all the segments receive
the same number of writes, the actual load distribution across segment stores mainly depends on the
placement of segments across segment containers. As the actual placement strategy of segments is
stateless (based on consistent hashing), for a small number of segments there may be situations of
load imbalance. This is the reason why not all the segment stores receive the same amount of load as
stream auto-scaling progresses. Fortunately, a larger number of segments increases the probability of
an even distribution of load across segment stores and segment containers [11].

KPI-3 (Resource Auto-scaling), KPI-5 (Simplicity and Productivity): Pravega is the first streaming
storage system that provides elastic streams: data streams that are automatically re-partitioned ac-
cording to the ingestion load and the scaling policy.

Page 19 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5.2 Streaming Storage-Compute Auto-Scaling

Stream processing pipelines need to handle workload fluctuations (e.g., daily patterns, popularity
spikes) by scaling up/down the resources contributed to running jobs. This is likely the case in
NEARDATA use cases; e.g., surgery rooms occupancy (NCT for computer-assisted surgery) or even
genomic data generation (UKHSA for genomics data storage and analytics) may show strong daily
patterns due to standard work shifts. While there have been efforts proposing auto-scaling mech-
anisms for stream processing engines, prior work has overlooked the role of the storage system in
ingesting and serving stream data. The absence of effective scaling for data streams is problematic
given that the number of parallel partitions of a data stream limits both streaming data ingestion
throughput and read parallelism for downstream streaming jobs.

In NEARDATA, we propose to augment the auto-scaling notion of stream processing engines
with information about the source data stream. The key novelty of our approach lies in exploiting
elastic data streams to ingest data, which is a unique feature of Pravega: a storage system for data
streams part of the Dell’s Streaming Data Platform. Pravega streams can dynamically change their
parallelism based on the ingestion workload, and such information can in turn be exploited for auto-
scaling the streaming job downstream. To this end, we have developed an Apache Flink connector for
Pravega, as well as an auto-scaling orchestrator that feeds on data stream metrics. Our experiments
show how a stream processing pipeline auto-scales by coordinating data stream and processing par-
allelism under workload fluctuations, with low operations cost.

5.2.1 Connecting Flink with Pravega

Apache Flink [12, 13] is a widely used real-time stream processing engine that provides unified batch
and real-time analytics. Flink achieves high-throughput, low-latency streaming data processing, as
well as support for complex event processing and state management. In a nutshell, the Flink runtime
program is a DAG of stateful operators connected with data streams. There are two main APIs in
Flink: the DataSet API for batch processing (i.e., finite data sets), and the DataStream API for stream
processing (i.e., unbounded data sets). A Flink cluster is formed by the client(s), the job manager,
and at least one task manager. The client transforms the program code into a DAG and submits it
to the job manager. The job manager coordinates the distributed execution of the dataflow. It tracks
the state and progress of each operator, schedules new operators, and coordinates checkpoints and
recovery. The actual data processing takes place in the task managers. A task manager executes one
or more operators that produce streams of processed data to other operators and reports its status to
the job manager [13].

Both Pravega and Flink share the design principle of treating the data stream as a first-class
primitive, which makes them well-suited building blocks to jointly construct stream data processing
pipelines. For enabling Pravega to be a Flink data source/sink for data streams, we have developed
a Flink connector for Pravega [14]. As we show next, the connector offers seamless integration with
Flink instances, thereby ensuring parallel reads/writes, checkpointing, and guaranteeing exactly-
once processing with Pravega.

Pravega data source for Flink. In Pravega, readers are organized into reader groups. A reader
group is a named collection of readers, which together perform parallel reads from a given Stream.
Pravega guarantees that each event written to a stream is sent to exactly one reader within the reader
group. There could be one or more readers in the reader group, and there could be many different
reader groups simultaneously reading from any given stream. Each reader in a reader group is as-
signed zero or more stream segments. The reader assigned to a stream segment is the only reader
within the reader group that reads events from that stream segment. As visible in Fig. 21, readers
within a reader group can dynamically rebalance the assignment of segments upon a membership
change or when the number of parallel stream segments changes due to stream auto-scaling. The
FlinkPravegaReader implementation internally uses the Pravega reader API to serve events to Flink
jobs.

The Flink connector for Pravega also ensures failure recovery for streaming jobs. To wit, Flink

Page 20 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

s1

s3

s2 s5

s4

s7

s6

s8

s4

s7

Flink Task
Manager 0

Flink Task
Manager 1

Flink Task
Manager 2

t0 t1 t2 t3

Reader

Reader

Reader

Reader Group

task manager 0: {s1}
task manager 1: {}
task manager 2: {}

task manager 0: {s2}
task manager 1: {s3}
task manager 2: {}

task manager 0: {s4,s5}
task manager 1: {s6}
task manager 2: {s7}

task manager 0: {s4}
task manager 1: {s8}
task manager 2: {s7}

(split)

(split)

(split)

(merge)

Figure 21: Example of Flink job executed across 3 task managers that reads events from a Pravega
stream. Visibly, the stream segments are dynamically distributed within the reader group as stream
auto-scaling takes place.

implements asynchronous periodic checkpoints [15] (Chandy-Lamport algorithm [16]) to make both
Flink state and stream positions recoverable. Similarly, Pravega also has its own checkpoint concept
that applies to a reader group reading from a stream. In Pravega, a reader group checkpoint creates a
consistent reference for a position in the stream that an application can roll back to. In our connector,
we combine the two notions of checkpoints for recovering a stream processing job. We worked
with the Flink community to add a new interface, namely ExternallyInducedSource [17], to allow
such external calls for checkpointing, and, finally, the connector integrated this interface to guarantee
failure recovery.

Pravega data sink for Flink. The FlinkPravegaWriter implementation allows Flink jobs to output
results from a streaming computation to Pravega in a consistent, durable, and ordered manner. A key
feature of our connector when used as a sink for Flink jobs is that it provides “exactly-once” semantics
(i.e., each incoming event is guaranteed to be effectively processed only once). Enabling exactly-
once semantics involving an external streaming storage system as a data sink, however, requires
cooperation between storage and compute layers. The way Flink implements exactly-once involves
retries, which implies that the output might be partially written. Therefore, the sink of an external
system that a Flink job outputs to must support commits and rollbacks.

Pravega supports transactional writes [18], which matches the requirement of committing and
rolling back (aborting a transaction). Pravega transactions allow applications to prepare and then
commit a set of events that can be written atomically to a stream. Pravega transaction semantics are
such that upon a commit, it processes all events of the transaction to enable them for reading. If a
transaction aborts instead, then no transaction event becomes available for reading. Pravega transac-
tions enable a Flink job to align the checkpointing process with committing the output, thus allowing
us to achieve exactly-once processing pipelines. Still, building such a solution is non-trivial: the main
difficulty is to have the coordination between Flink and the Pravega sink. One common approach for
coordinating commits and rollbacks in a distributed system is the two-phase commit protocol [19].
We followed this path, worked with the Flink community, and implemented the sink function via a
two-phase commit coordinated with Flink checkpoints [20, 21].

5.2.2 Auto-scaling Orchestrator

Previously, we have described two key building blocks for providing storage-compute elasticity in
stream data processing pipeline with Pravega and Flink: i) Pravega auto-scaling streams, and ii) a
Flink connector for Pravega. Next, we describe the orchestrator component that allows us to scale
compute and storage services independently, based on policies and data ingestion metrics.

Fig. 22 describes the architecture of the orchestrator component. First, the orchestrator is in charge
of consuming monitoring information from both storage and processing engines. This information
is the foundation for making auto-scaling decisions. Second, the orchestrator accepts user-defined
scaling policies based on monitoring metrics. It continuously evaluates the metrics related to the
existing policies for reacting and scaling up or down a specific service accordingly. Concretely, we

Page 21 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 22: Orchestrator component and its interactions with user-defined scaling policies, Pravega,
and Flink. Moreover, we show an example of exploiting the information about the parallelism of a
Pravega stream for right-sizing a Flink job.

have implemented the orchestrator component via the Kubernetes horizontal pod autoscaler [22]
consuming monitoring information from Prometheus [23].

While having an orchestrator component is a well-known practice in modern streaming process-
ing pipelines, the novelty of our approach lies in allowing it to exploit metrics related to the storage
side, such as the data stream parallelism, for taking scaling decisions about the stream processing
job (and vice-versa). Fig. 22 illustrates precisely this. Visibly, the orchestrator consumes metrics from
both Pravega and Flink. A user can also define scaling policies that involve metrics from both sys-
tems. In Fig. 22, we focus on a policy that addresses a common problem: keeping the the number of
Flink task managers equal to the number of segments of the source data stream for load-balancing
reasons. As depicted in Fig. 22 (right), due to the fluctuations in the ingestion workload, the Pravega
stream changes the number of parallel segments dynamically. Due to the policy set in our orches-
trator, the Flink job scales the number of task managers accordingly. Note that such a mechanism
is generic enough to build policies that combine metrics from the data stream with other storage
and/or processing-related metrics.

5.2.3 Experimental Evaluation

Setup. To run our experiments, we use a virtual VMware Tanzu Kubernetes cluster made of 6 vir-
tual nodes (16 CPUs, 16GB of RAM each node). We deployed Pravega (0.12.0), Apache Bookkeeper
(4.14.1), and Apache Zookeeper (3.7.1). For long-term storage in Pravega, we used a network file sys-
tem (DellEMC Isilon H600 [24]), whereas for provisioning regular storage volumes we used VMware
vSan. We also deployed Apache Flink (1.13.6) in reactive mode [25], so we can modify the number of
task managers on-the-fly. The workload is generated by an application that uses the Pravega writer
to simulate a continuous data source. Concretely, the data being written are samples (FASTQ format)
of Pathogen DNA sequences from UK Health State Agency [26]. The data generator writes sequences
as individual events. We instructed the data generator to follow a sinusoidal throughput pattern ex-
hibiting a 1000x difference between peak and valley loads within 30-minute intervals. This is more
aggressive than some real workloads [27]. For processing, we wrote a Flink application (1 slot per
task manager) that performs multiple operations on a per-sequence basis (i.e., finding multiple pat-
terns, counting DNA bases). Our goal is to evaluate a CPU-intensive scenario in which scaling out
the streaming processing engine is an important requirement upon workload fluctuations.

Estimating operations cost. First, we evaluate the complexity of augmenting the stream process-
ing pipeline with our storage-compute auto-scaling mechanism from the user’s viewpoint. Essen-
tially, the user needs to reason about two parameters: i) the stream scaling policy rate, and ii) the ratio
of segments to task managers. With these two parameters, a user has full control of both the IO load
received per task manager, as well as the data ingestion throughput for the streaming pipeline.

We target a CPU-intensive Flink job, and we infer the actual performance of a task processing
genomic data. Fig. 23 shows that a task manager (running a single task) saturates with 100% CPU
utilization when it reaches ≈ 1.4K events/second in our cluster. With this data point, we choose a
scaling policy with a rate of 0.8K events/second, which translates into a CPU utilization within the

Page 22 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

0 5 10 15 20

Time (minutes)

0

400

800

1200

1600

2000

E
v
e
n
ts

/s
e
c
o

n
d

0

0.2

0.4

0.6

0.8

1

1.2

C
P

U
 L

o
a
d

Task manager processing analysis

Task manager saturation point running
the genomic data processing job.

Figure 23: Task manager performance running the genomic test job.

10:00 11:00 12:00 13:00 14:00 15:00

0
2k
4k
6k
8k

10k
12k
14k
16k

E
v
e

n
ts

/s
e

c
o

n
d

Streaming Pipeline Processing

Pravega ingested stream events Flink job processed events

10:00 11:00 12:00 13:00 14:00 15:00

Time

0
2
4
6
8

10
12
14
16

C
o

u
n

t

Auto-scaling Process

Pravega stream segments Flink task managers

Figure 24: Data ingestion and processing overview of the streaming pipeline with our storage-
compute auto-scaling mechanism.

range of 0.4 and 0.6 according to Fig. 23. Besides, given that the bottleneck is at the processing end,
we define a one-to-one relationship between stream segments and task managers as a policy in the
orchestrator component. Naturally, for IO-heavy workloads in which Flink jobs perform lightweight
computations, it would be reasonable to have multiple segments per task manager. Overall, reason-
ing about these two parameters —which can be modified at runtime– is all a user needs to materialize
storage-compute auto-scaling of streaming pipelines.

KPI-5 (Simplicity and Productivity): Administrators can reason about the storage-compute auto-
scaling of the streaming pipeline considering just two main parameters.

Storage-compute auto-scaling. Next, we aim to evaluate the behavior of our storage-compute
auto-scaling mechanism for streaming processing pipelines. Fig. 24 shows a 6-hour experiment in
which a fluctuating ingestion workload influences both the Pravega stream parallelism and the num-
ber of Flink task managers.

Visibly, Fig. 24 shows how the number of stream segments changes dynamically according to
the workload intensity. As mentioned previously, the scaling policy for the stream is set to 0.8K
events/second. Note that during stream scaling, the Pravega control plane still guarantees event
ordering per routing key as it changes the segment configuration of the stream. On the reader side,
we also observe that the number of Flink task managers auto-scales according to the number of

Page 23 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Fraction of data read per source task

1 2 3 4 5 6 7 8 9 10 11

Source reader tasks

0

20

40

60

80

100

%
 o

f
re

a
d

 d
a

ta

Static right-sizing (1 stream segment, 11 task managers)
This work (workload peak, 11 task managers/segments)
This work (workload valley, 4 task managers/segments)

The different life-times of tasks and the time to
rebalance stream segments across readers can lead
to some degree of load imbalance in our aproach.
Note that this is mostly visible shortly after a stream
scaling happens and is mitigated with time.

Figure 25: Impact of incurring in mismatch between data stream and processing parallelism.

segments in the stream. The job scales because we have set a one-to-one relationship between task
managers and segments in the orchestrator policy. As expected, the auto-scaling process for the
Flink job has a direct effect on its processing throughput. Furthermore, despite the dynamic changes
in stream parallelism, our connector and the underlying reader group semantics guarantee that all
events are read only once.

KPI-3 (Resource Auto-scaling): The orchestrator component allows us to auto-scaling streaming
analytics jobs automatically based on elastic Pravega stream parallelism.

Implications of over-provisioning task managers. Finally, we want to evaluate the implications
in our scenario of not aligning the number of data source stream segments with the number of task
managers. Concretely, Fig. 25 shows a case of over-provisioning on the data processing side, as we
set up a 1-segment data stream and 11 Flink task managers executing the job. We observe that only 1
Flink task is actually reading data from the Pravega stream, whereas the other 10 do not interact
with Pravega. This represents a potential IO bottleneck. Furthermore, Flink attempts to use all
the available task managers for executing computations in this scenario. This means that the only
task reading data from the Pravega stream also needs to redistribute read events across the other
task managers for balancing compute load, which yields further shuffling and network overhead.
Conversely, our auto-scaling mechanism keeps a much more balanced load across task managers
related to data source reading by keeping the number of task managers and segments in sync. The
observable imbalance across tasks in terms of read data percentage is due to the different lifetimes of
tasks and the time it takes for our connector (and the reader group) to redistribute segments across
a dynamic number of task managers. This imbalance is mainly visible right after a change in the
number of stream segments and gets corrected with time. Overall, this experiment supports the
relevance of coordinating both data stream and processing parallelism for fully utilizing available
resources.

KPI-1 (Performance Improvements), KPI-3 (Resource Auto-scaling): Our storage-compute auto-scaling
mechanism improves load balancing and reduces shuffling transfers across task managers automat-
ically, whereas static provisioning may lead to problems under dynamic workloads.

5.3 Byte Streaming for Video Analytics

Event streaming systems, such as Apache Kafka, are being increasingly used in data-intensive, storage-
heavy workloads. These systems center their internal design and external APIs around the concept
of event. However, we position that this fundamental design decision may be limiting for some com-
plex, storage-centric use cases. Instead, we propose that event streaming systems build on top of a
byte-oriented streaming primitive supporting key properties such as atomicity, conditional writes, and
durability. Such a primitive would allow us building multiple APIs via data streams (e.g., event, K/V,

Page 24 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 26: Event versus byte-oriented streaming.

synchronization), as well as to directly exposing byte-level APIs to cope with workloads requiring
large data transfers or low-latency byte buffer IO. We implement this concept in Pravega: a tiered
storage system for data streams. Via experiments on AWS, we show the practicality of exposing byte
APIs for storage workloads compared to events.

5.3.1 Event vs Byte Semantics

In this section, we discuss key differences in the semantics of streaming events and bytes. This will
help the reader to better understand the underlying abstractions that distinguish Pravega from other
event streaming systems (see Fig. 26).

Discrete vs continuous data streaming. Inherently, using the event as the main data abstrac-
tion implies the discretization of the data stream. In many cases, this approach works well, like in
publish/subscribe scenarios where events are small by nature. However, discretizing a data stream
into events implies that the client should be able to write an event as a whole unit. If we think of
users writing chunks of data with moderate size at once (e.g., high resolution satellite image), it may
be hard for the client to internally manage write operations with large payloads (see Section 5.3.3).
This is specially true if we consider the configuration changes required for some systems to ingest
events larger than the default maximum size. Instead, the Pravega byte-oriented streaming primitive
enables clients to perform large data writes in an efficient manner and as a single logical unit.

Interpreted vs raw data streaming. Using events as the unit for performing data stream IO im-
plies encapsulating and storing event data in a protocol-related envelope (e.g., event headers, meta-
data). This is acceptable in applications integrating clients that implement the event streaming pro-
tocol for managing data. However, there are frameworks for which this may not be required. For
instance, multimedia frameworks like GStreamer [28] work with byte buffers instead of events. For
such use cases, providing a byte-level API for streaming data is the most natural approach (see Sec-
tion 5.3.3). Further, using data events for large data transfers would lead to artificially partition
a logical piece of data (e.g., file, object) across the stream. Conversely, the Pravega byte-oriented
streaming primitive allows clients to write a continuous stream of bytes addressable by offset.

Event-only vs multi-API data streams. Clients in event streaming systems mainly provide event
producer and consumer APIs. This is reasonable given that the internal protocol between clients and
servers, as well as the data delivery guarantees focus on data events. Instead, Pravega is the first sys-
tem offering event streaming APIs on top of a byte-oriented streaming primitive. More importantly,
the data reliability and durability guarantees in Pravega are provided at the byte level, not at the
event level. This is a key departure from other systems that has an important benefit: a byte-oriented
streaming primitive is the substrate for other APIs beyond event streaming. A good analogy is TCP,
as it is implemented on top of a packet oriented protocol and encapsulates complex logic to guarantee
correct in-order delivery that higher level applications rely on. As visible in Fig. 26, Pravega exposes
byte, key/value, and state synchronization APIs on top of the byte-oriented streaming primitive.

5.3.2 Pravega Byte Streams

The objective of the Pravega byte-oriented streaming primitive is to enable the streaming of bytes in
and out of a segment without imposing any framing or event demarcation. This primitive facilitates

Page 25 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

the writing of data to Pravega without organizing it into events. Data written using this approach
remains unframed and uninterpreted by Pravega, meaning there are no length headers or event
boundaries. Consequently, byte offsets within the stream are meaningful and directly accessible.
However, for this primitive to become a building block for more sophisticated APIs it is required to
support: i) atomicity, ii) conditional writes, and iii) durability.

Atomicity: Pravega clients write (or append) data to stream segments in an atomic manner. At the
server side, Pravega has a control plane —in charge of stream lifecycle operations and metadata–
and a data plane —made of segment store instances handling segment IO [29]. In addition to its
own data, each stream segment has an associated set of attributes (i.e., key-value pairs with 16-byte
keys and 8-byte values) that can be used either independently or in combination with various seg-
ment operations. For example, we can choose to only update some attributes, or we can choose
to atomically append to a segment and update some of its attributes. The segment store’s ingestion
pipeline processes all appends in the order in which they were received, and each segment write
and attribute update is atomically committed, thus ensuring the consistency of the segment data and
metadata [30].

Conditional writes: As part of the segment API, segment attributes can be updated using one of
the following verbs: replace, replace-if-greater (an attribute’s value is updated to v if the client
provides a new value v′ and v > v′), replace-if-equals (an attribute’s value is updated to v′′ only
if the current value v matches a client provided value v′), and accumulate. It is worth noting that
the replace-if-equals verb embodies the classical compare-and-set (CAS) primitive, which provides
strong consistency guarantees [31, 32]. One of the main advantages from a having a CAS primitive
on segment appends is that we can implement conditional writes on attribute values.

Durability: Pravega is a tiered storage system for data streams. Therefore, the segment store
first writes segment operations on a durable write-ahead log (WAL) [2, 1]. In parallel, it aggregates
and moves segment data to long-term storage (LTS). Segment appends, including segment attribute
updates, are durably stored in WAL before acknowledging the client and then moved to LTS. In the case
of a crash, the segment store reads the tail of the WAL and recovers its internal state. This includes
the latest data successfully appended to each active segment and the latest persisted state of their
attributes. It is worth mentioning that segment attributes are stored in LTS separately from segment
data (in a special B+Tree storage data structure [33]).

Byte Streams for a Reliable Event API. Next, we illustrate how the Pravega event API uses the
byte-oriented streaming semantics for preventing event loss and duplication. A EventStreamWriter
has a unique writer id and can write to multiple segments at once. Its internal state is made up of a
map of event numbers for each segment it interacts with, that is updated every time it needs to process
a new event. Every event is sent to the segment store as a conditional append on the event number for
its writer id on that segment to match what it should be. Similarly, each segment in the segment store
has an attribute map of writer ids to event numbers, which is atomically checked-and-updated with
every append. As depicted in Fig. 27, there may be the cases (e.g., network issue, server crash) that
could force the EventStreamWriter to retry an append that has not been acknowledged. When an
append is retried, it will only be written if it is the next to write according to the server’s segment at-
tributes state. Otherwise, a conditional check failure will be returned to the client. Combining retries
and conditional writes helps preventing data loss (i.e., event was never persisted) and duplication
(i.e., event was persisted but not acknowledged) in the event API. Conditional appends also ensure
that it is impossible for an earlier write to succeed and a later one to fail. Hence, appends can be safely
pipelined, as the client does not have to wait for the acknowledgment of prior data to write more.

Pravega Byte API Use Cases. Pravega defines a layered approach to build APIs on top of stream
segments (see Fig. 26). The Pravega Byte API can be seen as the lowest-level, user-facing interface for
users to manage data in Pravega. Next, we describe two storage-centric use cases that are founded
on the Pravega Byte API:

Large file transfers: The Byte API client interfaces, namely ByteStreamWriter and ByteStreamReader,
implement the InputStream and OutputStream (Java) APIs, respectively. These APIs align well with

Page 26 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 27: Event API usage of conditional writes and retries to avoid event loss or duplication.

Pravega Kafka

Version Pravega 0.13.0, Bookkeeper
4.14.1 Kafka 3.6.1

Replication
ensemble=1,
writeQuorum=1,
ackQuorum=1

replication=1, acks=all,
min.insync.replicas=1

Durability Yes (default) Yes (via configuration)

Resources

Controller=1CPU/2GB,
Segment Store +
Bookie=8CPU/48GB,
Zookeeper=2CPU/4GB,
Benchmark=4CPU/8GB

Broker=8CPU/48GB,
Zookeeper=2CPU/4GB,
Benchmark=4CPU/8GB

Journal Drives 1 NVMe 1 NVMe

Table 2: Default experiment configuration.

numerous existing use cases, particularly those involving the transfer of large files.
GStreamer pipelines: Streaming byte buffers is an essential feature for multimedia frameworks like

GStreamer [28]. With GStreamer, users can build multimedia pipelines and streaming applications.
We have developed a GStreamer connector for efficiently supporting video analytics [34]. Via the
Pravega Byte API, the GStreamer connector exposes the ability to read and write byte buffers corre-
sponding to video frames in GStreamer pipelines. Thus, Pravega is a durable sink and a low-latency
source for GStreamer applications.

5.3.3 Experimental Evaluation

Our experiments focus on the performance of the Pravega Byte API from two angles: i) large data
transfers, and ii) low-latency byte buffer writes. We summarize in Table 2 the configuration used in
our experiments on AWS EKS [35]. For the large data transfer experiments, we compare the perfor-
mance of Pravega against Apache Kafka [5], as the most widely adopted messaging system. In this
case, the workloads are executed with OpenMessaging Benchmark [7], which has been extended with
the Pravega Byte API. For the experiments with video byte buffers, we use the Pravega GStreamer
connector [34] to perform video stream IO.

Setup. Our cluster consists of 3 i3en.2xlarge instances that act as Kubernetes nodes in our AWS
EKS deployment. This type of instances contain local NVMe drives for fast local storage [36]. In our
deployment, we use one of such NVMe drives for journaling in both Kafka and Bookkeeper (WAL
for Pravega). We configured a second drive for Bookkeeper ledger volume, but it is not relevant
for the presented results. As we want to evaluate the interactions between clients and the server,
we configured the deployments with one Kafka broker and one Pravega segment store/bookie pair
(co-located). Therefore, the replication layout is set to 1 in both systems. For data durability, we eval-
uate Kafka with strict durability (log.flush.interval.ms=0 and log.flush.interval.messages=1
to force fsync upon write acknowledgement). This is the equivalent to the durability configuration
in Pravega (and Bookkeeper) by default, which is a key property for large byte streams. Conversely
to Kafka, in our experiments Pravega has an additional cost of tiering data to LTS (AWS S3 bucket).

Page 27 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

4 32 64
0

50

100

150

200

250

300

350

M
B

p
s

Write Size = 1MB

Topics/Producers
4 32 64

0

50

100

150

200

250

300

350
Write Size = 10MB

Topics/Producers
4 32 64

0

50

100

150

200

250

300

350
Write Size = 100MB

Topics/Producers

O
u

t
O

f
M

e
m

o
ry

 Pravega Byte API

 Kafka events (flush)
 Pravega Byte API

 Kafka events (flush)

 Pravega Byte API

 Kafka events (flush)

Figure 28: Pravega and Kafka throughput for transfers of multiple write sizes and number of topic-
s/producers.

Large Data Transfers. Next, we evaluate Pravega and Kafka for large data transfers. As Kafka does
not have a byte API, we evaluate the performance of the system transferring large events. Note that
for enabling Kafka transferring events larger than 1MB we had to modify several parameters in both
the producer (e.g., message.max.bytes, max.request.size) and the broker (e.g., message.max.bytes,
buffer.memory) sides. Pravega does not need configuration changes, which favors usability.

To set a target ingestion rate, we have measured the performance of i3.2xlarge drives available
in both Kafka and Pravega. Via fio [37] microbenchmarks, we observed that local drives can deliver
up to ≈ 330MBps using large (> 16KB), synchronous writes (direct=1 in fio). Note that using
synchronous writes is a requirement for data durability in byte streams. Our goal is to measure the
throughput of both Kafka event API and Pravega Byte API for different write sizes and degrees of
parallelism, while targeting 300MBps.

Fig. 28 shows the results of executing write workloads via 2 benchmark workers running on dis-
tinct nodes to the ones running the streaming services. Each worker instance runs producer threads
writing to a 1-partition/segment topic/stream. Visibly, for 1MB and 10MB write sizes, both Pravega
and Kafka can sustain the targeted 300MBps ingestion rate. This is expected as the size of writes
themselves are large enough to efficiently use local drives, as in the case of large event batches. Com-
pared to Kafka, Pravega shows greater variability in throughput. This is mainly because, in addition
to ingesting data, Pravega is continuously tiering data to an S3 bucket at the ingestion rate. This
induces an extra network and CPU cost unique to Pravega.

We observe that Pravega handles better than Kafka large data writes (100MB). For instance, in the
4 topics/producers case, Pravega achieves a median throughput 3x higher than Kafka. Even more,
in the 64 topics/producers case for Kafka, the benchmark workers crashed due to lack of heap mem-
ory. The reason may be related to an eager behavior in the Kafka producer when allocate memory
for event payloads (buffer.memory=150MB). To wit, the maximum JVM heap memory defined per
benchmark worker (4GB) is lower than 32 producers allocating buffer.memory heap memory each.
This indicates better efficiency in the Pravega writer.

KPI-1 (Throughput Improvements): Pravega Byte API can achieve higher throughput for large data
transfers compared to the Kafka event API.

Byte Buffer Streaming. In Fig. 29, we show the end-to-end latency for a GStreamer test application
consisting of a video writer and a video reader process running on individual pods. The end-to-
end latency is defined as the time taken for a video frame to be written to Pravega and read by
the reader. The measurement is done by tagging each video frame in GStreamer with the writer
timestamp and calculating the delta at the reader end using its local time (the cluster runs NTP for

Page 28 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 29: End-to-end latency of GStreamer byte buffers in Pravega.

time synchronization). We evaluate the impact of aspects like network location and storage type on
video frame end-to-end latency.

Fig. 29 illustrates the end-to-end latency that the Pravega Byte API achieves in a GStreamer
pipeline (1 writer/1 reader). First, irrespective of the storage used in the Pravega deployment (NVMe,
EBS volumes), we observe that the end-to-end latency at p95 falls below 10ms. This yields that the
Pravega Byte API is a reliable and efficient substrate for GStreamer video analytics pipelines. To
support this observation, Fig. 29 also shows the tame taken by an AI inference job provided by the
National Center for Tumor Disease (Germany) [38]. Such an inference job is intended to identify
surgery instruments in a real-time video stream from surgery cameras. At the p95, the job’s infer-
ence model exhibits a latency between 42.3% and 176.1% higher than the Pravega end-to-end latency,
depending on the deployment model.

Still, it is important to understand the impact on end-to-end latency related to both the storage
and network in a video pipeline. First, we notice that the usage of local NVMe drives in our exper-
iments exhibits an end-to-end latency improvement of around 39.4% at p95 compared to AWS EBS
volumes (gp2). This can be explained due to the frequent fsync calls achieve per-write data durabil-
ity that may entail higher latency for network volumes. Similarly, we also point out that co-locating
video writer and reader pods with the Pravega segment store improves latency by 14.9% to 21.3%.

KPI-2 (Data Speed Improvements): Pravega Byte API achieves low end-to-end latency for GStreamer
byte buffer streaming compared to AI inference latency, specially with local storage and network co-
location.

5.4 Streaming for Data-intensive Serverless Functions

In the first half of the NEARDATA project, we targeted an initial integration of serverless functions
with Pravega streams. We believe this integration is important, as it is increasingly common to find
advanced Function-as-a-Service (FaaS) serverless use cases consisting of complex function pipelines.
While prior art has mainly focused on using object storage or in-memory stores to support FaaS
computations, we find that data stream semantics are naturally aligned with the requirements of
FaaS pipelines. Next, we perform an analysis of how Pravega streams can be a storage substrate for
batch and streaming serverless analytics pipelines. Moreover, we identify that Pravega has specific
features and semantics (e.g., storage tiering, event key routing, exactly-once semantics, K/V interface)
that can be of great use for building serverless pipelines. The outcomes of this work can pave the
way to offering simplified serverless analytics engines on top of Pravega streams with advanced
capabilities.

Page 29 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

5.4.1 Storage in Serverless Analytics Pipelines

Data storage is key for serverless analytics pipelines given that functions do not only have to ingest
the initial input and write the final output to persistent storage, but also to store intermediate results
reliable and share them across functions [39]. However, it has been identified that storage is a major
performance bottleneck for handling many parallel function interactions [40, 41]. Arguably, object
storage is the main storage substrate in FaaS services. For instance, AWS Lambda [42], Google Cloud
Functions [43], and Azure Functions [44] can be easily integrated with Amazon S3 [45], Google Cloud
Storage [46], and Azure Blob Storage [47], respectively. We can also find multiple research works
focusing on object storage as the main storage substrate [48, 49, 50]. While object storage offers high
parallelism rates for both reads and writes, it presents some known weak points. First, single object
writes are slow [51], which in some cases may imply a lower performance. Second, reads from object
storage must wait until the writing has finished. This limitation means that the usage of object storage
hinders the possibility to apply function pipelining (i.e., the output of one function is the input for
the next one).

On the other hand, multiple works have resorted to in-memory stores for storing intermediate
results in serverless pipelines. Like in the case of object storage, it is possible to connect services like
Amazon Lambda with Redis or Memcached [52]. In this sense, there are multiple research works
that explore in-memory or ephemeral storage in serverless analytics [53, 54]. However, while Redis
is known for its high performance and scalability, scaling Redis clusters in a serverless environment
can be challenging. Besides, Redis stores data in memory, which makes it fast but also means that
data is volatile and can be lost if the server crashes or restarts. While Redis offers options for per-
sistence (such as snapshots or AOF logs), configuring and managing data persistence in a serverless
environment adds complexity and potential performance overhead.

More recently, some research works turned their attention to work with durable logs as a storage
substrate for serverless pipelines. For instance, Boki [55] is a seminal work that exploits the “shared
log” abstraction as a storage substrate for data analytics. Moreover, event streaming systems like
Apache Kafka are used in serverless analytics, but generally for notification and message passing
rather than for data-intensive data transfers.

We believe that the “data stream” is the natural evolution of using queues or logs for storing
data in serverless pipelines. Specifically, we refer to Pravega streams [29], as they provide multiple
features and semantics which may represent a “sweet spot” for serverless pipelines:

• Byte-oriented Streaming: Pravega streams provide fast even IO, which can facilitate pipelining
in serverless analytics. Furthermore, conversely to messaging systems like Apache Kafka and
Apache Pulsar, Pravega is designed to transfer bytes, not just events. This means that we could
build serverless a nalytics pipelines of large data transfers (e.g., large files, images) and still
exploit pipelining. This may be inefficient if large data chunks were managed using event
interfaces.

• Storage tiering: Pravega unifies streaming and batch data access to data streams at the infras-
tructure level, as it tiers cold stream data to a long-term storage system (e.g., NFS, S3). This
means that the same data stream API is capable to transparently access data in streaming and
batch fashion. As we demonstrate in the next sections, using Pravega streams is an interesting
approach to simplify the underlying storage infrastructure for serverless analytics pipelines
(i.e., only use data stream as the unifying data abstractions, as opposed to exposing users to a
mix of objects, files, in-memory stores and other services, depending on the workload at hand).

• Event routing: Pravega provides consistent ordering of data events based on routing keys. We
identified that we could take advantage of the event routing protocol inherent in streaming
storage systems to provide and efficient shuffling operator. Concretely, we present a technique
named adaptive event routing that enables the in-streaming shuffling operator. The adap-
tive event routing uses different hashing algorithm for the event routing keys depending on

Page 30 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 30: Wordcount mapper code executed with Lithops on top of Pravega streams (left). Visibly,
the job exploits event routing in Pravega to transfer local word counts to the right reducer lambda
without inducing extra shuffling traffic (right).

the properties that the shuffling operation must fulfill. This enables the usage of performant
shuffling-dependent operations such as reduce, group-by or sort.

• Exactly-once semantics: Serverless analytics pipelines need a “checkpointing” mechanism to
recover from failures while recovering the previous state and not missing/duplicating data.
Pravega already offers transactions and checkpoints, which are the substrate to build exactly-
once in stream data processing (e.g., the Pravega Flink connector already does this [14]).

• Synchronization primitives: A typical problem in serverless analytics is to share mutable state
for synchronization purposes (e.g., counters). Pravega provides mechanisms for synchronizing
state across multiple processes, such as the State Synchronizer API [56].

• K/V Store: Storing small, temporal state in a key/value fashion is also a valuable feature for
serverless analytics pipelines. Pravega provides a K/V API on top of data streams that may
satisfy the needs of many serverless analytics pipelines as an auxiliar service.

For all these properties, we identify Pravega streams as a powerful substrate to simplify storage for
serverless analytics pipelines compared to state-of-the-art technologies.

5.4.2 Lithops and Pravega Integration

An example of the synergy between streaming storage and serverless analytics is the integration we
have developed of Lithops and Pravega. To carry out this integration, we have used the Pravega
Python client1, given that Lithops is written in Python. The Pravega Python client allows us to
package a Lithops container image with the Pravega client available, so we could use when running
lambda functions in various cloud providers. This provides us a substrate to exploit the unique
features of streaming storage systems for serverless analytics. An example of that is the Wordcount
job presented in Fig. 30 and executed on AWS with Lithops and Pravega. As visible in the code, the
Lithops mapper tasks get data from S3 objects containing text and perform local counts of words
that are then written to a Pravega stream. One important point to notice is the way these tasks are
writing data to Pravega; to wit, they are using the "routing key" parameter of the Pravega writer
for writing local counts of words to the stream, and more concretely, the routing key parameter is
the actual word being counted. This approach exploits the routing semantics of Pravega streams to
guarantee that local words counted by mappers are consistently routed to the same stream segments.
With this guarantee, we can perform reduce tasks on segments that provide the right global results
for the entire dataset without incurring extra shuffling traffic, which is a well-known problem when
doing shuffling in object stores [51]. In addition to that, integrating Pravega with Lithops provides

1https://github.com/pravega/pravega-client-python

Page 31 of 46

https://github.com/pravega/pravega-client-python

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 31: Generation of image embeddings on AWS in a streaming fashion with AWS Lambda and
Pravega streams.

other advantages, such as having (writer) transactions and (reader) checkpoints to build exactly-once
semantics on serverless processing pipelines. Moreover, the tiered architecture of Pravega, which has
a low-latency write-ahead log and a scale-out long-term storage for stream data, provide a sweet spot
for running both streaming and batch serverless jobs.

Next, we demonstrate some of these features via experiments on AWS.

5.4.3 Experimental Evaluation

Streaming Serverless Pipelines: Generation of Image Embeddings. In this experiment, we use
AWS Lambda to read images from a Pravega stream and generate image embeddings in a streaming
fashion. The sort is performed using AWS Lambda functions with 1769MB of memory (according to
AWS Lambda documentation, this is equivalent to 1 vCPU). The AWS Lambda timeout has been set
to 3 minutes. The throughput numbers are collected from the Lambda functions and the experiment
completes when all the images of the stream are processed. The Pravega cluster consisted of 4VM
with local NVMe drives (i3.2xlarge) and stores data on AWS S3. Each drive had a measured (sync)
write throughput of 0.35GB/s. The workload consists of a benchmark VM writing 1MB images
to a Pravega stream. The rate of image writes is equivalent to the processing capacity of a single
AWS Lambda function running the neural model that generates embeddings (1 every 2 seconds)
multiplied by the number of functions. When executing an experiment, the number of segments of
the Pravega stream is equal to the number of parallel AWS Lambda functions being executed. Ideally,
each AWS Lambda function will acquire a single Pravega stream segment to read data from. Once
the lambdas complete the processing of image embeddings, the experiment completes. Note that we
do not account for the first execution results due to the lambda cold start.

Fig. 33 shows the throughput of image embeddings generation depending on the number of AWS
Lambda functions executed. As can be observed, the throughput follows a near lineal trend com-
pared to the number of parallel lambdas. The reason for the throughput to do not grow strictly lin-
early with the number of lambda functions is that the distribution of stream segments across lambdas
was not ideal in some cases, specially at the beginning of the experiment. Overall, this experiments
demonstrates that Pravega can be used for data-intensive serverless streaming pipelines.

KPI-2 (Data Speed Improvements), KPI-3 (Resource Auto-scaling): We observe that the throughput of
lambdas consuming stream data increases in a near-linear fashion with more functions and resources
added to the system, which perfectly aligns with the stream auto-scaling capabilities of Pravega.

Batch Serverless Pipelines: Terasort. In this experiment, we use Lithops [57] for executing a batch
Terasort job on top of Pravega streams on AWS. The sort is performed using AWS Lambda functions
with 1769 MB of memory (according to AWS Lambda documentation, this is equivalent to 1 vCPU).
The execution time is measured from the moment before the AWS lambdas are invoked until the
sorted dataset is written to S3 and all the lambdas have finished. The S3 bucket and the AWS Lambda

Page 32 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 32: Generation of image embeddings on AWS in a streaming fashion with AWS Lambda and
Pravega streams.

functions are in the same region (us-east-1). The Pravega cluster consisted of 4VM with local NVMe
drives (i3.2xlarge). Each drive had a measured (sync) write throughput of 0.35GB/s. Terasort is a
benchmark that measures the performances of shuffling operators. The benchmark consists of sorting
a large dataset of randomly generated records. Each record is 100 bytes long and consists of a 10-byte
key and a 90-byte value. With this benchmark we measure the time and costs it takes to sort the
dataset. We used a 20 GB dataset for this benchmark. The dataset is stored unsorted in a unique file
in AWS S3 and the sorted dataset must be written to a unique file in AWS S3. The sort is done with
a MapReduce job using Lithops using Pravega streams for sharing data. We only use a single map
and a single reduce phase. We use a Pravega stream with r segments to automatically shuffle the
data. A job with m mappers and r reducers is executed as follows: i) Each AWS Lambda function of
the map phase write the records to the Pravega stream using a custom routing hash algorithm. The
custom routing hash algorithm is used route the records maintaining the lexicographically order.
Note that each mapper reads a partition of the input file from S3; ii) Each AWS Lambda function of
the reduce phase reads the records from the Pravega stream, loads the records into memory, sorts
them, and writes the sorted records to the final file in S3 using the multipart upload service. We
execute the experiments with different values of mappers (m) and reducers (r) to understand the
impact on performance and cost.

Figure 32 shows a fine-grained view of the Terasort execution. We observe that there are 80
function calls (40 mappers, 40 reducers) to execute the Terasort with Lithops using Pravega streams.
One interesting observation is that related to function pipelining. To wit, both mapper and reducer
functions can start working in parallel, as the data being written by the mappers can be processed in
stream fashion by the reducers. This differs with other approaches, like regular object storage access,
in which mappers and reducers need to work on serial processing stages (i.e., reducers need the
input object resulting from mappers’ computations). This is a first interesting observation of using
data streams as a substrate for serverless analytics pipelines.

Another important aspect that can be highlighted in this experiment is that of data shuffling.
To wit, in traditional map/reduce computing, the output of mappers should be shuffled and re-
organized to serve as input for reducers, which should compute on a specific partition of the dataset.
This process can be expensive in terms of object generation and associated data transfers. We realized
that an inherent feature in Pravega (and other event streaming systems) called event routing can be
extended to solve data shuffling with no additional data transfer overhead. For example, as this
job is related to sorting elements, we modified the standard routing key algorithm in Pravega by
a lexicographically ordering algorithm. This means that, considering a stream with an arbitrary
number of segments, the routing algorithm will distribute elements lexicographically distributed
across the stream segments. That is, a local mapper is writing to segments already with the correct
global order expected in the result file. In this experiment, this enables reducers to perform a local

Page 33 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 33: Cost and execution time results from running Terasort job with different combinations of
mappers and reducers.

sorting task with the global section of the dataset ready to be written as output. We believe that this
model can be applied to other problems using serverless analytics and Pravega streams.

It is also important to consider the abstraction of the infrastructure that Pravega streams provide
to analytics job. Previously, we have described an experiment in which multiple AWS Lambda func-
tions read images ingested into a Pravega stream and generated embeddings out of it in a streaming
fashion. In this experiment, we show batch job processing data in parallel that Pravega fetches trans-
parently from S3. For the former job Pravega provides low latency, whereas for this job it provides
high throughput. And this sweet spot in the latency vs throughput trade-off is transparent to server-
less analytics developers, as they only work with the Pravega Stream API.

KPI-5 (Simplicity and Productivity): Pravega can seamlessly handle streaming and batch serverless
workloads with the same API, thus making it easier for developers to manage data in serverless
functions compared to having to use a different storage system per workload (e.g., S3, Kinesis, etc.).

Page 34 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

6 XtremeHub Security: Scone

SCONE can secure the XtremeHub stack of applications (CPU, memory, disk and network), by ex-
ploiting the TEE (Trusted Execution Environment) and creating an enclave in the operating system.
The systems that are eligible to confidential computing will reside on SCONE prepared Docker im-
ages. Presently, Lithops and Flower ML are ported to a prepared SCONE Python image. Next steps
will focus on porting other applications and establishing the attestation policies for them.

6.1 Strengthening the Security

The SCONE framework already had support for concurrent executions and sub-processes, how-
ever, applications like Lithops take a step further, by using complex programming constructs, such
as using futures-like libraries. These libraries are employed in synchronization of concurrent sub-
processes.

SCONE had to be improved to support it, while also strengthening the care to avoid "race condi-
tion", arising from two or more processes accessing the same resource, e.g. a shared variable residing
in memory. This is trivial for applications that rely solely on the operating system, but require addi-
tional control mechanisms when we talk about confidential executions.

6.1.1 Enforcing the Security

A complete stack of confidential computing requires more than just running the application in an en-
clave protected by the TEE. In spite of that, they can be subject to malicious interference and injection
of spurious data from outside.

The enforcement of confidential computing is made via CAS (Configuration and Attestation Ser-
vice), a key decision maker that will only deliver secrets and configurations for trustworthy appli-
cations. The attestation workflow will measure the enclave’s hash and will provide configurations
related to XtremeHub interactions, storage encryption, and other configurations that will only be
available to authorized applications or users, i.e., the enclave’s hash has to be the same valid one
configured in advance.

After correctly attested, applications will receive from CAS the corresponding "policies" of secrets
and configurations they need. Policies are descriptive easily comprehensible manifests that are writ-
ten (in YAML format) and uploaded onto CAS in advance. Attested applications will only run if the
complete attestation workflow is finished. And this is what guarantees that the XtremeHub stack
will only be contain applications and secrets allowed within its boundaries.

6.2 Lithops Experimental Execution

Non-confidential execution versus confidential execution is crucial to determine whether adversaries
(say, a malicious user with superuser privileges) can extract secrets from the systems as they operate
from the outside. For example, the demonstration below shows that an adversary seating inside the
cloud provider and with privileged access to the server can try to eavesdrop the confidential execu-
tion, but will not obtain anything. A simple program using Lithops libraries (running in "localhost
mode") was employed to do the assertion. Here is what an attacker can do.

• hellolithops.py
from lithops import FunctionExecutor
import time
inspected="mysecret"
def hello(name):

return ’Hello {}!’.format(name)
while True:

with FunctionExecutor() as fexec:
fut = fexec.call_async(hello, ’World’)
print(fut.result())
print(f"will sleep. inspected="+inspected)
time.sleep(3)

Page 35 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

• Inspect running processes in the server. a simple ps -ef |grep python will bring whatever is
running from the hosted containers. Then the attacker will inspect the listed processes details
in /proc and eventually find the target. For this experiment, the attacker found the eligible target
to be the proccess ID 543785. See the list below:

– root 694 1 0 2023 ? 00:00:03 /usr/bin/python3 /usr/bin/networkd...
root 742 1 0 2023 ? 00:00:00 /usr/bin/python3 /usr/share/unattend...
...
root 403106 661223 0 13:02 ? 00:00:02 python3 backup_c...
root 403107 2966184 0 13:02 ? 00:00:02 python3
...
root 537381 537089 0 14:13 ? 00:00:01 python3
root 542497 2966000 0 14:16 ? 00:00:00 python3 backup_c...
root 543785 537089 95 14:17 ? 00:00:21 python3

– An attested application will receive all the command-line arguments from the policies.
The targeted process will not give out such detail in the operating system, but the actual
full command-line was python3 /hellolithops.py. PID 543785 only has python3.

• Dumping memory contents. Linux uses a file representation to access the memory, being
/proc/$PID/maps, for memory mapping, and /proc/$PID/mem, for the memory content. The at-
tacker will get the mappings and extract the addresses contents using the dd command, which
is available in every Unix/Linux system.

– Example: dd if=/proc/543785/mem bs=4096 iflag=skip_bytes,count_bytes skip=$((
0x$ADDR_INI)) count=$((0x$ADDR_END - 0x$ADDR_INI))
of="543785_mem_$ADDR_INI.bin"

– Next, the attacker will try to extract any useful information from the dumps. In this ex-
periment, we already know what to look for: the pieces of text "World", "inspected" and
"mysecret".

– The attacker will use a simple command strings, often available in Unix/Linux systems.
Example: cat 543785_mem_*.bin |strings >543785_mem_grep and egrep -e World -e
inspected -e mysecret 543785_mem_grep. This returns nothing. Fig. 34 depicts the ac-
tions above.

• Inspect running processes in the server. the same mehod for non-confidential: ps -ef |grep
python and so on. For this experiment, the attacker found the eligible target to be the proccess
ID 494873.

– root 494873 473581 2 13:50 ? 00:00:00 python3 hellolithops.py

– One difference is that non-confidential executions have to tell the operating system the
command and parameters altogether.

• Dumping memory contents. again, the same steps, dump using dd.

– Example: dd if=/proc/494873/mem bs=4096 iflag=skip_bytes,count_bytes skip=$((
0x$ADDR_INI)) count=$((0x$ADDR_END - 0x$ADDR_INI))
of="494873_mem_$ADDR_INI.bin"

– Next, the extraction of useful information.

– Example: cat 494873_mem_*.bin |strings >494873_mem_grep and egrep -e World -e
inspected -e mysecret 494873_mem_grep. This time it returns a lot of content (71 lines):

– inspected
"mysecret"

Page 36 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 34: Attacker with high privileged access to the hosting cluster.

– Hello World!

– b’\x80\x04\x95\x10\x00\x00\x00\x00\x00\x00\x00\x8c\x0cHello World!\x94.’

• In summary, SCONE will ensure confidentiality for the execution, CAS will enforce confiden-
tial computing via attestation and policies provisioning, despite a "root" user residing within
the premises of the cloud provider tries to inspect the XtremeHub stack. Lithops is supported in
SCONE and additional work is expected to improve the integration (attestation for its "server-
less mode" dispatching jobs to Kubernetes is under development). The porting of Pravega is
expected to occur next.

Page 37 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

7 XtremeHub Connectors

In this section, we specifically focus on a couple of Data Connectors for XtremeHub that target to
optimize use case workloads. On the one hand, we describe Dataplug and evaluate its integration
with the Lithops serverless data processing platform. On the other hand, we overview the progress
of leveraging High-Performance Computing connectors onto our targeted use-cases.

7.1 Lithops as a compute engine for Dataplug

First of all, we will give a brief overview of the serverless data connector that we present in NEAR-
DATA known as Dataplug. In deliverable D2.2 NEARDATA Architecture Specs and Early Prototypes the
reader will find an extensive description of this component.

Dataplug Design Recap. Dataplug is an extensible Python framework that implements the on-
the-fly data partitioning model. The goal of Dataplug is to provide extensible tools to deal with
extreme data that presented major challenges to ingest and partition. Dataplug hides the complexities
of unstructured scientific data pre-processing and partitioning, offering researchers a data-driven
pre-processing and dynamic on-the-fly partitioning strategies for diverse unstructured scientific data
formats such as, FASTA, FASTQGZIP, and VCF for genomic data, LIDAR for geospatial data, and
imzML for metabolomics data. Dataplug enables efficient parallel access to existing unstructured
data blobs in their original scientific format. Dataplug is serverless and is portable for use with
different distributed data analysis clusters or serverless framework (Dask, Ray, PySpark, Lithops,
...) on any Cloud (AWS, Google Cloud, ...) or on-premise, without the need to manage servers for
pre-processing jobs.

The data model offered by Dataplug is divided into two phases:

• Cloud-aware pre-processing and indexing: This pre-processing method is format-specific, and
extracts metadata from the raw data blob, such as internal content structure, indices, and at-
tributes.

• Dynamic on-the-fly partitioning: This phase is responsible for generating Data Slices that en-
capsulate partition metadata (such as byte ranges) and code. These are distributed to remote
workers to be evaluated from HTTP GET requests of byte ranges to obtain the desired partition.

Lithops serverless analytical data processing platform offers the ability to run massively parallel
jobs on any of the major cloud providers. The simplicity of connection between the object storage and
the computing backends allows Dataplug to execute its data model phases on the different cloud
services. In NEARDATA we observe a potential integration between both components due to the
simplicity of connection between them. There is no need to implement a new architecture design on
Dataplug since this framework includes a specific library to use Lithops as a compute backend.

In the following, we will present a couple of Dataplug benchmarks using Lithops as computa-
tional backend.

7.1.1 Experimental evaluation

This experiment focuses on the evaluation of the dynamic partitioning offered by Dataplug on the
FASTQGZip compressed genomic data format.

For this purpose, the two phases that form the Dataplug data model will be analyzed in detail.
The two experiments can also be differentiated:

Pre-processing comparison between Cloud-aware and static partitioing approaches: In this ex-
periment, we want to compare the time required to generate static partitions and the time required
to apply Cloud-aware indexing for different data volumes of FASTQGZip data. To generate static
partitions, we use a script that employs the aws CLI, zcat, and split commands. This script reads a
compressed file from S3, splits it into partitions with a specified number of lines, and writes the par-
titions back to S3 in a pipe stream. For the Cloud-aware pre-processing approach with Dataplug, we
employ the FASTQGZip pre-processing method predefined in the framework. Our pre-processing
reads the input file from S3 in a stream and generates a GZip index using gztool. This index can be

Page 38 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 35: Comparison of pre-processing time to generate static partitions and Cloud-aware indexing
for different input FASTQGZip data sizes.

then used to query the GZip file to retrieve specific chunks and decompress them on-the-fly. For both
experiments, we used a t2.xlarge instance on AWS EC2.

Figure 35 shows the execution times for pre-processing different input FASTQGZip file sizes us-
ing both static partitioning and Cloud-aware indexing approaches. The results demonstrate that
Cloud-aware indexing of GZip files is up to ×2.9 faster than generating static partitions. While both
approaches involve reading and decompressing the entire GZip stream, generating static partitions
requires an additional step of writing the chunked data back to storage, which increases the pre-
processing time. This effect is further amplified if the partitions are compressed before being up-
loaded to storage. However, employing Cloud-ware FASTQGZip implies an extra cost in metadata
storage, as we have to account for the storage of the GZip index file. Even so, on-the-fly partition-
ing reduces transfer by approximately 200% by avoiding completely downloading the data to be
partitioned and writing the resulting partitions back to storage.

On-the-fly partitioning overhead: We measure the time taken to fetch a partition of 850MB using
different methods: static FASTQGZip compressed chunks, static FASTQ decompressed chunks, and
on-the-fly partitioning with Cloud-aware FASTQGZip. The partitions are retrieved from serverless
functions in AWS Lambda using Lithops, with a memory configuration of 2048MB each.

Figure 36 shows the results of the experiment. We can observe that fetching a partition with
Cloud-aware on-the-fly partitioning and decompressing it significantly lowers the average fetch time
(5.81s) compared to obtaining the static decompressed partition (21.72s). We can also say that obtain-
ing a partition with on-the-fly partitioning is x3.7 faster than with static partitioning. On the other
hand, the fetch time for static compressed partitions is similar in both cases. This difference in fetch
time can be attributed to the fact that it is faster to download a smaller compressed payload from
object storage and decompress it in memory compared to downloading a larger volume of already
decompressed data.

KPI-1 (Throughput Improvements and data transfer reduction): From the two experimental evalua-
tions we can validate that Dataplug offers improvements in data throughput when preprocessing
data, avoiding static data preprocessing from metadata extraction and thus ensuring data transfer
reduction.

7.2 HPC Data Connectors

This section describes the progress on an HPC-compute layer for our XtremeHub. We describe an
HPC data connector to leverage High-Performance Computing platforms onto our targeted use-
cases. That is, to allow use-cases to use supercomputing facilities, and most particularly MareNos-
trum supercomputer hosted by BSC-CNS. This is a challenging activity given the use-cases of the

Page 39 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Figure 36: Comparison between fetch time for statically generated compressed and uncompressed
FASTQ partitions and Cloud-aware FASTQGZip on-the-fly partitioning.

project are implemented utilizing software typically found in cloud environments (Apache Spark,
Lithops, Pravega) and not typically available in a supercomputer. While this grants flexibility, cloud
environments computing capabilities are less-performance oriented than those found in supercom-
puters. Cloud is designed with flexibility in mind and has more relaxed quality of service. While
supercomputers are designed in terms of compute power so they require static resources allocations
while providing high-performant network, compute and storage capabilities to guarantee a high
amount of compute power.

In this section we describe the work done so far regarding enabling our MDR use-case into MPI
and current initial results found.

7.2.1 HPC Data Connector for the MDR use-case

The human genome reference sequence comprises a chain of over 3 billion nucleotide pairs. Com-
paring DNA sequences between individuals reveals up to 3.78 million differences, termed genomics
variants. Understanding genomics variation is vital for comprehending disease predisposition. Thus,
a primary aim of Computational Genomics is identifying disease-associated variants. Complex dis-
eases like Type 2 Diabetes, asthma, and Alzheimer’s disease result from the combined effects of mul-
tiple genomics variants and environmental factors. Despite tools facilitating variant interaction dis-
covery and impact assessment, analyzing variant interactions remains a computational and method-
ological challenge. Even in the simplest approach, analyzing pairwise interactions yields over 1012

combinations, posing significant computational demands.
Leveraging High-Performance Computing facilities (i.e, MareNostrum IV and V) we can address

this problem using a combination of Machine Learning methods and parallel computing. This com-
bination is what we define as an HPC data connector. Initially is being developed for the Multifactor
Dimensionality Reduction (MDR) method to detect variant pairs associated with Type 2 Diabetes
(T2D). However, we envision this data connector as something that can be expanded to other use-
cases in the omics sciences.

KPI-1 (Data Throughput Improvements): figure 37 demonstrates the computational performance of
our approach. Initial results show that our use-case MDR implemented with MPI achieves a process-
ing rate of 1311 combinations per second per core. In this scenario, leveraging all available cores in
the MareNostrum 4 cluster (totaling 165.888 CPUs), it could compute the entire set of combinations
(613) within 3.2 days. Furthermore, preliminary testing indicates that utilizing the enhanced archi-
tecture offered by Marenostrum 5 enables a processing rate of 3057 combinations per second per
core. Consequently, with the same number of CPUs as in MareNostrum 4, all combinations could be
computed in approximately 1.4 days. Compared to our previous cloud-based solution with Apache

Page 40 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

Spark, using MPI improves performance 5x times using the MareNostrum 4 supercomputer and the
new supercomputer improves it even further.

1 2 3 4 5 6 7
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

MDR_MPI MN5

MDR_MPI MN4

Total combinations (x10⁶)

T
im

e
(M

in
)

Figure 37: Computational Performance Comparison of MDR with MPI on MareNostrum 4 and
MareNostrum 5 Clusters.

Due to patient information confidentiality, public datasets for such experiments are unavailable,
and most private datasets require licensing. Therefore, we developed a custom script to simulate a
dataset with similar complexity to real datasets, like those presented by the 70KforT2D project. This
dataset adheres to the Variant Call Format (VCF) standard and so does our HPC data connector.

We have described further details of both the described use-case and the HPC data connector in
Deliverable 5.1: First release of KPI benchmarks in all use cases and data connector libraries. In the mentioned
deliverable there are further details on how we are adapting as well this HPC data connector to
leverage GPU resources, which can particularly accelerate machine learning models and allow us to
perform faster.

The outcomes outlined above underscore the potential of the MareNostrum architecture and MPI
model in handling substantial computational workloads. Building upon the initial iteration of our
use-cases, we are in the process of designing a standardized data connector. This innovative con-
nector enables the seamless distribution of large databases across multiple machines, optimizing
efficiency and scalability.

Currently the benchmarks have been performed on a rather small amount of resources. This is
due to access a broader amount of resources available in the supercomputer special access requests
must be made through the grant of a RES [58] or even a PRACE [59] proposal. The difference among
them resides on the amount of resources that can be granted. The PRACE grants the most, however,
typically such large grants are made with splitting granted resources across supercomputers of the
network, instead of having them all in a single one. Thus, requiring to adapt the workload to run
in different environments and then combine the results. An application for a RES has been already
made and awaiting acceptance to carry on with large-scale experiments. Depending on the outcome
of this initial large-scale experiments we may apply for a PRACE to expand the testbed even further.
Nonetheless, current results are already representative as one can observe the extreme linearity of
the experiments. Consequently we can extrapolate how those results will look like on a larger set of
computational nodes.

KPI-3 (Demonstrated resource auto-scaling for batch processing): in line with our ongoing efforts, we
are dedicated to improving the computational performance of NEARDATA use-cases, and most par-
ticularly for our specific study case. This entails optimizing data structures and streamlining certain
functions to increase the number of combinations computed per core per second. Additionally, we
aim to evaluate the scalability of our approach by examining its performance with a broader scope,
such as analyzing 3x3 combinations, which presents a significant increase in computational complex-
ity as well as in terms of scientific validation, both of them are in progress.

Page 41 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

8 Conclusions and Next Steps

In this deliverable, we have presented the data plane component of NEARDATA: the XtremeHub.
First, we have provided an overview of Lithops and a performance evaluation of serverless work-
loads on AWS (T3.1). Second, we have described Pravega and compared its performance with pop-
ular messaging systems, such as Apache Kafka and Apache Pulsar. We have also introduced a new
notion of storage-compute auto-scaling, in which Pravega elastic streams are scaled in coordina-
tion with processing engines (T3.2). In this sense, we have also evaluated the byte API of Pravega
for storage-oriented workloads (e.g., GStreamer, large transfers) and its integration with Lithops for
running serverless workloads on top of Pravega streams (T3.1). In third place, we have briefly intro-
duced Scone and how it integrates with Lithops to perform confidential serverless computations. We
conclude the technical content of this deliverable by focusing on some Data Connectors: i) we intro-
duced Dataplug, which provides advanced indexing and partitioning capabilities to Lithops (T3.5);
ii) we reviewed the current progress on HPC Data Connectors (T3.4). A summary of the KPIs for
XtremeHub components is illustrated in Table 3.

Component KPI Results
Lithops KPI-3 Lithops incorporates an extensible storage and compute backend architecture that enables elastic and

scalable cloud solutions to be designed according to the resources needed to run the workload.

Pravega

KPI-1 The Pravega writer achieves good write performance compared to the Kafka producer (e.g., 73% higher
for 1 segment) while guaranteeing data durability.

KPI-2,
KPI-3

Dynamic batching allows writers to achieve an excellent balance between latency and throughput without
forcing the user to decide the performance configuration of the writer ahead of time.

KPI-1 Pravega shows the highest throughput (350MBps) compared to Kafka (330MBps) and Pulsar (250MBps)
when using multiple segments.

KPI-2 The Pravega reader achieves both low end-to-end latency and high throughput compared to Kafka and
Pulsar for the cases tested. Pravega is virtually insensitive to the distribution of routing keys, as opposed
to the other systems.

KPI-1 Pravega is the only system that achieves consistent throughput for the number of producers and segments
tested, while guaranteeing event ordering and data durability. Also, it efficiently exploits drive through-
put irrespective of the degree of parallelism.

KPI-1 Pravega achieves much higher historical read throughput compared to Pulsar (up to 7x) without user
intervention or complicated configuration settings.

KPI-3,
KPI-5

Pravega is the first streaming storage system that provides elastic streams: data streams that are automat-
ically re-partitioned according to the ingestion load and the scaling policy.

KPI-5 Administrators can reason about the storage-compute auto-scaling of the streaming pipeline considering
just two main parameters (i.e., CPU threshold, stream auto-scaling rate).

KPI-3 The orchestrator component allows us to auto-scaling streaming analytics jobs automatically based on
elastic Pravega stream parallelism.

KPI-1,
KPI-3

Our storage-compute auto-scaling mechanism improves load balancing and reduces shuffling transfers
across task managers automatically, whereas static provisioning may lead to problems under dynamic
workloads.

KPI-1 Pravega Byte API can achieve higher throughput for large data transfers compared to the Kafka event
API (e.g., 3x improvement for 100MB events).

KPI-2 Pravega Byte API achieves lower end-to-end latency (p95 between 42.3% and 176.1% lower) for
GStreamer byte buffer streaming compared to AI inference latency.

KPI-2,
KPI-3

The throughput of lambdas consuming Pravega stream data increases in a near-linear fashion with more
functions and resources added to the system.

KPI-5 Pravega can seamlessly handle streaming and batch serverless workloads with the same API, thus making
it easier for developers to manage data in serverless functions compared to having to use a different
storage system per workload (e.g., S3, Kinesis, etc.).

Scone KPI-4 SCONE supports confidential execution aided by TEE (hardware enabler) of both Lithops and Flower
ML, two systems developed in Python. Flower ML can run attested as a standalone application. Lithops
attestation for its serverless mode is a work in progress.

Connectors KPI-1 Introducing Dataplug as a dynamic data partitioner offers data transfer reduction (200%) and data
throughput improvements in preprocessing tasks (x2,9 faster in FASTQGZip indexing and x3,7 faster
in FASTQGZip fetching partitions). MDR use-case has applied the HPC Data Connector and shows an
speed-up improve of 5x times respect cloud-based version (Apache Spark).

KPI-3 We intend to explore the integration of the HPC Data Connector into the Lithops framework and allow
for maximum scalability enhancing the connector’s capabilities.

Table 3: Highlights of main KPIs achieved by XtremeHub components.

The consortium has achieved great progress so far, not only in the execution of work-package
tasks, but also in the integration of XtremeHub components. But we remain ambitions in what is

Page 42 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

yet to be done in the near future. For instance, we expect further integration among XtremeHub
components and exploit them on our use cases. We also expect to develop a wider variety of data
connectors that allow us to address different goals (e.g., special formats, data reduction, etc.). Last but
not least, we will also work on making XtremeHub more adaptive to workload and usage patterns.

Page 43 of 46

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

References

[1] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” ACM SIGOPS operating
systems review, vol. 47, no. 1, pp. 9–15, 2013.

[2] “Apache bookkeeper.” https://bookkeeper.apache.org, 2023.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free coordination for internet-
scale systems,” in USENIX ATC’10, vol. 8, 2010.

[4] “Apache zookeeper.” https://zookeeper.apache.org, 2023.

[5] “Apache kafka.” https://kafka.apache.org, 2023.

[6] “Apache pulsar.” https://pulsar.apache.org, 2023.

[7] “Openmessaging benchmark.” https://github.com/openmessaging/benchmark, 2024.

[8] “Pravega.” https://cncf.pravega.io, 2023.

[9] R. Gracia-Tinedo, D. Harnik, D. Naor, D. Sotnikov, S. Toledo, and A. Zuck, “Sdgen: Mimicking
datasets for content generation in storage benchmarks,” in USENIX FAST’15, pp. 317–330, 2015.

[10] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema, “Analysis and modeling of time-
correlated failures in large-scale distributed systems,” in IEEE/ACM International Conference
on Grid Computing, pp. 65–72, 2010.

[11] G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching,” Journal
of the ACM, vol. 28, no. 2, pp. 289–304, 1981.

[12] “Apache flink.” https://flink.apache.org, 2023.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache flink:
Stream and batch processing in a single engine,” The Bulletin of the Technical Committee on
Data Engineering, vol. 38, no. 4, 2015.

[14] “Pravega - flink connector.” https://github.com/pravega/flink-connector, 2023.

[15] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight asynchronous snapshots
for distributed dataflows,” arXiv preprint arXiv:1506.08603, 2015.

[16] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed
systems,” ACM Transactions on Computer Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[17] “Apache flink jira - flink-6390.” https://issues.apache.org/jira/browse/FLINK-6390, 2023.

[18] “Pravega - working with pravega: Transactions.” https://cncf.pravega.io/docs/latest/
transactions, 2023.

[19] “Wikipedia - two-phase commit protocol.” https://en.wikipedia.org/wiki/Two-phase_
commit_protocol, 2023.

[20] “Apache flink jira - flink-7210.” https://issues.apache.org/jira/browse/FLINK-7210, 2023.

[21] Apache Flink, “Apache flink javadoc - twophasecommitsinkfunction.” https://nightlies.
apache.org/flink/flink-docs-release-1.17/api/java/org/apache/flink/streaming/api/
functions/sink/TwoPhaseCommitSinkFunction.html, 2023.

[22] “Kubernetes - horizontal pod autoscaling.” https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale, 2023.

Page 44 of 46

https://bookkeeper.apache.org
https://zookeeper.apache.org
https://kafka.apache.org
https://pulsar.apache.org
https://github.com/openmessaging/benchmark
https://cncf.pravega.io
https://flink.apache.org
https://github.com/pravega/flink-connector
https://issues.apache.org/jira/browse/FLINK-6390
https://cncf.pravega.io/docs/latest/transactions
https://cncf.pravega.io/docs/latest/transactions
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://issues.apache.org/jira/browse/FLINK-7210
https://nightlies.apache.org/flink/flink-docs-release-1.17/api/java/org/apache/flink/streaming/api/functions/sink/TwoPhaseCommitSinkFunction.html
https://nightlies.apache.org/flink/flink-docs-release-1.17/api/java/org/apache/flink/streaming/api/functions/sink/TwoPhaseCommitSinkFunction.html
https://nightlies.apache.org/flink/flink-docs-release-1.17/api/java/org/apache/flink/streaming/api/functions/sink/TwoPhaseCommitSinkFunction.html
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

[23] “Prometheus.” https://prometheus.io/, 2023.

[24] Dell Technologies, “Dell emc isilon h600 hybrid nas storage.” https://www.dell.com/en-uk/
dt/storage/isilon/isilon-h600-hybrid-nas-storage.ht, 2023.

[25] R. Metzger, “Flink blog - scaling flink automatically with reactive mode.” https://flink.
apache.org/2021/05/06/scaling-flink-automatically-with-reactive-mode/, 2021.

[26] “Uk health state agency data.” https://www.ncbi.nlm.nih.gov/bioproject/248064, 2023.

[27] K. Gontarska, M. Geldenhuys, D. Scheinert, P. Wiesner, A. Polze, and L. Thamsen, “Evaluation
of load prediction techniques for distributed stream processing,” in IEEE IC2E’21, pp. 91–98,
2021.

[28] “Gstreamer.” https://www.nct-heidelberg.de/en/the-nct.html, 2024.

[29] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system for
data streams,” in ACM/IFIP Middleware’23, pp. 165–177, 2023.

[30] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12, no. 3, pp. 463–
492, 1990.

[31] T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-word compare-and-swap operation,”
in Distributed Computing: 16th International Conference, DISC 2002 Toulouse, France, October
28–30, 2002 Proceedings 16, pp. 265–279, Springer, 2002.

[32] J. D. Valois, “Lock-free linked lists using compare-and-swap,” in Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing, pp. 214–222, 1995.

[33] “Pravega - segment attributes.” https://cncf.pravega.io/blog/2019/11/21/
segment-attributes/, 2024.

[34] “Pravega - gstreamer connector.” https://github.com/pravega/gstreamer-pravega, 2024.

[35] “Amazon elastic kubernetes service.” https://aws.amazon.com/en/eks/, 2024.

[36] “Amazon ec2 i3en instances.” https://aws.amazon.com/es/ec2/instance-types/i3en, 2024.

[37] “Fio’s documentation.” https://fio.readthedocs.io/en/latest/, 2024.

[38] “National centre for tumor diseases (nct) in heidelberg.” https://gstreamer.freedesktop.
org/, 2024.

[39] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless computing survey: A
technical primer for design architecture,” ACM Computing Surveys (CSUR), vol. 54, no. 10s,
pp. 1–34, 2022.

[40] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed com-
puting for the 99%,” in Proceedings of the 2017 symposium on cloud computing, pp. 445–451,
2017.

[41] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira,
K. Krauth, N. Yadwadkar, et al., “Cloud programming simplified: A berkeley view on serverless
computing,” arXiv preprint arXiv:1902.03383, 2019.

[42] “Amazon lambda.” https://aws.amazon.com/en/lambda/, 2024.

[43] “Google cloud functions.” https://cloud.google.com/functions, 2024.

Page 45 of 46

https://prometheus.io/
https://www.dell.com/en-uk/dt/storage/isilon/isilon-h600-hybrid-nas-storage.ht
https://www.dell.com/en-uk/dt/storage/isilon/isilon-h600-hybrid-nas-storage.ht
https://flink.apache.org/2021/05/06/scaling-flink-automatically-with-reactive-mode/
https://flink.apache.org/2021/05/06/scaling-flink-automatically-with-reactive-mode/
https://www.ncbi.nlm.nih.gov/bioproject/248064
https://www.nct-heidelberg.de/en/the-nct.html
https://cncf.pravega.io/blog/2019/11/21/segment-attributes/
https://cncf.pravega.io/blog/2019/11/21/segment-attributes/
https://github.com/pravega/gstreamer-pravega
https://aws.amazon.com/en/eks/
https://aws.amazon.com/es/ec2/instance-types/i3en
https://fio.readthedocs.io/en/latest/
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://aws.amazon.com/en/lambda/
https://cloud.google.com/functions

HORIZON - 101092644 NEARDATA
30/04/2024 RIA

[44] “Azure functions.” https://learn.microsoft.com/en-us/azure/azure-functions/
functions-overview?pivots=programming-language-csharp, 2024.

[45] “Amazon s3.” https://aws.amazon.com/eN/s3/, 2024.

[46] “Google cloud storage.” https://cloud.google.com/storage, 2024.

[47] “Azure blob storage.” https://azure.microsoft.com/en-us/products/storage/blobs, 2024.

[48] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A serverless video processing
framework,” in Proceedings of the ACM Symposium on Cloud Computing, pp. 263–274, 2018.

[49] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow:{Low-Latency} video processing
using thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pp. 363–376, 2017.

[50] J. Sampé, M. Sánchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-Lopez, “Outsourcing data
processing jobs with lithops,” IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1026–
1037, 2021.

[51] M. Sánchez-Artigas and G. T. Eizaguirre, “A seer knows best: Optimized object storage shuf-
fling for serverless analytics,” in Proceedings of the 23rd ACM/IFIP International Middleware
Conference, pp. 148–160, 2022.

[52] “Serverless development with aws lambda and redis enterprise cloud.” https://redis.com/
blog/serverless-development-with-aws-lambda-and-redis-enterprise-cloud/, 2024.

[53] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pp. 427–444, 2018.

[54] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and A. Trivedi, “Understand-
ing ephemeral storage for serverless analytics,” in 2018 USENIX annual technical conference
(USENIX ATC 18), pp. 789–794, 2018.

[55] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared logs,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 691–707, 2021.

[56] “Pravega - state synchronizer javadoc.” https://cncf.pravega.io/docs/latest/javadoc/
clients/io/pravega/client/state/StateSynchronizer.html, 2023.

[57] “Lithops.” https://lithops-cloud.github.io/, 2024.

[58] “Red española de supercomputación (res).” https://www.res.es/es/acceso-a-la-res/, 2024.

[59] “Partnership for advanced computing in europe (prace).” https://prace-ri.eu/hpc-access/
calls-for-proposals/, 2024.

Page 46 of 46

https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://aws.amazon.com/eN/s3/
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/products/storage/blobs
https://redis.com/blog/serverless-development-with-aws-lambda-and-redis-enterprise-cloud/
https://redis.com/blog/serverless-development-with-aws-lambda-and-redis-enterprise-cloud/
https://cncf.pravega.io/docs/latest/javadoc/clients/io/pravega/client/state/StateSynchronizer.html
https://cncf.pravega.io/docs/latest/javadoc/clients/io/pravega/client/state/StateSynchronizer.html
https://lithops-cloud.github.io/
https://www.res.es/es/acceso-a-la-res/
https://prace-ri.eu/hpc-access/calls-for-proposals/
https://prace-ri.eu/hpc-access/calls-for-proposals/

	Executive summary
	Introduction
	XtremeHub Overview
	XtremeHub Compute: Lithops
	Lithops Summary
	Experimental evaluation

	XtremeHub Streams: Pravega
	Pravega Design Recap
	Experimental Evaluation

	Streaming Storage-Compute Auto-Scaling
	Connecting Flink with Pravega
	Auto-scaling Orchestrator
	Experimental Evaluation

	Byte Streaming for Video Analytics
	Event vs Byte Semantics
	Pravega Byte Streams
	Experimental Evaluation

	Streaming for Data-intensive Serverless Functions
	Storage in Serverless Analytics Pipelines
	Lithops and Pravega Integration
	Experimental Evaluation

	XtremeHub Security: Scone
	Strengthening the Security
	Enforcing the Security

	Lithops Experimental Execution

	XtremeHub Connectors
	Lithops as a compute engine for Dataplug
	Experimental evaluation

	HPC Data Connectors
	HPC Data Connector for the MDR use-case

	Conclusions and Next Steps

