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1 Executive summary

Deliverable D2.2 NEARDATA Architecture Specs and Early Prototypes aims to present the NEAR-
DATA architecture specifications, show the integrations between components together with an early
prototype and introduce the three NEARDATA International Health Data Spaces (Metabolomics, Ge-
nomics and Surgomics).

First of all, we present the NEARDATA architecture based on four modules: Analytics, Con-
trol Plane, Data Plane and Data Sources that incorporate the different components that make up the
NEARDATA platform. In this deliverable, these components are briefly described along with the
introduction of components developed from the theoretical definitions previously made in the pre-
vious deliverable D2.1 Initial Architecture Specifications. Next, we introduce the resources needed to
deploy and run the different components on the NEARDATA testbed. Additionally, we provide a
description of the component integrations and show the first early prototypes that have been devel-
oped during the project. Finally, we present the three NEARDATA International Health Data Spaces
in the different fields of metabolomics, genomics and surgery together with their respective KPIs to
validate them.
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2 Introduction

According to multiple analyst sources, between 80 and 90% of existing data are unstructured, in text,
images, audio, video, among others. This makes it difficult to store and search them in predefined
schemas established in traditional databases. As a consequence, huge amounts of unstructured data
are stored in object stores, which adds great complexity to their extraction and analysis. This type of
massive and complex unstructured data can be defined as Extreme data. The management of extreme
data (discovery, collection, extraction, filtering and processing) remains difficult for data scientists,
as they have to deal with a proliferation of data sources from heterogeneous domains. Each of these
includes different domain-specific data manipulation mechanisms, data pipelines, and governance
models with which data scientists must become familiar.

The project focuses on three health data domains containing large amounts of unstructured data:
metabolomics (images), genomics (text) and surgical data (video). The data management and pro-
cessing needs and characteristics of these domains fit perfectly into the definition of extreme data.
The massive increase in the volume of OMICs data leads to a technological problem that pushes
workstations to the limit. The current ingest-then-compute data-shipping paradigm [1] does not re-
spond to the new needs originated by this problem. For this reason, a big challenge arises for data
ingest from object stores to analytical computing platforms. Clearly, moving massive data into the
memory of analytic clusters to be preprocessed and manipulated can become extremely expensive.
This problem is magnified when the data is remotely located on the Edge due to added network la-
tencies. In addition, computer-assisted surgery presents an extreme problem based on the speed of
data processing, adding a strong requirement on providing low latency in real-time video analytics
and robotic IoT event streams. For this reason, an extreme challenge arises to process real-time video
streams over massive data stored in the object store. Thus, to cope with this problem, the near-data
paradigm appears to process data at the edge that can meet the needs presented. Finally, dealing
with highly sensitive health data implies demanding compliance with the security and privacy re-
quirements provided by hospitals and laboratories. The big challenge here is to discover and distil
meaningful, reliable and useful data from heterogeneous and dispersed/scarce sources in a trust-
worthy way with stringent confidential requirements.

The objective of the NEARDATA project is to design an extreme data processing platform in-
spired by the near-data paradigm. This concept can be described as the ability to set up computation
and processing close to the data, thus avoiding the ingestion of non-preprocessed data directly on the
analytic clusters. Thus, this platform enables the consumption, mining and processing of distributed
and federated data without needing to master the logistics of data access across heterogeneous data
locations and pools, moving away from traditional passive data ingestion on storage systems to in-
troduce a new generation of near-data processing platforms in the cloud and in the edge.

To put it all together, our NEARDATA platform is a novel technology for data mining of large
and sparse unstructured data sets that can be deployed in the Cloud and on the Edge (HPC, IoT
Devices), which leverages advanced AI technologies and offers a novel layer of sensitive confidential
cybersecurity for trusted data computation.

Based on the needs introduced, three core objectives can be established:

• O-1 Provide high-performance near-data processing for Extreme Data Types: The first objec-
tive is to create a novel intermediary data service (Data Plane / Xtreme DataHub) between Ob-
ject Storage and Analytic platforms. This Data Access Layer will provide serverless type-aware
data connectors that optimise data management operations (partitioning, filtering, transforma-
tion, aggregation) and interactive queries (search, discovery, matching, multi-object queries) to
efficiently present data to analytics platforms. Our data connectors facilitate an elastic data-
driven process-then-compute paradigm which significantly reduces data communication on
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the data interconnect, ultimately resulting in higher overall data throughput.

• O-2 Support real-time video streams but also event streams that must be ingested and pro-
cessed very fast to Object Storage: The second objective is to seamlessly combine streaming
and batch data processing for analytics. To this end, we will develop stream data connectors
deployed as stream operators offering very fast stateful computations over low-latency event
and video streams. In particular, we want to explore how native stream serialisers for het-
erogeneous data types (OMICs) can optimise intensive data flows between Object Storage and
analytics services across the entire Compute Continuum.

• O-3 Provide secure data orchestration, transfer, processing and access: The third objective is
to create a Data Broker service enabling trustworthy data sharing and confidential orchestration
of data pipelines across the Compute Continuum. In order to ensure confidentiality, integrity
and freshness of the data, the project will develop mechanisms to utilise Trusted Execution En-
vironments (TEEs) along federated learning architectures. To protect data in flight and rest, the
project will develop mechanisms for transparent encryption for data transfers as well as storage
that require no code modification and provide high throughput at the same time. Policy-driven
mutual authentication mechanisms will furthermore support advanced data access policies for
non-trusting stakeholders which are governed through policy boards so that access rules can
be dynamically updated by human deciders and other entities.

The three objectives will be validated in real settings using the following Key-Performance Indi-
cators (KPIs):

• KPI-1 - Significant performance improvements (data throughput, data transfer reduction) in
Extract-Transform-Load (ETL) phases validated with near-data connectors over extreme data
volumes (genomics, metabolomics).

• KPI-2 - Significant data speed improvements (throughput, latency) in real-time video analytics
validated using stream data connectors.

• KPI-3 - Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows.

• KPI-4 - High levels of data security and confidential computing validated using TEEs and fed-
erated learning in adversarial security experiments.

• KPI-5 - Demonstrated simplicity and productivity of the software platform validated with real
user communities in International Health Data Spaces.

Page 5 of 49
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3 Ambition

The NEARDATA proposal is ambitious and goes beyond the state of the art in diverse aspects aligned
with the objectives mentioned above. We distinguish between Background, Innovation and Research
Ambition.

3.1 Background

In recent years, data sharing has driven the development of innovative technologies and solutions to
complex problems that previously presented extremely difficult challenges due to the privatization
of data and consequently, the lack of transparency of effective data processing solutions. By sharing
data, organizations and researchers benefit from access to third-party data to enrich research in dif-
ferent fields. To this end, participants who exchange data must ensure that data communication is
established securely and with confidence through governance mechanisms and policies.

Data Spaces emerge as a solution to facilitate data exchange between organizations and researchers.
Data Spaces go beyond the simple exchange of data to implement an ecosystem capable of guaran-
teeing secure data sharing. For this purpose, different entities and mechanisms are established to
guarantee secure data roles and access.

The Reference Architecture of International Data Spaces1 has been the source of inspiration for
the development of NEARDATA’s architecture.

Figure 1: International Data Spaces Reference Architecture.

From Figure 1 we can identify the key entities that form the reference architecture. According to
the International Data Spaces Association, entities can be defined as follows:

• The Data Owner/Source is an entity or a person capable of creating data or executing control
over it. Likewise, Data Owner/Source can define policies to provide secure access to its data.
In this way, the Data Owner/Source makes the data available for the Data Provider.

• The Data Provider is responsible for providing the data to the Data Consumer from the Data
Owner. Additionally, the Data Provider facilitates data discovery by the Data Consumer by
sending metadata about the stored data to the Data Broker.

• The Data Consumer is in charge of receiving the data from the Data Provider. The Data Con-
sumer can perform data sourcing from the Data Broker.

• The Data Broker is an intermediary service to manage information about the data stored in
Data Owners/Sources. The Data Broker allows to receive metadata from Data Providers to be

1https://internationaldataspaces.org/
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queried by Data Consumers.

• The Data Connector is a key entity that enables secure and efficient data communication and
sharing by using policies to ensure data sovereignty. It aims to connect data endpoints to aug-
ment the available datasets to turn Data Spaces into secure data environments to exchange data
freely.

• The App Store aims to provide data applications deployed on Data Connectors. These data
applications present different data processing workflows that are managed by the App Store.

• The Identity Provider manages user identities to perform data creation, management, moni-
toring and other operations. In addition, it controls the access of identities to the data in order
to prevent the security and confidentiality of this.

3.2 Innovation

NEARDATA seeks to progress the state of the art by developing a novel Data Space architecture
based on new definitions of the key entities of the International Data Space reference architecture.
Entities such as Data Broker and Data Connectors form the core of NEARDATA’s architecture, and
for this reason, their concepts are redefined as innovations within our Data Space.

The Data Broker is responsible for ensuring secure access and discovery to data and the confiden-
tial execution of analytical applications in our platform. Its core is formed by two key components:
the confidential data exchange, a rich metadata platform for data encryption to facilitate private data
discovery, and a confidential and federated orchestration layer for edge workflows that fulfill secu-
rity and confidentiality requirements. The NEARDATA Data Connector aims to establish optimized
data management operations based on new Extract, Transform and Load techniques to efficiently
handle extreme health data.

NEARDATA goes beyond the entities established in the reference architecture by developing an
XtremeHub platform that aims to incorporate near-data high-performance serverless type-aware
data connectors suitable for extreme unstructured data, combining batch with low-latency stream
processing, while preserving security and privacy through secure AI-enabled orchestration and Trusted
Executions Environments in a distributed and federated environments across the Compute Contin-
uum.

Today, the DataHub concept can be defined as an extensible metadata platform that allows effi-
cient search and query of data stored at a single point[2]. DataHubs also provide data analysis fea-
tures such as data discovery and data observability. Services such as Linkedin’s DataHubPlatform2

and Lyft’s Amundsen3 are clear examples of popular open-source DataHub platforms. Extreme data,
popularly known as massive unstructured data with size disparity and different types and formats,
are totally forgotten in this type of solutions. The complexity to manage extreme data becomes the
the key focus of research and analysis. In the context of NEARDATA, the research lines we present
are related to health data research such as genomics, metabolomics and surgery.

The "ingest-then-compute" pattern traditionally used for data analysis is inefficient when pro-
cessing extreme data. The nature of this type of data makes preprocessing or data partitioning an
extremely complicated challenge. NEARDATA wants to address this problem by extending the
DataHub concept to deal with extreme data. The novel XtremeHub will include reliable, high-
performance data connectors that will allow data analytics platforms to access and discover extreme
data stored in Object Storage. The addition of stream data connectors will enable the unification

2https://datahubproject.io/
3https://www.amundsen.io/
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of batch and stream processing to efficiently process real-time IoT data streams and provide long-
term stream retention for high-performance batch processing. In addition, the platform will be able
to efficiently orchestrate different workflows and data analysis platforms from optimized AI-based
solutions. Finally, to address sensitive health data requirements, our platform will offer TEE-based
solutions to deploy secure and privacy-preserving data flows across the entire Compute Continuum.

3.3 Research

NEARDATA seeks to progress beyond the state of the art in three main topics: near-data computing,
stream analytics, and confidential federated computing.

Near-data computing. The near-data paradigm has been one of the fields studied in depth by
the scientific community due to the advantages of bringing computing closer to the data: data lo-
cality significantly reduces latency and consequently increases bandwidth due to the reduction of
data to be transferred to the computing platform[1]. Active Storage[3] has received attention as it has
demonstrated data transfer savings of up to 95% and up to five times faster execution time. However,
this solution has several weaknesses: there is the possibility of storage node congestion and it pre-
cludes multi-tenant services in the Cloud. To prevent the disadvantages of Active Storage, the idea
of component disaggregation arose. Disaggregating the compute component from the storage layer
allows the advantages of near-data to continue to be exploited. Thus, we find a close relationship
with the serverless computing paradigm, which allows a massive horizontal scaling of resources by
adapting to compute needs with fine granularity[4][5]. In this line, a first approach from Amazon
Web Services (AWS) are Object Lambdas[6], which allow to execute inline Lambda functions as part
of the data stream in a synchronous request to S3. Once again, existing solutions lack the extreme
data support to guarantee massive unstructured data flows. For this reason, there is an open chal-
lenge for the research and development of a near serverless data processing layer for extreme data.

Stream analytics. Edge applications based on the analysis and processing of telemetry, image
and video streams require low-latency and real-time data processing. The rise of extreme data is cre-
ating a technically complex challenge for data stream processing. To cope with this problem, there
are existing solutions such as the "Lambda Architecture"[7], which combines real-time data process-
ing and batch analysis. Batch data processing achieves excellent performance, but is inefficient for
low-latency, real-time analysis[8]. The investigation of unifying batch and stream processing became
very important. For example, Apache Beam and Apache Flink, unify stream and batch analytics
by distinguishing whether datasets are “bounded” (batch) or “unbounded” (stream). The lack of
an interconnected processing platform with auto-scalable Stream Storage layer mechanisms opens
a research opportunity to facilitate elastic deployment and execution of low-latency real-time data
connectors.

Confidential federated computing. NEARDATA will ensure the confidentiality and integrity of
applications and data by using state-of-the-art technologies such as the TEE provided by intel SGX.
This technology, still in the process of widespread adoption, presents a drawback to be taken into
account: it is limited to specific vendor and CPU models, such as Intel Skylake CPU, etc. Therefore,
there is a need to investigate compatibility requirements with different CPU vendors with similar
security features to enable service providers to run their applications in isolation with attestation[9].
The goal of NEARDATA is to develop a transparent framework for the underlying hardware that
guarantees secure and confidential workflows and data access by combining methods for the relia-
bility of federated identities with the protection of computing platforms offered by TEEs.

NEARDATA shows an extremely ambitious proposal. We intend to present a completely novel
XtremeHub technology for efficient AI-based extreme workflow orchestration and confidential ex-
treme data management and access through the integration of TEEs.

Page 8 of 49
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4 Architecture Specifications

4.1 Proposed Architecture

From the reference architecture introduced, Figure 2 depicts the proposed architecture based on the
actual components presented by each of the NEARDATA partners. Our complex and rich extreme
near-data processing platform features four modules to encapsulate the specific requirements and
tasks of NEARDATA components: Data Plane / XtremeHub (See D3.1 XtremeHub first release and
documentation), Control Plane (See D4.1 Data Broker release and documentation), Analytics and Data
Sources. In addition, we find the different use cases that will leverage the NEARDATA platform
(See D5.1 First release of KPI benchmarks in all use cases and data connector libraries). In our NEARDATA
platform we observe five entities of the reference architecture: Data Providers, Data Consumers, Data
Connectors, Data Broker and Identity Provider.

To facilitate the understanding of the proposed architecture, we will make a brief summary of the
four modules and their components. In this deliverable, we will detail in more depth the integration
of the components that form NEARDATA. For a more extensive description of all the components
that make up NEARDATA and its APIs, we redirect the reader to the deliverable D2.1 Initial Archi-
tecture Specifications.

Figure 2: NEARDATA Architecture.

Our Software-Defined Data Infrastructure is divided in the Data Plane and the Control Plane.
The Data Plane (XtremeHub and Data Connectors) is addressing objectives O-1 and O-2 validated
through KPIs 1-2, while the Control Plane (Data Broker) is addressing objective O-3 validated through
KPIs 4-5.

4.1.1 Analytics: Data Processing Platforms

Processing massive unstructured data is extremely computationally challenging, forcing data scien-
tists to push the technologies they work with to the limit. Our extreme data infrastructure aims to
mediate the data flows between Data Sources and Data Analytics platforms through our software
components located in the Control Plane and Data Plane. The Analytics module incorporates Data
Analytics platforms capable of processing extreme data from mechanisms that ensure large-scale
computation.

Our expert partners in health big data computing present Edge or Cloud-based solutions across
Data Processing platforms. To deal with each health data format, each partner presents its specific
Data Pipeline as a solution. In relation to the International Data Spaces reference architecture, data
scientists through their Data Pipelines across Data Processing platforms would be identified as Data
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Consumers.
Apache Spark4 is one of the most widely used data analytics platforms by data scientists capa-

ble of being deployed on multiple clusters adapting to the workload and scale of the data. Also,
incorporating cloud services allows data scientists to deploy their own specific pipelines on virtual
machines or cloud functions without the need to manage the data processing infrastructure. In our
platform, the Lithops component makes it easy for data scientists to deploy workloads on cloud
providers thanks to its multi-cloud support. Lithops5 is a distributed computing framework for data
analysis at massive scale that fits perfectly into highly parallelizable programs without the need for
inter-process communication, but also supports parallel applications that need to share state between
processes.

4.1.2 Data Sources: Edge/Cloud

The majority of data currently in existence is unstructured data. Due to their lack of structure or
schema it is impossible to store them in traditional databases. As a result, it is common to find object
storages filled with extreme amounts of unstructured data. In NEARDATA we present different
massive sources of health data specific to each format.

In the field of genomics, we find the National Center for Biotechnology Information6 and UK
Biobank7 that incorporate a large amount of secure and open biomedical and genomic data for re-
search. In the field of surgery, Camma8 is widely used for research and analysis of surgical videos.
Finally, in our platform, we introduce the METASPACE9 metabolomic Data Space as a direct com-
ponent as Data Source for the field of metabolomics. The METASPACE platform hosts an engine for
metabolite annotation of imaging mass spectrometry data as well as a metabolite spatial knowledge
base of thousands of public datasets provided by the community.

The Data Sources are considered as Data Providers in the NEARDATA architecture as they se-
curely enable data discovery, sourcing and consumption through their platforms.

4.1.3 Data Plane / XtremeHub: Data Connectors

Dealing with extreme data is a difficult challenge for data scientists. To this end, the NEARDATA
Data Plane / XtremeHub platform module presents different tools that facilitate the ingestion and
management of massive unstructured data. The Data Plane aims to convert bulk unstructured data
blobs into semi-structured data sets for easy data management operations. In response, we introduce
the novel concept of Extreme Data Types, virtual objects that encapsulate unstructured data and
specific metadata. NEARDATA specialized Data Connectors will be able to manage and generate this
data type to facilitate extreme data processing. In addition, the Data Plane incorporates containerized
trust environments for secure data management and processing.

Within this module, five core components can be distinguished: Confidential & Federated Execu-
tions, Data Catalog, Serverless Data Connectors, Stream Operators and Data Programming abstrac-
tions (Analytics interconnection layer).

• The Confidential & Federated Execution (XtremeHub Security) is responsible for implement-
ing security and confidentiality mechanisms to establish secure containerized environments
to protect user applications by ensuring the processing of sensitive data. Later in the Control
Plane, this type of environment will be orchestrated from the Confidential & Federated Orches-
tration layer found within the Data Broker. In our platform, the SCONE component allows to
execute programs within Trusted Execution Environments with minor modifications to adapt
the code to the component requirements. This guarantees secure executions through the iden-
tification of users that comply with the restrictions and policies established in the Data Broker.

4https://spark.apache.org/
5https://github.com/lithops-cloud/lithops
6https://www.ncbi.nlm.nih.gov/
7https://www.ukbiobank.ac.uk/
8http://camma.u-strasbg.fr/
9https://metaspace2020.eu/
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• The Data Catalog stores metadata relevant to data preprocessing, partitioning, ETL tasks and
data query mechanisms. The METASPACE Data Source for metabolomic data introduced
above incorporates in its architecture a Data Catalog of its own. It facilitates the user the search
and discovery of massive preprocessed data, thus complying with the near-data paradigm.

• The Serverless Data Connector (XtremeHub Data Connectors) allows to generate metadata
and indices from extreme data to generate a virtual Data Catalog. It allows to adapt to the user’s
needs to dynamically transform and partition data. In this deliverable, we present the novel
serverless data connector Dataplug described theoretically in deliverable D2.1 Initial Architec-
ture Specifications. Additionally, Lithops can also be introduced as a Serverless Data Connector
thanks to the incorporation of its Storage API that allows the connection between serverless
data processing services and object storage.

• The HPC Data Connectors (XtremeHub Data Connectors) are developed to take advantage
of high-performance computing (HPC) platforms that provide high-performance networking,
compute and storage capabilities to handle extreme data efficiently and with low latency.

• The Stream Data Connector (XtremeHub Streams) service deploys connectors as auto-scalable
stream operators that provide very fast stateful computations over low-latency video and event
streams. Dell Pravega10 is an open source storage system for data streams that translates the
unified view of stream and batch analytics to the data storage via the Stream abstraction.

• The Data Programming Abstractions provide a layer of interconnection with Data Processing
platforms (Data Consumers). At NEARDATA, we introduce Lithops as a computing frame-
work for deploying massively parallel jobs in Edge and Cloud environments, thus ensuring
the connection between the components that make up the Data Plane and the Analytics mod-
ule.

4.1.4 Control Plane: Data Broker and Confidential Data Orchestration

The Control Plane is the major front-end of the NEARDATA platform which includes both data dis-
covery, governance and acces but also optimised orchestration and declarative interconnection of
heterogeneous data flows. Control Plane presents one of the most important and attractive features
of our rich NEARDATA platform. It will be the hub for managing and controlling jobs and data ac-
cess in a totally secure way. Sensitive health data requires highly restrictive handling requirements.
Therefore, our Control Plane will guarantee secure executions with controlled data access.

The Control Plane will be designed to offer efficient executions through specific artificial intelli-
gence mechanisms for data analysis platforms. This will be achieved through an intelligent and adap-
tive layer of interconnection between computing and storage dataflows thanks to the Data Plane. As
a consequence, the Control Plane will guarantee the ability to consume data and run analysis jobs
from anywhere efficiently and securely without the need to design and manage a complex infras-
tructure.

Four key components are included in this module:

• The Confidential Data Exchange will be in charge of securing the data coming from the Data
Sources (Data Providers) to be confidentially consumed by the Data Consumers (Data Pipelines).
Thanks to the mechanisms introduced in the Trusted Execution Environments it will allow to
create, register and federate datasets of a specific domain, generating a rich metadata plat-
form of encrypted datasets and favoring the discovery of confidential unstructured or semi-
structured data.

• The Confidential & Federated Orchestration layer is a declarative interconnection framework
for extreme data workflows ensuring confidentiality and security in the entire data path. The
orchestration layer incorporates mechanisms for transparent encryption of data flows, and

10https://cncf.pravega.io/
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leverages privacy-aware data connectors that conform to the data governance policies defined
in the Data Broker. This layer manages the different components of the Data Plane to facilitate
the confidential interconnection of data between the Analytics and the Data Sources modules.

• The Data Broker is the cockpit of the NEARDATA platform, exposing and orchestrating all ser-
vices in the Data and Control planes. It encapsulates and orchestrates the two key components
presented above. In our platform, SCONE will be in charge of orchestrating the deployed TEEs
to ensure secure execution of the entire workflows. The Data Broker will incorporate a user
authentication service for accessing and processing sensitive data that complies with the estab-
lished restrictions and policies. TEEs have two components necessary to verify the confiden-
tiality of applications and users. Configuration and Attestation Service (CAS) identifies when
an application is trusted while KeyCloak manages user authentication and policies. Likewise,
we identify our Identity Provider within our rich Data Broker.

• The AI-based Optimiser of Cloud/Edge Workflows is a learning service that focuses on im-
proving data-driven orchestration of workloads and pipelines defined in the Orchestration
layer. It will use state of the art deep and statistical learning methods to analyse data-bound
complex workloads and optimise resource consumption and KPIs (performance) using teleme-
try information. It will generate efficient execution plans that meet policy constraints and in-
strument the orchestration layer. Our partner BSC will be in charge of providing this tool for
the efficient orchestration on the Lithops computing framework.

4.2 Data Plane Components Recap

In this section, we briefly describe each of the components of the NEARDATA architecture that make
up the Data Plane.

4.2.1 Lithops

Lithops is a serverless analytics data platform implemented in Python that enables the deployment
of workflows on a massive scale across main cloud providers. Lithops is a perfect fit for heavy
workloads that can be fully parallelizable without the need for inter-process communication.

Lithops offers an extensible storage and compute backend architecture fully agnostic to any
cloud service, open source on-premise installations (Kubernetes, OpenShift) and Edge platforms
(WebAssembly). These backends can be used by calling their respective APIs: the Compute API,
which allows massively parallel tasks to be invoked on the selected compute backend, and the Stor-
age API, to facilitate access to Object Storage. In addition, Lithops features an extensible on-the-fly
partitioner architecture that allows parallel data consumption from the Object Storage. Lithops offers
solutions for the partitioning of genomic and metabolomic data formats. The different Lithops exe-
cution modes allow to adapt to the needs of the user’s serverless architecture, offering the possibility
to deploy the processing platform locally, in virtual machines or in cloud functions.

4.2.2 Serverless Data Connector: Dataplug

In the deliverable D2.1 Initial Architecture Specifications, we theoretically propose the Serverless Data
Connector component. Then, we will introduce the novel Dataplug framework developed from the
specifications described in the aforementioned deliverable.

The seemingly “infinite” compute and storage resources available in the Cloud have paved the
way for handling unprecedented amounts of unstructured data, marking the evolution from big data
to what is termed as extreme data[10]. Extreme data is characterized by its increasing volume, speed,
variety, complexity and extreme variations in values, which challenge current distributed computing
technologies that struggle to cope with such demanding characteristics.

To analyze these extreme data repositories, researchers must first deal with data partitioning,
which is crucial for efficient workload distribution[11] and to fully harness the scalability and par-
allelism of Cloud resources [12]. We understand data partitioning as splitting a large dataset into
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smaller logical portions, so that each portion (or partition) can be processed by a distributed worker,
thus increasing the scalability of data-parallel applications.

However, partitioning extreme unstructured data at this scale is challenging. A common ap-
proach for unstructured data is to partition a dataset into smaller even-sized files or objects, or trans-
form it into a “Cloud-friendly” format[13]. This, however, involves reading, pre-processing, and
writing back to storage the whole dataset, which can become extremely costly. Moreover, this issue
is further exacerbated in Cloud scenarios, where object storage serves as the primary storage for sci-
entific computing in the Cloud[13]. Since objects are immutable, partitioning a dataset into many
objects requires rewriting all the data, making this approach inefficient. Finally, arbitrarily setting
a fixed partition size without any hints can result in suboptimal performance[11], given the varia-
tion in workload requirements. Thus, we argue that static partitioning is not a viable solution for
extreme scientific computing. Instead, we advocate for an alternative approach involving read-only
format-aware pre-processing enabling on-the-fly dynamic partitioning.

We present Dataplug, an extensible framework that implements the on-the-fly data partitioning
model. Dataplug hides the complexities of unstructured scientific data pre-processing and partition-
ing, offering researchers a data-driven pre-processing and dynamic on-the-fly partitioning strategies
for diverse unstructured scientific data formats. The framework provides open-source implemen-
tations of pre-processing and partitioning strategies for formats from different domains, inviting
developers to contribute or adapt the code to their needs. Dataplug enables efficient parallel access
to existing unstructured data blobs in their original scientific format. Currently, we support FASTA,
FASTQGZIP, and VCF for genomic data, LIDAR for geospatial data, and imzML for metabolomics
data, with plans to include additional formats in the future. Furthermore, Dataplug is compati-
ble with Cloud-optimized formats like Cloud-optimized Point Cloud[14] and Cloud-optimized Geo-
TIFF[15]. These formats only support content queries, whereas Dataplug brings to them partitioning
semantics that simplify their processing in data-parallel workloads. Dataplug’s objective is to unlock
extreme data processing that was previously unfeasible or prohibitively expensive. Finally, dynamic
partitioning enables dataset-wide re-partitioning at zero-cost, allowing one to utilize different parti-
tion sizes and to choose the optimal one for each workload.

Architecture. As stated in deliverable D2.1 Initial Architecture Specifications, Dataplug is charac-
terized by two elementary phases in its data model:

Cloud-aware pre-processing and indexing. In order to enable parallel access to unstructured scientific
data, a pre-processing phase is required. In Dataplug, each supported format is required to define a
pre-processing method that must be applied to each raw data blob. This pre-processing method is
format-specific, and extracts metadata from the raw data blob, such as internal content structure, in-
dices, and attributes. For semi-structured or tabular formats like JSON or CSV, generic pre-processing
methods like schema inference[16] can be applied. However, scientific unstructured data formats
require domain-specific tools and techniques to extract valuable metadata. Dataplug aims for an
extensible approach, which allows for flexibility in metadata and index structure, as well as in the
generation process. We say our pre-processing and indexing approach is Cloud-aware, which means
that it is specifically optimized for efficient data access in Cloud object storage. Cloud-aware index-
ing focuses on exploiting the high-bandwidth capability of object storage so that partitions can be
retrieved using many concurrent HTTP GET byte-range requests over large data blobs.

Figure 3 visually represents the indexing difference between Cloud-optimized data formats and
our Cloud-aware approach. On one side, Cloud-optimized formats 1) re-arrange the blob’s content
and 2) embed metadata and indexes within the blob. On the other side, Cloud-aware indexing 1)
leaves raw data unmodified, as is, and 2) stores the metadata decoupled from the raw data blob.
These two differences are key to why our model is more suitable for Cloud object storage. Since object
stores are immutable, transforming files to Cloud-optimized is inefficient, requiring a complete blob
rewrite. Instead, our model stores indexes (which are much smaller in volume) in another object,
making the pre-processing cost considerably lower.

Data slicing: Dynamic on-the-fly partitioning. After pre-processing and extracting metadata, appli-
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Figure 3: Comparison between Cloud-optimized data formats and Cloud-aware data formats. In
Cloud-optimized, metadata is embedded in the blob, while Cloud-aware pre-processing stores meta-
data decoupled from the blob.

cations may request dynamic on-the-fly partitions of scientific datasets that have been pre-processed
using our Cloud-aware approach. We refer to this process as data slicing. A data slice is an entity
that represents a lazily-evaluated partition of an unstructured dataset in Cloud object storage. It
encapsulates partition metadata (such as byte ranges) and code. When a data slice is evaluated, its
embedded code runs and fetches the actual partition data content from Cloud object storage using
its native APIs, typically through many concurrent byte-range HTTP GET requests. Additionally,
the code can apply any necessary corrections to ensure integrity for the data format, such as adding
missing headers. Data slices are generated for a specific dataset by applying a partitioning strategy.
In Dataplug, each data format can define multiple partitioning strategies, allowing for different crite-
ria or partitioning parameters. Prior pre-processing of the dataset is necessary so that strategies can
query the corresponding metadata and indexes for defining data slices. Data slicing does not involve
data movement. Instead, partitioning strategies operate on the metadata and indexes generated dur-
ing the pre-processing stage, rather than directly on the actual data. Ideally, the index data structure
is fully loaded in memory for efficient processing. Once a set of data slices is generated, they may
be distributed to remote workers. Each worker independently evaluates a data slice and loads the
corresponding data partition into memory. This parallel and distributed process takes advantage of
the synchronization-free parallel access and high bandwidth capabilities offered by object stores.

Data life-cycle management. Figure 4 depicts a big picture of Dataplug’s architecture:
1. Pre-processing: Raw data (1) is stored as objects in a object storage bucket. This data is in its

original, unprocessed raw form. Dataplug requires a pre-processing (2) phase to enable parallel data
access to the raw data. When a new object is uploaded, Dataplug can leverage storage triggers to au-
tomatically launch pre-processing jobs (for instance, using an Amazon S3 trigger to invoke a Lambda
function). During the pre-processing stage, metadata and indexes are generated from the raw data.
This extracted information is stored in a separate metadata bucket within the object storage. Each
Cloud-aware format can specify the required pre-processing parameters, such as batch or parallel
processing, container resources (CPU and memory) and chunk size.

2. Partitioning: After the pre-processing stage, users can leverage Dataplug to partition datasets
for specific workloads by applying a partitioning strategy (3) to define data slices. Dataplug utilizes
the metadata and indexes generated during the pre-processing stage to query and extract the nec-
essary information for defining these data slices. Once the data slices have been defined, the user
can proceed to submit a parallel processing job (4) using a Python distributed computing framework
such as Dask11 or Ray12. The user may pass the set of data slices created as input data for the job. The
distributed computing framework will handle the deployment of distributed workers and appropri-

11https://www.dask.org/
12https://www.ray.io/
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Figure 4: Dataplug architecture.

ately scatter the data slices among them. Finally, each worker process will be assigned a specific data
slice as input, allowing them to fetch the content of the data partition (5). Leveraging embedded
metadata and code, the data slice can efficiently perform multiple concurrent byte-range HTTP GET
requests over one or more objects in the object store. These requests retrieve data chunks.

With the update of the Dataplug component, its API is available in Appendix: 8.1.1 NEARDATA
APIs.

4.2.3 HPC Data Connector

In NEARDATA, we are in the process of constructing an HPC data connector to leverage High-
Performance Computing platforms into our targeted use-cases. That is, to allow use-cases to use
supercomputing facilities, and most particularly MareNostrum supercomputer hosted by BSC-CNS.
However the scope of this connector will be limited to a small number of nodes, although tests at
larger scale will be attempted. However to do large-scale experimnets we must be awarded specific
funds which are managed by independent agencies from Spain and Europe. The task of porting the
use-cases into a HPC is a challenging activity given the use-cases of the project are implemented
utilizing software typically found in cloud environments (Apache Spark, Lithops, Pravega) and not
typically available in a supercomputer. While this grants flexibility, cloud environments comput-
ing capabilities are less-performance oriented than those found in supercomputers. Cloud is de-
signed with flexibility in mind and has more relaxed quality of service, while supercomputers are
designed in terms of compute power so they require static resources allocations while providing
high-performing network, compute and storage capabilities. In this section we describe the work
done so far regarding enabling our MDR use-case into MPI and current initial results found. More
details of this data connector are described both in Deliverable 3.1: XtremeHub first relase and docu-
mentation and Deliverable 5.1: First release of KPI benchmarks in all use cases and data connector libraries.
Additionally, we can find its API in Appendix: 8.1.1 NEARDATA APIs.

4.2.4 Pravega

Pravega is an open-source, streaming storage system designed to handle data reliably and at scale in
a distributed environment [17, 18] that is the streaming foundation of NEARDATA. Its architecture
is built to cater to the needs of modern stream processing applications, providing seamless ingestion,
storage, and retrieval of data streams. At its core, Pravega employs a segmented log model, where
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data is organized into independently manageable segments. This design ensures efficient utilization
of resources and enables horizontal scalability, allowing Pravega to handle massive volumes of data
with ease.

One of the key components of Pravega’s architecture is its tiered storage model. This separation
enables independent scaling of ingestion and storage resources, allowing the system to adapt dy-
namically to varying workloads. Pravega employs stream segmentation to partition data logically,
enabling parallel processing and efficient resource utilization. Additionally, Pravega incorporates
features such as durability, fault tolerance, and exactly-once semantics to ensure data integrity and
consistency, even in the face of failures or network partitions. Overall, Pravega’s design and ar-
chitecture make it a robust and scalable solution for building real-time streaming applications in a
distributed environment. Note that full details of Pravega’s architecture are presented in D2.1 Initial
Architecture Specifications, whereas a deep performance evaluation and progress beyond state-of-the-
art is presented in D3.1 XtremeHub first release and documentation.

4.2.5 METASPACE

METASPACE is a cloud software platform for spatial metabolomics. METASPACE incorporates an
engine for metabolite identification helping scientists find metabolites in spatial metabolomics data,
and hosts a knowledge base of public metabolomics datasets. METASPACE started as a European
FP7 project and since then has been funded by both the European Commission and the U.S.A. Na-
tional Institutes of Health.

METASPACE is an essential software in the emerging field of spatial metabolomics. It is used
by almost 2000 scientists from over 100 groups worldwide and hosts the largest collection of spatial
metabolomics datasets, with more than 10k annotated samples.

In the EU Horizon2020 project CloudButton, the key computational part of METASPACE, a metabo-
lite annotation pipeline - named engine - was implemented to use the Lithops serverless computing
framework. This was motivated by the increased use and the need for scalability compared to the
previous implementation based on Apache Spark. Input dataset sizes range from a few megabytes
to tens of gigabytes, and resource requirements are greatly variable between pipeline stages, so tun-
ing proper resource utilisation with the cluster model became unfeasible. METASPACE switched to
using Lithops in production in March 2022.

4.3 Control Plane Components Recap

In this section, we will briefly introduce the components that make up the Control Plane of the NEAR-
DATA architecture.

4.3.1 SCONE

Confidential computing has two essential requirements: 1) CPU auxiliary hardware handling con-
fidential computation and protecting memory; 2) software prepared to use this auxiliary hardware.
SCONE (Secure Container Environment) makes the bridge between hardware (Trusted Execution
Environment – TEE) and software (user application) by making the latter use its libraries that pro-
vide the interface to the TEE. SCONE runs the user application in Docker containers, hence protecting
CPU and memory in an enclave aided by the TEE. However, network transmission, files handling,
operating system interaction, and so on are still subject to interference, despite the fact that the soft-
ware is ported to SCONE and executed with the help of TEE. To counter that, another mechanism
has been introduced.

Confidential computing scope goes beyond the hardware and software individually; it is enforced
by the critical decision maker named CAS (Configuration and Attestation Service). CAS will assert
that the user application’s TCB (Trusted Computing Base)13 is trustworthy, i.e. its measurement
corresponds to the same value configured previously in its policies database. Once the attestation
is guaranteed, CAS will deliver secrets (X509 credentials, private keys, etc.), configuration files, file
system protection, network protection, environment variables, via a secure channel (protected by

13"Set of hardware and software components that are measured to attest the veracity of the execution. More in:
https://sconedocs.github.io/glossary/#tcb"
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TLS) exclusively accessible by the user application within its enclave. With this setup, the wider
scope of confidential computation is guaranteed and enforced.

Albeit wide ranging, the confidential computing scope can be improved. Associate/auxiliary
systems can be employed to provide different access levels based on the roles a person or a system
can assume. To cover this sort of requirement/functionality, Keycloak (an identity and access man-
ager) is used to issue access tokens and corresponding validation tokens to an entity (a person or
an application). The system administrator can configure the entity’s roles to allow or deny access to
different services or levels further on other systems. Keycloak is, among other things, a Single-Sign
On system, to which other applications outsource the burden of user management.

4.3.2 AI-based optimizations

In the context of extreme-health use cases, we have massive amounts of varied data. Variety is a key
challenge, as it implies the need to use different kinds of resources for proper processing. Moreover,
each use case processes and uses data differently. Thus, we find a situation of heterogeneous require-
ments regarding computing and data collection. Consequently, orchestration policies are needed to
distribute that data to the different resources according to the use case requirements.

Traditional approaches apply heuristics to assign resources on demand. However, those heuris-
tics provide static decisions and are not capable to identify changes on resource requests. While this
approach allows to meet SLAs in most situations, when there is a peak demand, those SLAs may
be impossible to fulfill. Approaches applying heuristics on-demand lack to consider future demand.
While the allocation decision might be close to optimal under a given scenario, it may be quite inef-
ficient in a scenario happening a few minutes later after new requests arrive. This situation worsens
with the described heterogeneity.

In this component we explore the development of an AI-enabled orchestrator that predicts fu-
ture demands and requirements and assigns resources based on that knowledge, granting close-to-
optimal allocations most of the time. Moreover, the target of such orchestrator is to consider the
heterogeneity of resources as well. This heterogeneity is understood in terms of having specialized
resources providing performance boosts in some of the use-cases. Some of these specialized resources
might not provide a performance boost but be more energy-efficient. That is, they save energy com-
pared to the traditional approach. Consequently, this component will analyze performance of the
use-cases not only in terms of computational time but also in terms of energy consumption. Thus,
while it might be that a given workload gets the worst time on a given allocation, that allocation
might be more energy-efficient.

Summarizing, in NEARDATA the AI-Optimizations will provide a system that recommends the
resource allocation for arriving workloads in a smarter fashion that traditional heuristics can do.
This component will be integrated in current frameworks (Lithops, K8S orchestrator) to improve the
overall QoS of the cloud in terms of speed and/or energy.

4.4 Testbed - KIO Networks

In the following section, we will show the proposed architectures of the Testbeds offered by KIO for
three components that make up NEARDATA platform: Pravega (DELL), Lithops (URV) and SCONE
(SCONTAIN). From the definition and requirements of the environments provided for the different
components, it will be possible to execute the use-cases that take advantage of these technologies.

4.4.1 DELL - Pravega

DELL has requested KIO an OpenShift and an S3 environment to run its testbed within an enterprise
environment. The Figure 5 represents the initial testbed architecture for Pravega.

KIO has two distinct environments for deploying PRAVEGA. The first environment, known as
the ’OpenShift environment’, consists of 3 compute nodes with ESXi, along with its associated vCen-
ter for managing a VMware cluster. This cluster operates on VMware’s vSphere 8.0.2. KIO offers
two separate solutions for S3 services. One is an S3 service based on NetApp technology. KIO also
provides a standalone S3 service based on minIO technology. This service delivers superior perfor-
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Figure 5: Starting Pravega’s Architecture

mance at all levels due to its proximity to the solution. The ability to independently deploy minIO
in each environment enhances business model flexibility. This approach allows KIO to offer higher
bandwidth and lower latencies to customers, including the PRAVEGA’s testbed. For this specific use
case, there is no need for a solution that offers high bandwidth and low latencies. This is why we
are providing PRAVEGA with the first solution based on NetApp technology, rather than the minIO
solution. The hardware requirements for the PRAVEGA’s testbed are as follows:

• 108 vCPU 2.3 GHZ.

• 240 GB RAM.

• 1080 GB PREMIUM SSD DISK.

• 50 MEGABIT INTERNET Bandwidth.

• 2 ESP PUBLIC IP: These IP’s must hang from the PA-CE.

• 1 VIRTUAL NETWORK : CE-01_OpenShift.

• 16 GB GPU NVIDIA A100 Tensor Core.

OpenShift environment is composed by 3 master and 3 worker nodes with the following technical
specifications:

• MASTERS:

– 12 vCPU 2.3 GHZ.

– 48 GB RAM.

– 408 GB PREMIUM SSD DISK.

• WORKERS:

– 24 vCPU 2.3 GHZ.

– 96 GB RAM

– 846 GB PREMIUM SSD DISK

• 1024 GB S3 Object Storage

• Networking Resources:
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– 16 GB GPU NVIDIA A100 Tensor Core.

One of the workers has GPU’s capabilities with the following technical characteristics: 16 GB
GPU NVIDIA A100 Tensor Core. One of the primary requirements requested by PRAVEGA has been
to incorporate GPU capability into an OpenShift worker node. This is essential to "off-load" tasks.
KIO has two separate environments to address this need, and efforts have been made to enhance the
L2 communication level between them. The networking team at KIO had to address this challenge
to enable the connection. This solution now enables both testbed environments to communicate with
each other, allowing KIO to offer an OpenShift cluster with Nvidia GPU capabilities. The Figure 6
shows the changes introduced in the Pravega’s Architecture to add the GPU environment.

Figure 6: First Evolution Pravega’s Architecture

After deploying OpenShift’s cluster, we discovered that PRAVEGA’s solution was not yet com-
patible with OpenShift. Despite attempts to adjust permissions, we ultimately decided to switch to
a Kubernetes cluster. This Kubernetes environment utilizes identical hardware resources to the pre-
vious OpenShift cluster. This transition was made in order to streamline operations, enhance opti-
mization, and reduce latencies, all while eliminating the need to manage two separate environments.
It’s important to note that the Kubernetes cluster was not deployed within the KK8S environment,
but rather directly on the GPU environment. The Figure 7 depicts the final proposed architecture for
Pravega with the OpenShift environment modified by the Kubernetes cluster.

Figure 7: Second Evolution Pravega’s Architecture

At the network level, both public endpoints that were previously available are maintained, ex-
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tended, and repointed to the new environment. Disk space was increased at the Kubernetes cluster
level as described below:

• +200 GB PREMIUM SSD DISK -> Added to Master 1 for “registry”

• +300 GB PREMIUM SSD DISK -> Added to all Workers for new SC

Independent storage drives enable local disk managed by Rancher. Registry is also available to
store PRAVEGA’s testbed images.

4.4.2 URV - Lithops

URV requested an OpenShift and an S3 environment to run Lithops within an enterprise environ-
ment. For this specific use case we first tried S3’s Netapp solution, as we did not know how much
performance was enough for the testbed that URV was going to run. URV’s testbed hardware re-
quirements have been the following ones:

• MASTERS:

– 12 vCPU 2.3 GHZ.

– 48 GB RAM

– 408 GB PREMIUM SSD DISK

• WORKERS:

– 96 vCPU 2.3 GHZ.

– 192 GB RAM

– 672 GB PREMIUM SSD DISK

• 500 GB S3 Object Storage

• Networking resources:

– 50 MEGABIT INTERNET Bandwidth.

– 2 ESP PUBLIC IP: These IP’s must hang from the PA-CE.

– 1 VIRTUAL NETWORK : CE-01_OpenShift. Virtual FW PALO ALTO & Management Ser-
vices

First test on the infrastructure that URV was working on did not meet their expectations. The fol-
lowing explanation is necessary to understand the situation. There are two distinct Internet services
in KIO:

• Corporate access: provided by a third-party entity with redundant infrastructure across two
different operators, offering a maximum aggregated throughput of 3 Gbps and cloud-based
antiDDoS protection by a cybersecurity provider.

• Secondary access: provided by a Telecom Operator with dual circuits in active-passive mode,
offering a throughput of up to 2 Gbps, expandable to 10 Gbps. Unlike Corporate access, it lacks
an antiDDoS shield.

One of the primary reasons for the delay encountered on URV’s testbed was the traffic passing
through the Corporate access, leading to increased latency and reduced bandwidth. The Figure 8
depicts the proposed starting URV’s Architecture with the S3 NetApp environment.

KIO’s Communications team sorted out the issue redirecting the internal traffic to the NetApp
environment. This new setup resulted in a fivefold increase in throughput and a decrease in latency.
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Figure 8: Starting URV’s Architecture

Figure 9: First Evolution URV’s Architecture

This was the primary motivation for transitioning from S3’s NetApp environment to MinIO’s envi-
ronment. The Figure 9 shows the changes set up to modify the S3 NetApp environment to a MinIO
environment in the URV’s Architecture.

This MinIO’s environment has been deployed with the following resources:

• 16 vCPU 2.3 GHZ.

• 32 GB RAM

• 1672 GB PREMIUM SSD DISK

MinIO’s solution has been deployed within the same L2 where the OpenShift environment was
deployed. This implementation helps to avoid any penalties in terms of latencies and throughput.

In addition to the infrastructure deployed, URV needed a machine to orchestrate Lithops deploy-
ment. KIO has provided for this purpose a Kloud2.0’s environment with the following resources:

• 2 vCPU 2.3 GHZ.

• 8 GB RAM

• 450 GB PREMIUM SSD DISK

The Figure 10 shows the final proposed URV’s Architecture with the addition of the Kloud2.0
environment for the URV to manage its own resources.
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Figure 10: Second Evolution URV’s Architecture

4.4.3 SCONTAIN - SCONE

SCONTAIN requested an SGX environment to run their testbed within an enterprise environment.
The Figure 11 depicts the starting SCONTAIN’s Architecture.

Figure 11: Starting SCONTAIN’s Architecture

SCONTAIN’s testbed hardware requirements have been the following ones:

• 16 vCPU 2.3 GHZ.

• 64 GB RAM

• 564 GB PREMIUM SSD DISK

• Networking resources:

– 30 MEGABIT INTERNET Bandwidth.

– 2 ESP PUBLIC IP

– Virtual FW PALO ALTO & Management Services

KIO’s cloud processors can support SGX. However, this feature has never been enabled for a
client in a production environment.
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The initial step was to enable it. This process allows for the generation of a key. After obtaining
the key, you must register this key within Intel Provisioning Service and receive an EPID Key. Once
we have that key, we can share and validate attestation messages. However, a bug was discovered
between CISCO and INTEL, making it impossible to properly regenerate the Provisioning Key. Af-
ter INTEL and CISCO resolved the issue, SCONTAIN was able to effectively utilize the attestation
service over KIO’s Cloud IaaS.
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5 NEARDATA Components Integration

During this section, we will introduce the integrations of NEARDATA components from a theoretical
description and a first prototype from the technical specifications of each component. In this way,
we present the workflow and data flow between components to understand the interaction of the
components of the actual NEARDATA architecture.

It is important to highlight that the documentation, first tutorials and automatic tests of each
component and the different integrations can be found in the open Github repositories presented in
Appendix: 8.1.1 NEARDATA Github repositories.

5.1 Lithops as a compute engine for Dataplug

As presented above, Dataplug is an extensible framework for partitioning extreme unstructured sci-
entific data. Its two-phase data model allows the user to avoid processing the same data repeatedly
and having to duplicate data in the storage backend. Since Dataplug is fully portable, it allows us to
use and/or combine different distributed data analysis clusters or serverless frameworks for each of
the phases.

The Lithops serverless data processing platform presented at NEARDATA fits perfectly with the
features and specifications of the Dataplug data model. Thanks to the compute API offered by
Lithops, we will be able to access the compute backend provided by the different cloud providers
or NEARDATA’s own Testbed offered by partner KIO Networks.

Figure 12: Lithops and Dataplug integration.

Figure 12 shows the theoretical integration of the Lithops and Dataplug components with respect
to the architecture proposed in Figure 2 above. The three modules involved in this integration can be
identified. The Data Plane, which provides data management on the NEARDATA platform. With our
serverless data connector component Dataplug, we provide data indexing and metadata generated
from the serverless data processing platform Lithops located in the Analytics block that will access
the different Data Sources located in the cloud or in the edge. In this way, discovery and data collec-
tion are ensured. Once this step is done, it will be the Dataplug itself that distributes the partitioned
data to the computing backend through the Data Programming Abstractions developed by the Data
Pipelines.

5.1.1 Early Prototype

Figure 13 depicts the architecture and data lifecycle of the Lithops integration with Dataplug. These
do not imply any changes to the architecture presented by Dataplug, as Lithops can be used as a
serverless data processing platform for Dataplug. The two phases of the Dataplug data model can
be visualized, where Lithops will be in charge of invoking virtual machines or serverless functions
in the cloud or in the egde (KIO Networks Testbed) that will perform the pre-processing tasks by
directly accessing the data stored in the object storage. In the second phase, the object storage will
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be accessed to calculate the data slices that will be distributed to the computing backends through
Dataplug. Then, the corresponding fetch will be performed on each of the workers through HTTP
GET requests of byte range. Finally, the data portions can be analyzed in the workers.

Figure 13: Lithops and Dataplug integration architecture.

Thanks to the portability offered by Dataplug, no modifications are required to use Lithops as a
cloud backend. As we have been saying, ease of use is one of the main features of both frameworks,
and their combination continues to maintain this attribute.

Figure 14 represents a Python code example to visualize the interaction between the APIs offered
by Dataplug and Lithops. The data format to be analyzed is the FASTQGZip compressed genomic
format.

Figure 14: FASTQGZip compressed format example - Lithops integration with Dataplug.

The procedure for parsing this type of data is simple. First, the user must create a Cloud Object
by entering the format of the file to be partitioned, in this case, FASTQGZip and the key of the
file stored in the object store. This cloud object incorporates all the mechanisms to preprocess and
partition data transparently.

Lithops will be the backend used to perform the computation necessary for the preprocessing of
our data. Within Dataplug there is a specific library fully adapted to use Lithops as a computation
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backend. This can be called through the LithopsPreprocessor() function. Once that is done, the
preprocess() function will be applied to the generated cloud object. In this case, the preprocessing
strategy is predefined in the Dataplug library, so the user does not have to worry about its manage-
ment or implementation. This function will generate the metadata and indexes needed to partition
the data.

Next, the Data Slices will be generated from the partition() function. To do this, the predefined
partitioning strategy must be indicated. For the FASTQGZip format, there is a partition_reads_batches
function, which partitions the data without leaving a half-partitioned read. In addition, the number
of Data Slices to be performed must be specified with the parameter num_batches.

Once the data slices are obtained, they can be distributed to the different workers used by the
computation backend. In this case, Lithops will be used to invoke parallel serverless functions. In
order to perform this type of work, Lithops needs to create a FunctionExecutor object. From this,
parallel serverless tasks can be invoked from the map() function. It should be noted that N functions
will be invoked according to the total number of Data Slices generated. Each worker will execute the
check_len() function. This function receives by parameter a generated Data Slice, which is evaluated
from the get() method. This allows the HTTP GET requests to be made from the metadata stored
inside it in order to receive the correct portion. Once the selected batch is available, its size will be
returned. Finally, the results of the functions will be collected by the get_results() function.

As we have observed, the presented example is a sample code in which Lithops has been used as
a computing platform to analyze the partitioned data from the Dataplug Data Connector.

5.2 Lithops & Pravega (Streaming Data Platform)

The Pravega open source streaming storage system is presented in NEARDATA as a streaming data
connector. It allows us to process data in streams by providing mechanisms to facilitate the ingestion,
storage and retrieval of data streams. Our serverless processing platform Lithops, as we have been
discussing in this deliverable, incorporates a Storage API that allows access to data stored in the ob-
ject storage. Although this provides certain benefits as we have seen in the integration of Dataplug
and Lithops, it does not satisfy the need for real-time low-latency data processing. Likewise, the in-
tegration of Pravega with Lithops allows us to take advantage of the benefits of Pravega’s streaming
data management to perform real-time analysis on computational backends deployed with Lithops.

Figure 15: Lithops and Pravega integration.

Figure 15 shows the theoretical integration between Pravega and Lithops. We can see how the
workflow incorporates up to three modules seen in the NEARDATA architecture. Lithops belonging
to the Analytics module is in charge of processing the data streams ingested in real time from the
implemented data pipelines. The Pravega stream data connector belonging to the Data Plane will be
in charge of managing the data streams of the data stored in the different Data Sources to ensure data
discovery and management.
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5.2.1 Early Prototype

In this Proof of Concept, we integrated Lithops in the Dell Streaming Data Platform (SDP) [19], which
has Pravega as its core streaming storage engine, to execute multi-cloud serverless functions. The in-
tegration of Lithops in SDP has been a natural process, as Lithops has been designed to run functions
in containerized execution environments (called “runtime environments”). As Kubernetes is one of
the compute back-ends supported by Lithops, we opted for this option to run Lithops jobs in SDP.
Fig. 16 shows the main integration points of Lithops with SDP:

• Object Storage: Lithops was initially designed to run serverless function jobs on top of object
storage. SDP also includes object storage for long-term stream data (e.g., ECS, ObjectScale).
One clear integration point of this PoC is allowing Lithops jobs to interact directly with ECS to
perform computations.

• Streaming Storage: The data stream is SDP’s main data storage abstraction. In this PoC, we also
work on allowing Lithops to exploit Pravega data streams to performe serverless computations.

• External Clouds: One of the key ingredients of Lithops is its multi-cloud capabilities. In this PoC
Lithops on SDP accessed and processed data stored in other clouds (Amazon Web Services).

Figure 16: High-level overview of the PoC that integrates Lithops in SDP.

As visible in Figure 16, in our PoC a user can submit Lithops jobs to the SDP cluster. Such jobs are
handled in Kubernetes, where each task is executed on an individual pod. Lithops was configured
to access the S3 API of the ECS instance within the SDP cluster used in this PoC. This allows Lithops
to directly read and write data to the ECS instance. The only addition we had to make in Lithops to
allow this was to add the endpoint-url option in the configuration of S3. Similarly, providing the
right endpoint to the Lithops job enables it to use the Pravega service in SDP. As Lithops is written in
Python, we used the Pravega Python client [20] available as a binding on top of the Rust core client
implementation [21]. The Python client provide means to manage stream data from Pravega in a
Lithops job. Finally, we configured Lithops so it can access an external AWS account. This allows a
Lithops job to manage data objects from S3.

Naturally, a few limitations in our PoC should be addressed in case we attempt to make it
production-ready it. First, for simplicity, we deactivated authentication and authorization in Pravega
so Lithops could interact with it without having to add complexity in terms of security configuration.
Second, the Lithops jobs executed in this PoC have been launched from our laptop, which acts as the
primary node. In production, it would be advisable to have a primary Lithops node in SDP itself.
Finally, the experiments with Lithops have been carried out from the console, meaning that we did
not spend efforts trying to integrate a graphical UI to SDP for submitting Lithops jobs. To carry
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out this PoC, we had to slightly modify Lithops to add to the S3 configuration a new flag called
endpoint-url to allow Lithops to work with any on-premises object store that implements the S3
API (we will contribute this change to the project).

Figure 17: Wordcount job merging results
from AWS S3 and Pravega streams.

Experiment: Multi-cloud serverless wordcount job
with objects and streams. In this experiment, we ex-
tend a wordcount job to consume data from Pravega:
the streaming storage engine of SDP. That is, the goal
of this experiment is to show that we can compute on
data from an external object store such as AWS S3 and
combine such results with computations on data from
Pravega streams. This gives us a sense on the flexibility
of Lithops not only in terms of computing across mul-
tiple infrastructures, but also using diverse sources of
data in the same job. The job used in this experiment is
shown in Fig. 17.

The job used in this experiment contains the meth-
ods that will be used in the Map/Reduce compu-
tations for processing text objects stored in the S3
bucket. Concretely, the wordcount_object_map() and
the wordcount_object_reduce() represent the map
and reduce functions to be executed on data imported
from AWS S3. On the other hand, we see the function
wordcount_stream(), which performs similar logic, but
assuming that a single function is processing the data
stream. It is important to note that Lithops is de-
signed to work on data objects, so the engine abstracts
the read/write operations on them. However, using a
Pravega stream is new, so we must include the code for
reading a Pravega stream in the function’s body. We
also find the merge_dicts() function which combines
the dictionaries resulting from the process of counting
words in text files, so we output a combined result from
both computations.

The main() method of the job shows how we trigger
the two serverless functions. That is, we run in paral-
lel the Map/Reduce job in a local pod but getting data
from AWS S3. Note that, in this example, “localhost” is a pod on the SDP cluster with Lithops in-
stalled, not the developer machine. Similarly, we execute the stream wordcount function against the
Pravega deployment in SDP. In the last lines of the code snippet, we can see that we wait for the
futures of both computations and once we get the resulting dictionaries with the word counts, we
merge them and print the combined result.

As visible in Fig. 18, when the Lithops job was executed, we could see the read activity from the
Pravega metrics perspective. While the amount of data used in this experiment is small (Hamlet
text), it is enough to demonstrate our hypothesis. Moreover, Fig. 19 shows the output of the Lithops
job from the job driver perspective. At the end of the job execution we can clearly see the combined
result of the two wordcount functions that used AWS S3 data and Pravega streams, respectively.

Note that this PoC work has been disseminated internally inside Dell, being one key element of
our exploitation strategy for Lithops and Pravega. More details on the exploitation ramifications of
this effort can be found in deliverable D6.2 Communication and standardization report.
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Figure 18: Pravega metrics show the reading activity (right dashboards) from a serverless function
reading the text of Hamlet written to a Pravega stream.

Figure 19: Output of the Lithops jobs that combines the wordcount results from S3 objects and
Pravega streams.

5.3 Lithops as a compute engine for METASPACE

METASPACE[22] provides an end-to-end annotation pipeline for Mass Spectrometry Imaging (MSI)
datasets. Datasets can be uploaded directly by the user to the METASPACE portal14 and annotated
using only cloud resources. Its lithops-based serverless architecture allows annotation of highly vari-
able input sizes, from a few megabytes to tens of gigabytes. Annotation results are published to the
METASPACE portal and made available to researchers around the world.

Often, omics researchers are interested in processing personal and/or confidential data. To meet
the privacy requirements of personalised annotation jobs, our goal is to run the METASPACE an-
notation code in secure enclaves instead of stateless serverless components. Securisation will come
from SCONE containers[23], scheduled with Lithops on a K8S backend.

We will rebuild the METASPACE annotation pipeline according to the NEARDATA architectural
guidelines. Figure 20 shows how the different components will scale and interact. Users will upload
datasets to the METASPACE portal, which will act as the prototype’s exclusive data source. Lithops,
the heart of NEARDATA’s analytics module, will schedule and launch pipeline tasks in a K8S or-
chestrator running on the KIO testbed. Instead of standard Docker containers, the Data Plane will be

14https://metaspace2020.eu/
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implemented with SCONE containers, secured with Intel SGX.

Confidential Execution

Data Plane

Data Processing Platforms

Analytics

Use Cases - Data Pipelines

Data Discovery and Sourcing

Data Source

<<reads from>>

<<exchanges data through>>

<<orchestrates stages on>>

Figure 20: Lithops and METASPACE integration.

5.3.1 Early prototype

Spatial metabolomics consists of applying spectrometry measurements to a biological tissue section.
The resulting dataset contains a series of arrays - the spectrometry results - each corresponding to a
pixel of the section. Defining the presence and relative abundance of different molecules in each pixel
of the dataset is called an annotation. The METASPACE annotation pipeline does this by comparing
these results with databases of real metabolite formulae with known spectrometry signals.

In Figure 21 we can observe our first prototype running the METASPACE annotation process on
the K8S backend on the KIO testbed. The whole implementation is wrapped into a Pipeline class,
which comprises the Lithops executor, a log extractor for execution profiling and a cache system to
avoid recalculating already processed data, such as a same database on different dataset annotations.
All stages of the pipeline are implemented with one to a few consecutive lithops map calls, each
function running in a exclusive SCONE container.

The pipeline receives two inputs: the dataset to be annotated - in imzML format - and a database
to compare against. The dataset is manually uploaded to the METASPACE portal by the user and
automatically stored in an S3 bucket. Annotation functions then read it from S3. The database is gen-
erated by specifying the set of possible molecules - and derivatives - and calculating their theoretical
spectrometry signal with the pyMSpec15 library.

Once the data has been loaded, the exchange between the stages takes place via a private MinIO
storage system in the KIO testbed. Intermediate results are not exposed to the cloud throughout
the pipeline for privacy reasons. I/O operations with MinIO can be conveniently performed using
Lithops’ Storage abstraction.

The pipeline starts with some preprocessing steps to sort the dataset and the database. The
metabolite formulae in the database are sorted (build_database()) before their respective spectrom-
etry signals are generated (calculate_centroids()). As their overall size is less variable across runs
and smaller than that of the datasets, sorting is performed with a fixed number of 32 functions and
segmented into 256 final partitions. The dataset is sorted with adaptive parallelism instead, with
the number of functions increasing linearly with dataset size and the final partition kept at 128MB
(split_ds() and segment_ds()). The preprocessing ends with a database resort and repartitioning
based on dataset segments (segment_centroids()).

The annotation per se, as the comparison of dataset and database signals, is performed afterwards
(annotate()), with an embarrassingly parallel computation partitioned based on dataset segments.

15https://github.com/alexandrovteam/pyMSpec
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Figure 21: Integration architecture of Lithops and METASPACE. 1) The user uploads a dataset to
the METASPACE portal. 2) The job is scheduled in a Lithops client in the KIO network testbed. 3)
Pipeline stages are executed in K8s on SCONE containers. Functions read the input dataset from S3
and exchange the intermediate data with MinIO. 4) Resulting images are stored in MinIO. 5) The user
accesses the images via the METASPACE portal.

annotate() is the most parallel and computationally intensive stage. Finally, the annotated data is
statistically validated using a parallel False Discovery Rate algorithm. The signal quality of plausible
metabolites is compared with signals of alternative formulae that cannot be present in biological
tissues (run_fdr()). Only metabolites with the highest statistical confidence are retained in the final
results.

The results are formatted into a png image per metabolite, showing its abundance at each pixel of
the tissue. Images are stored in MinIO and can be viewed and/or downloaded from the METASPACE
portal.

5.4 AI-based optimizations for Lithops

The AI-based optimization component allows to orchestrate current frameworks such as Lithops or
K8S to improve efficiency and quality of service in terms of speed and/or energy. The Lithops frame-
work offers different APIs to access or deploy services and resources from different cloud providers.
During this process, certain characteristics and performance metrics are stored for later analysis.
Likewise, we found a potential integration between the two components to leverage the performance
metrics generated in Lithops to improve resource allocation for demanding workloads.

Figure 22 shows the architecture of the theoretical integration between the two components. In
this case, we see how the Control Plane and Analytics modules are integrated in a simple way.

5.4.1 Early Prototype

The first steps undergone towards this goal have been based on K8S as infrastructure management.
The choice was made based on the fact this resource manager is widely spread and production-
ready, enabling us with a stable environment from which we could get relevant system telemetry
(CPU, memory, disk, etc.) in a reproducible manner.

One of the first steps was done collecting the metrics from the Kubernetes itself. However we re-
alized Kubernetes time window to gather data was too wide and aggregated within the time range.
This resulted in extremely inaccurate data and produced predictors with near 100% accuracy. How-
ever such accuracy was unrealistic. Consequently we did experiments with Linux monitoring tools
in each of the nodes. Despite this technique not allowing us to separate utilization from containers,
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Figure 22: AI-based optimizations and Lithops integration.

we can actually know which containers are running where and we can ensure that each node only
runs one processing container at once, so our data is relevant. Given that Linux monitoring tools
allow for a much smaller and fine-grained observation window, that data was much more useful.

Figure 23 and 24 shows current work utilizing the Linux monitoring tools with a SVR model as
well as a linear regression. We can appreciate how our model predicts utilization for up to 3 future
observation windows. That is, from one to three observation windows ahead of time. At the top we
present the training sets and how well we do estimate to predict the future, while at the bottom is
our test case used to estimate the accuracy of the model.

Figure 23: Prediction of future resource utilization using the SVR model

On the other hand, Figure 25 shows the results obtained using Kubernetes telemetry, where we
can appreciate how the granularity of the metrics is too wide resulted in unrealistic data.

Those charts represent models being fitted for each of the future observation windows. However,
each one does not utilize the information obtained from the previous one. That is, we have a model
trained to predict one future window, and a different one to predict two in the future and so on.
While this approach allows for proper exploration of the work, we do target to use the previous
model to train the predicting one more steps ahead of time. On the other hand, we intend not to fit
the model to a specific case but rather build a general one.

Next step is to enable a recommender that gathers all the telemetry information of an application
and suggests the best resource allocation based on the currently available infrastructure. To achieve
that, the telemetry data is treated as a time series from which we can predict resource utilization in
the immediate future. Such predictions can be later used in order to dynamically scale the amount
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Figure 24: Prediction of future resource utilization using a linear regression

Figure 25: Prediction of future resource utilization using a linear regression with kubernetes-
provided telemetry

of resources assigned to the application, freeing unused resources or asking for more of them in
anticipation of spikes or drops in the resource usage pattern.

There are situations, however, in which the resource usage is near constant, making such time
series recommendations not useful. To solve such situations the system can be expanded with a
component identifying the shape of the time series.

Currently we are using Apache Spark on top of Kubernetes to develop the recommender. The
choice is made as with Spark we can represent a reasonable amount of real-world use-cases and we
can easily reproduce the results. However, as earlier stated, in the future this recommender will be
integrated within the Lithops framework, so that we can apply it to all the use-cases developed in
NEARDATA.

The connectors we initially identified to implement and integrate such recommender are de-
scribed as follows:

• Machine-learning training connector: this connector will learn from the time series obtained
from running workloads, and output the trained model.
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• Machine-learning recommender: this connector will be directly used by the orchestrator, which
will decide which resources to use based on these recommendations.

• Resource management connector: this connector will provide several resource management
policies. As an input, it will receive workload requirements in terms of resources, as well as
SLA requirements to be met. As an output, it will deliver the proposed resource allocation.

The future integration of those procedures with the Lithops framework is depicted in Figure 26.

AI-based 
recommender
(include training) 

Resource 
manager

Figure 26: AI-enabled recommender for Lithops

We have already performed initial explorations running benchmarks such as matrix multiplica-
tion and the approximation of pi as well as the flops benchmark on top of the Lithops framework.
As a result of those initial experiments, we were able to properly identify the target telemetry infor-
mation we want to initially use as well as identify the main challenges. One of such challenges is the
fact that some workloads have a near-constant resource utilization, thus making such a recommender
system useless: one can predict how much resources will be used in the future from straightforward
observation. Subsequently, we explored more complex workloads leveraging Spark on top of the
Kubernetes system. The potential areas of optimization within the Kubernetes framework have been
found into the AutoScaler that Kubernetes upon. This auto-scaler is depicted in figure 27.

Figure 27: Kubernetes VPA Auto-Scaler on which we aim to integrate our recommender system

This element makes static predictions to decide the resources in often naive and ineffiicent ways.
Thus, we aim to integrate our recommender in such system to demonstrate a better decision-making
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on top of the Kubernetes platform for Spark workloads. Potentially, that might be applied to ge-
nomics workloads too.

When it comes to modelling the recommender itself, two main approaches are being proposed:

• Real-time streaming: while telemetry of a running workload is being collected, process the
data in the form of a moving window. Within this window a model is filled utilizing a linear
regression of a linear SVM to make a prediction of the future time steps based on the observed
previous time steps. This approach is undergoing testing and we expect to provide initial re-
sults by the next period.

• Collecting telemetry from several workloads: we will explore whether neural networks mod-
els on large dataset using a variety of workloads can yield better predictions than simpler real-
time models. However, since neural networks are costly due to their size and computational
requirements, we’ll incorporate an additional intermediate component. This component will
use clustering of the real-time series (for instance, using encoders) to see whether the workload
has a constant or heterogeneous resource utilization pattern. In the latter case, we would switch
to using the neural-network based model.

5.5 XtremeHub - Main components

The XtremeHub features the integration of the components that form the Data Plane module. They
incorporate high performance data connectors that are perfectly suited to deal with extreme data
combining batch and low-latency stream processing deployed in secure and confidential environ-
ments such as TEEs.

The XtremeHub presented at NEARDATA consists of the following main components: SCONE as
XtremeHub Security to provide secure environments for the confidential execution of data processing
platforms and data connectors, Pravega as XtremeHub Streams to guarantee real-time, low-latency
streaming data processing and finally, Lithops as XtremeHub Compute. Although this component
is not included in the Data Plane, its storage and compute APIs allows to provide serverless com-
putational resources by leveraging a continuous data stream through direct connection to the object
storage.

Figure 28: XtremeHub Main components integration (Lithops, Pravega & Scone).

Figure 28 depicts the theoretical integration of the three main components of the XtremeHub. In
addition, the use cases leverage the features provided by the XtremeHub to develop and execute sen-
sitive extreme data pipelines from the containerization of processing platforms and data connectors
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in trusted environments. In the deliverable D3.1 XtremeHub first release and documentation the new
NEARDATA XtremeHub is presented in more detail and in depth.

5.5.1 Early Prototype

Applications will reside on SCONE prepared images, (e.g. Python for Lithops). In other words,
SCONE is the underlying platform that provides the interface between the ported application and
the TEE. With this in mind, the ported applications will run on a confidential Docker container, i.e.
CPU and memory access are protected by the TEE.

The enforcement of confidential computing is made via Configuration and Attestation Service,
which, via attestation, will provide configurations related to XtremeHub interactions, storage en-
cryption, and other configurations that will only be available to authorized applications or users.

A confidential computing deployment is called "mesh of services" and all communications and
storage are encrypted or authenticated with keys only provisioned through attestation.

Attested Applications Policies. Policies are the essential data structures used to enforce confi-
dential computing. In brief, they have the following sections (among others): services, with the
set of services description (name, command and parameters, environment variables, enclave hash);
images, with description of protected volumes used by the services; and secrets, containing certifi-
cates, private keys, passwords etc.

These policies are configured prior to system operation. Some secrets, like passwords, can be
automatically generated and no root-level user will have access to it. The secrets can also contain
configuration files, e.g. /etc/my.cnf for MariaDB; binary-type information, e.g. *.JKS files; certifi-
cates issued by third parties and so on.

XtremeHub and the other systems within the scope of confidential computing will get their con-
figuration from policies after successful attestation against CAS. Among the configurations men-
tioned above, credentials to transfer data via secure channel with mutual-TLS (mTLS) is one method
to enforce privacy, where only authorized endpoints can receive or send data.

Implementation. A mesh of services has been deployed in a Kubernetes cluster and consists of:
CAS, Lithops (operating in "localhost" mode), Certifier, and Keycloak. A user application is also used
on the desktop-side to demonstrate how an authorized person (with username and password) can
login to Keycloak, issue an access token that will be validated by the Lithops program and have the
subsequent execution triggered.

The Certifier is a gateway to CAS. In this POC scenario, the Certifier will provide the respective
certification authority (CA) certificate from which the Keycloak’s server certificate was issued – as-
suming the CA certificate is not available in the public key infrastructure (PKI16). The Certifier is a
micro-service application that can be accessed from the browser and the corresponding CA certifi-
cate will be downloaded in PEM format. This CA certificate can be imported into the browser or the
operating system certificates manager. However, if all the systems and endpoints are covered by the
confidential computing enforcement measures, the Certifier is not necessary. Furthermore, if a CA
certificate has been issued previously by a valid registrar (or registration authority – RA), it can be
injected into the policies and used to issue server certificates within CAS in which cas browsers will
get CA certificates from PKI instead.

Lithops in this POC is not running complex processing or long jobs, but has a demonstration of
parallel computation running on the Docker container based on a SCONE image. Figure 29 shows the
workflow, since attestation, progressing to phase where users authenticate themselves in Keycloak,
issue access tokens, forward them to Certifier in order to get secrets, and finally submit processing to
Lithops. Systems (Certifier and Lithops) will grant or deny execution by validating the access token,
and proceed accordingly. For this POC, the role "nd-role" is used to grant authorization.

Another POC was tested where Lithops on client-side is configured in "serverless" mode and the
program submits jobs to a Kubernetes cluster with TEE support to run Lithops functions in confi-

16PKI: https://en.wikipedia.org/wiki/Public_key_infrastructure
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Figure 29: Confidential computing mesh of services.

Figure 30: SCONE Lithops execution in serverless mode.

dential computing environment. It is composed by a Kubernetes cluster providing access to SGX
hardware device; a Redis server, the worldwide used in-memory database, and also a minIO, an
equivalent to S3 cloud storage system. The Figure 30 depicts this POC. Some modifications had to be
made in Lithops source code in order to enable a succesfull deployment of new containers via jobs
dispatching. For example, the source code lithops/serverless/backends/k8s/config.py now has its variable
JOB_DEFAULT modified with the following SCONE configurations:
...

env:
- name: ACTION
value: ”
- name: DATA
value: ”
...
- name: SCONE_HEAP
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value: ’768M’
- name: SCONE_MODE
value: ’AUTO’
- name: SCONE_FORK
value: ’1’
- name: SCONE_CAS_ADDR
value: ’172.20.0.1’
- name: SCONE_LAS_ADDR
value: ’172.20.0.1’

...
limits:

cpu: ’8’
memory: 8192Mi
sgx.k8s.io/sgx: "1"

Environment variables "SCONE_LAS_ADDR" and "SCONE_CAS_ADDR" are host addresses where the
SCONE attestation mechanism validates the enclave and retrieve the corrsponding policies. The
parameter "limits: sgx.k8s.io/sgx: "1"" tells Kubernetes to provide SGX device to that con-
tainer; and, along with "SCONE_MODE=AUTO" or "SCONE_MODE=YES" the ported system will benefit from
the TEE. Variable "SCONE_FORK=1" is essential for Lithops to work with multiple concurrent processes.
And "SCONE_HEAP" is the minimum size reserved for the application startup. There is one variable not
configured now: "SCONE_CONFIG_ID". It contains the policy name + service to validate the enclave and
get the corresponding secret configurations. Presently, attestation in serverless mode is under devel-
opment. It can be seen above that the values on the SCONE_* environment variables are all hard-coded.
The analysis to implement attestation here points to include a new section in the Lithops execution
configuration file (normally located in /etc/lithops/config), the "scone:" key. For example:

lithops:
...

k8s:
...

scone:
scone_mode: AUTO
scone_config_id: xtreme-lithops-43245-19512-79041/mapgenomics
scone_cas_addr: 10.185.25.37
scone_las_addr: 172.20.0.2
...

The limits: configuration section had to be increased. SCONE requires a "larger room" for op-
erating enclave’s cryptography functions and memory management. In server applications, either
the limits: memory: is omitted or set to the cluster’s threshold. We expect to have these and other
variables be dynamically set in Lithops configuration file instead of having to recompile a Docker
image with specificities. Additionally, Lithops prepares YAML manifests for Jobs and Containers dy-
namically and relies on dynamically set environment variables, such as MASTER_POD_IP to be present
in container at startup. No variable, with the exception of a few SCONE_* are read prior to attestation.
All the environment variables that are visible to the program come from the policies after attestation.
And the policies must be uploaded before the execution, via another workflow.

It is important to make clear that confidentiality is maintained in Lithops container, regardless of
the backend being localhost or serverless (please refer to D3.1 XtremeHub first release and documen-
tation, section 6.2 Lithops Experimental Execution). The next steps will focus on enabling attestation
for Lithops in serverless mode; fine-tune software and configurations, and address bugs and incon-
sistencies as soon as they appear.
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6 NEARDATA Health Data Spaces

From the NEARDATA platform we present three International Health DataSpaces to promote their
worldwide adoption in the fields of Metabolomics (thanks to EMBL), Genomics (starting with BSC,
SANO and UKHS) and Surgery (thanks to the Dresden network).

During this deliverable we have been exposing the technologies developed, its integration and
its function within the NEARDATA platform. Next, we will introduce its adaptation to deploy and
validate the three International Health Data Spaces.

6.1 Metabolomics Data Space

The NEARDATA Metabolomics Data Space aims to become a worldwide reference in the field of
metabolomics. We take into account the considerable efforts that make EMBL a leader in this field to
leverage the METASPACE platform as the main component for spatial metabolomics data analysis,
sharing, and visualization.

Its widespread adoption by hundreds of scientists around the world makes METASPACE a ma-
jor point of interest. By adopting the NEARDATA platform, scientists will be able to benefit from
data analytics features such as data discovery, management and processing with the ability to secure
confidential workflows.

Figure 31: NEARDATA Metabolomics Data Space.

Figure 31 shows the NEARDATA Metabolomic Data Space. We can identify the Data Broker
and AI-based optimizations components belonging to the Control Plane module, the SCONE and
DataPlug components available in the Data Plane module, the Lithops component of the Analytics
module and finally, the core of the NEARDATA Metabolomic Data Space which is METASPACE in-
corporated in the Data Sources module. Also, the EMBL use case on spatial metabolomics data is
seamlessly integrated with the workflow provided by the NEARDATA Metabolomics Data Space.
In addition, we present the novel DATOMA App Store which is a cloud and edge computing based
e-infrastructure for metabolomics data analysis, it offers a set of computational tools or applications
covering the whole spectrum of metabolomics technologies based on mass spectrometry (MS), we
will describe DATOMA in more detail later. Finally, the KIO Networks Data Center is included as
a testbed platform fully adapted and capable of providing the necessary resources for the use of the
different technologies presented.

The integration of the METASPACE platform with Lithops serverless analytics technology was
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realized during the H2020 CloudButton project to offer scalable and elastic solutions from cloud
architectures and is currently in production. At NEARDATA, we have focused on adapting the use
of Lithops in METASPACE to replace the use of serverless functions with the Kubernetes backend.
This modification is motivated by the introduction of confidential computing in the NEARDATA
Metabolomics Data Space. The integration of SCONE with Lithops allows securing serverless data
analysis resources for sensitive or confidential data processing.

Regarding the Control Plane components, the Data Broker will be in charge of orchestrating the
TEEs deployed with SCONE to protect the executions with Lithops on METASPACE, additionally,
the AI-based optimizations will help us to establish an efficient workflow on our data processing
platform.

Next, we present DATOMA as the App Store of our NERADATA Metabolomics Data Space.
DATOMA is a cloud computing web service solution that offers experimental scientists a fast and
easy way to analyze mass spectrometry-based metabolomics data for free, while giving developers
the opportunity to increase visibility and usability of their code.

DATOMA is intuitive, easy to use and free, so that researchers can focus on their research without
the need to configure and orchestrate infrastructure or resources required for metabolomics data
analysis. The cloud computing solution based on multi-cloud serverless programming will allow
users to set-up and execute metabolomics data processing workflows over distributed/federated
resources in the Cloud/Edge Continuum, facilitating easier collaboration between remote sites and
introducing a standardised, reproducible, and accepted data analysis process.

DATOMA offers code developers the ability to share their code and tools making it more accessi-
ble to a wider audience of researchers, increasing the likelihood that the code will be used by others.
DATOMA aims to be a comprehensive and accessible resource of data analysis tools helping to drive
scientific progress.

Initially, DATOMA was conceived for users to upload to it their datasets to be processed through
the metabolomics data analysis toolkit. The extreme sizes of currently existing metablomics data
make it difficult for researchers to download these data from data sources for re-upload into our
platform. To address this problem, DATOMA features integration with three metabolomics repos-
itories widely used by the scientific community: METASPACE, Metabolights17 and Metabolomics
Workbench18. The three different repositories incorporate APIs for searching datasets from meta-
data. Likewise, the integration of these data sources with DATOMA is simple. DATOMA offers a
data catalog from the metadata of the datasets found in each of the platforms, thus extending its
range of metabolomic data to be processed. To avoid data duplication, datasets are only downloaded
directly from the repositories within the job executions.

We present a last integration between DATOMA, METASPACE and Dataplug. DATOMA has
been integrated with Dataplug to take advantage of dynamic partitioning to improve data through-
put and reduce the data transferred between METASPACE and the jobs deployed in DATOMA.
Specifically, a new library has been implemented in Dataplug for partitioning imzML data files for
MS imaging processing.

We will validate the NEARDATA Metabolomics Data Space through the different KPIs defined at
the beginning of the deliverable. The integration of Dataplug with DATOMA and METASPACE will
be validated with KPI-1 Significant performance improvements (data throughput, data transfer reduction)
in the Extract-Transform-Load (ETL) phases validated with close data connectors on extreme data volumes. As
we have presented, Dataplug offers advantages for the extraction and consumption of data stored
in object storage, leading to reduced data transfer and improved data throughput. Lithops has the
ability to offer fully scalable and flexible serverless solutions depending on the resources required
to process massive workloads. Therefore, it will be validated with the KPI-3 Demonstrated resource
auto-scaling for batch and stream data processing validated thanks to data-driven orchestration of massive
workflows. The incorporation of the confidentiality layer offered by SCONE on the Lithops serverless

17https://www.ebi.ac.uk/metabolights
18https://www.metabolomicsworkbench.org/
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analysis platform will be validated from KPI-4 High levels of data security and confidential computing
validated using TEEs and federated learning in adversarial security experiments. Finally, the repositories
presented are widely used by the scientific community, with emphasis on METASPACE, the core
component of our Metabolomics Data Space. At NEARDATA we aim to leverage this novel NEAR-
DATA Metabolomics Data Space as a reference in the field of metabolomics. We will validate our
NEARDATA Metabolomics Data Space through the KPI-5 Demonstrated simplicity and productivity of
the software platform validated with real user communities in International Health Data Spaces. Finally, the
EMBL metabolomics use case will allow us to validate the NEARADATA Metabolomics Data Space
from a real metabolomics extreme data processing scenario.

6.2 Genomics Data Space

At NEARADATA we intend to contribute to a new International Health Data Spaces in the field of
genomics to consolidate the new NEARDATA Genomics Data Space.

As the novel NEARDATA Genomics Data Space does not incorporate a core component, it is in-
tended to ensure interoperability and integration of popular and widely used open source projects
that we present in NEARADTA to create a reference architecture for extreme genomic data manage-
ment, massive workload execution and confidentiality of sensitive data processing workflows.

Figure 32: NEARDATA Genomics Data Space.

Figure 32 depicts the architecture of the NEARDATA Genomics Data Space. As all the Inter-
national Health Data Spaces we present are based on our NEARDATA platform, we note that the
architecture is similar to the previous NEARDATA Metabolomics Data Space. On the Control Plane
module, we find the Data Broker component and the AI-based optimizations. As processing plat-
forms we include Apache Spark together with Lithops. Additionally, we present open genomics
data repositories such as NCBI, registry of Open Data on AWS19 and UK Biobank. Within the Data
Plane module is where we find some differences from the previous International Health Data Space.
It should be noted that the Data Connectors we present in NEARDATA can be specialized in a single
scientific field as is the case of the HPC Data Connector and the new Glider Neardata Data Con-
nector that we will present later or belong to multiple fields such as Dataplug (Metabolomics and
Genomics) and Pravega (Genomics and Surgomics). To guarantee the confidentiality of data and
executions and to offer federated learning architectures we leverage the SCONE component. The
KIO Networks Data Center provides the NEARDATA platform with the necessary resources to de-
ploy and integrate all the components of the novel NEARDATA Genomics Data Space. Finally, we
present up to three genomics use cases: Genomics use case (UKHS), Epistasis analytics in massive
genomics datasets (BSC) and Transcriptomics Atlas use case/Federated Learning use case (SANO)

19https://registry.opendata.aws/
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to validate with real use cases the NEARDATA Genomics Data Space.

In relation to the new integrations of technologies appearing in the NEARDATA Genomics Data
Space, we can highlight the integration between Pravega and Lithops, where Lithops is used within
the DELL Streaming Data Platform as a serverless function executor. Next, the integration between
Pravega and SCONE is in our next steps in the development of the NEARDATA platform to secure
and protect low-latency, real-time data processing and communication. Finally, we find the integra-
tion of two of the specialized Data Connectors in the use cases such as the HPC Data Connector
introduced in the BSC use case that integrates with Apache Spark and the new Glider NEARDATA
Data Connector that integrates with the UKHS use case.

The Glider NEARDATA Data Connector20 is an ephemeral storage system incorporating near-
data computation to reduce the volume of data transferred for our serverless architecture. Glider
aims to improve communication between serverless computing stages, allowing data to "glide" smoothly
through the processing pipeline rather than bouncing between different services. Glider achieves
this by leveraging near-data-state execution of complex data-bound operations and an efficient I/O
streaming interface.

Glider intercepts the data stored in its storage with novel storage actions to perform near-data
computation before it is sent to the next stage of functions. For a more extended view of Glider we
redirect the reader to deliverable D5.1 First release of KPI benchmarks in all use cases and data connector
libraries.

This novel and specialized Data Connector is seamlessly integrated into the UKHS use case to
store intermediate data while performing near-data computation to reduce the cost of data transfers
in terms of data reduction and latencies.

The NEARDATA Genomics Data Space will be validated with the KPIs described for the NEAR-
DATA platform. Data Connectors such as Dataplug and HPC Data Connectors will be validated
through the KPI-1 Significant performance improvements (data throughput, data transfer reduction) in the
Extract-Transform-Load (ETL) phases validated with close data connectors on extreme data volumes, both li-
braries offer capabilities for efficient genomic data preprocessing and transfer. Data Connectors that
are described as systems such as Glider and Pravega are related to KPI-1 Significant performance im-
provements (data throughput, data transfer reduction) in the Extract-Transform-Load (ETL) phases validated
with close data connectors on extreme data volumes, KPI-2 - Significant data speed improvements (throughput,
latency) in real-time video analytics validated using stream data connectors and KPI-3 Demonstrated resource
auto-scaling for batch and stream data processing validated thanks to data-driven orchestration of massive
workflows for validation of data reduction and data throughput improvements along with real-time
data speed improvements, and the scalability of resources offered by both distributed systems to
cope with massive workloads. Data processing platforms such as Apache Spark and Lithops will be
validated through KPI-3 Demonstrated resource auto-scaling for batch and stream data processing validated
thanks to data-driven orchestration of massive workflows. Additionally, the TEEs deployed by SCONE to
secure the executions and data management will be validated through KPI-4 High levels of data security
and confidential computing validated using TEEs and federated learning in adversarial security experiments.
Finally, the NEARDATA Genomics Data Space will be validated with KPI-5 Demonstrated simplicity
and productivity of the software platform validated with real user communities in International Health Data
Spaces from real users and use cases.

6.3 Surgomics Data Space

At NEARDATA we go beyond the International OMICs Data Spaces (Metabolomics and Genomics)
to present the first Health Data Space on Surgery under the name NEARDATA Surgomics Data Space.

The NEARDATA Surgomics Data Space aims to become a reference as an open Health Data
Space for Hospitals and research laboratories. Our NEARDATA partner NCT, expert in surgical
data, presents the collaboration with Heidelberg Hospital together with two other associated hospi-

20https://github.com/neardata-eu/glider-store
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tals. The interest shown by different hospitals has motivated the development of the NEARDATA
Surgomics Data Space.

Figure 33: NEARDATA Surgomics Data Space.

Figure 33 shows the NEARDATA Surgomics Data Space. We can see that the core of our surgery
data space is the main components of the novel XtremeHub platform that we present in NEAR-
DATA, consisting of the SCONE (XtremeHub Security), Lithops (XtremeHub Compute) and Pravega
(XtremeHub Streams) components. As in previous NEARDATA OMICs Data Spaces, we incorpo-
rate the Data Broker to orchestrate the confidential layers along with ia-based optimizations for the
Lithops processing platform. We also introduce the Camma and Endoscopic Vision Challenge21 data
sources along with sensitive datasets offered by the different associated hospitals. In this way, the
NEARDATA Surgomics Data Space allows establishing protocols and policies for the execution of
Federated Learning architectures. Finally, we also include the KIO Networks Data Center to pro-
vide the necessary resources to deploy the different components and we present the surgery use case
(NCT) to validate the data space with real users and use cases.

We can highlight the integrations of SCONE, Pravega and Lithops to initially form the NEAR-
DATA XtremeHub and ensure low-latency, real-time data processing of sensitive surgical data.

Finally, we will validate the NEARDATA Surgomics Data Space from KPI-1 Significant perfor-
mance improvements (data throughput, data transfer reduction) in the Extract-Transform-Load (ETL) phases
validated with close data connectors on extreme data volumes, KPI-2 - Significant data speed improvements
(throughput, latency) in real-time video analytics validated using stream data connectors and KPI-3 Demon-
strated resource auto-scaling for batch and stream data processing validated thanks to data-driven orchestration
of massive workflows on the XtremeHub Streams Pravega component. We will validate the XtremeHub
Compute Lithops component through KPI-3 Demonstrated resource auto-scaling for batch and stream data
processing validated thanks to data-driven orchestration of massive workflows. The XtremeHub Security
SCONE component will be validated with KPI-4 High levels of data security and confidential computing
validated using TEEs and federated learning in adversarial security experiments. Finally, the NEARDATA
Surgomics Data Space will be validated with KPI-5 Demonstrated simplicity and productivity of the soft-
ware platform validated with real user communities in International Health Data Spaces from the surgical
use case presented by the NCT and real users from associated hospitals.

21https://opencas.dkfz.de/endovis/challenges/2023/
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7 Conclusions

This deliverable presents the specifications of the NEARDATA architecture bringing the reader closer
to understanding how the actual components that make up each module of the platform interact
to create the desired workflows. In addition, new implementations of the components described
theoretically in the previous deliverable are incorporated.

As the project is progressing as expected, we have been able to present integrations of the com-
ponents already developed as early prototypes, where we show the interactions and combinations
of the technologies to work correctly. In addition, we have presented the three NEARDATA Interna-
tional Health Data Spaces from the combination and adaptation of the different integrations.

In this way, we ensure that the NEARDATA platform is being implemented from the overall ar-
chitecture proposed and that it meets the main objectives of the project.

We can highlight the following points as a conclusion:

• This deliverable allows to contextualize the NEARDATA project from the problems it wants to
address through the proposed state-of-the-art research lines.

• The proposed architecture corresponds to the initial specifications described in the first deliv-
erable. We combine the real components that we present in the NEARDATA platform to form
four major modules. Building upon the theoretical specifications, we offer actual technical so-
lutions.

• The components previously introduced in the initial NEARDATA architecture deliverable are
briefly described to recall their use and operation in the platform. In addition, we have pre-
sented the novel Dataplug framework, which is based on the actual implementation of the
Serverless Data Connector component which had benn described theoretically. In Dataplug
we have developed different libraries for dynamic partitioning and data ingestion for different
data processing platforms such as Ray, Dask and Lithops. Finally, we present the new HPC
Data Connector, able to take advantage of high-performance computing platforms.

• We have observed the requirements and resources of our testbed in accordance with the archi-
tecture specifications.

• We have developed the first prototypes of the component integrations found in different mod-
ules of the NEARDATA platform. This section allows the reader to understand the real life
cycle operation of the two life cycles presented in NEARDATA. We have described the combi-
nations of components such as Lithops (Analytics) and Dataplug or Pravega (Data Connectors)
that ensure the discovery, processing and analysis of extreme data. To provide secure data ac-
cess and execution, we have added SCONE integration to form the novel XtremeHub of the
NEARDATA platform.

• We have presented the three NEARDATA International Health Data Spaces in the fields of
metabolomics, genomics and surgery from the combination of the different integrations of the
NEARDATA platform components. In addition we have related the use cases to validate each
of the International NEARDATA Data Spaces.

Overall, all these points guarantee the fulfillment of NEARDATA’s main objective, to implement
an extreme near-data analytics platform based on the novel XtremeHub platform. The platform can
optimize data flows with high-performance near-data connectors and offers orchestration of secure
workflows and confidential data access thanks to the Data Broker. As mentioned above, the architec-
ture and the combination of components meet these requirements.
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8 Appendix

8.1 NEARDATA APIs

8.1.1 Data Plane APIs

Dataplug. The role of Dataplug in NEARDATA is defined as a serverless Data Connector between
the object storage and the various data processing platforms used in the use cases. Dataplug will
allow an efficient access to unstructured data thanks to the following API:

API API Call Description

Cloud Object
API

from_path() Method used to create a Cloud Object from a
path.

preprocess(backend,
force)

Method used to launch the preprocessing job
for this Cloud Object on the specified prepro-
cessing backend.

partition(strategy, args) Method to apply a partitioning strategy on this
Cloud Object.

Data Slice API
get() Method to evaluate the Data Slice, which will

return the actual partition.

Table 1: Dataplug API.

HPC Data Connector. The role of this connector in NEARFDATA is defined as an HPC compu-
tational framework targeting the acceleration of use cases through the usage of HPC infrastructures,
and in particular, the variant-interaction use case. This computation will be enabled through MPI-
enabled API calls that allow for quick data loading, partitioning, learner and sorting among a large
number of nodes. The API is defined as follows:
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HPC Data Con-
nector API

API Call Description

HPC Loader
read_labels() Method used to read patient’s information.

convert_labels() Method used to prepare the data.

read_sample() Method used to read samples’ information.

convert_samples() Method used to depurate samples’ informa-
tion.

HPC
Partitioner

get_mpicomm() Method to get MPI node information.

get_comb_files() Method to compute all the SNP-SNP combina-
tions.

make_distribution() Method to deploy the data on the MPI pro-
cesses.

HPC Learner
filter_imputation() Method to catalogue values according to impu-

tation quality.

transform_patients() Method to arrange every SNP-SNP pair as an
interaction matrix.

applyMdrDict() Method to apply Multifactor Dimensionality
Reduction MDR to every SNP-SNP combina-
tion.

get_risk_array() Method to count number of cases and number
of controls for each column and estimate the
high risk combinations.

get_error() Method to calculate the clasification error.

HPC Storer
save_output() Method to save MDR-error to output directory.

Table 2: NEARDATA HPC Data Connector API.
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8.2 NEARDATA Github repositories

Component
Name

Module Type Repository

Lithops Analytics Component https://github.com/neardata-eu/
lithops-hpc-singularity-and-k8s-backend

Dataplug Data Plane Component
& Integration
with Lithops
(Native)

https://github.com/neardata-eu/dataplug

METASPACE Data
Sources
& Data
Plane

Component https://github.com/metaspace2020/
metaspace

METASPACE &
Lithops

Data
Sources,
Data Plane
& Analytics

Integration https://github.com/metaspace2020/
Lithops-METASPACE

Pravega Data Plane Component https://github.com/pravega/pravega
SCONE Data Plane Component https://github.com/neardata-eu/

scone-artifacts
Glider Data Plane Specific

NEARDATA
Genomics
Data Space
Component

https://github.com/neardata-eu/
glider-store

Table 3: NEARDATA Github Repositories.
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